BHU M.Sc. Chemistry Entrance -2012

Instructions

- (1) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- 1. Example of d⁶ complex is (a) $[Mn(H_2O)_6]^{2+}$ (b) $[Fe(H_2O)_6]^{2+}$ (c) $[Cr(H_2O)_6]^{2+}$ (d) $[Ti(H_2O)_6]^{3+}$
- 2. Acidic strength is greater in

OH

 $(d) {}^{5}D_{1}$

- 3. Cannizzaro reaction is not given by (a) formaldehyde (b) acetaldehyde (c) benzaldehyde (d) trimethylacetaldehyde
- 4. The equilibrium constant of a reaction $A + B \rightleftharpoons C + D$ at 327°C is 1×10^{-12} and at 527°C is 1×10^{-7} . The enthalpy of reaction is (a) + 54.84 kcal/mole (b) - 54.84 kcal/mole (c) 548.4 kcal/mole (d) 5.84 kcal/mole
- 5. The wave mechanical model of atom depends on
 (a) de Broglie equation
 (b) Heisenberg uncertainty principle
 (c) Schrodinger wave equation
 (d) All of the above
- 6. In the cell Zn | ZnSO₄ (1.0 M) || Fe²⁺ (1.0 M), Fe³⁺ (1.0 M) | Pt, given that Fe³⁺, Fe²⁺, Pt = 0.769 V and Zn²⁺, Zn = -0.76 V, the standard e.m.f. of the cell is (a) 0.76 V (b) -1.529 V (c) -0.769 V (d) 1.529 V

(c) ${}^{6}S_{5/2}$

7. Ground term symbol for $Mn^{2+}(25)$ is (a) ${}^{3}F_{2}$ (b) ${}^{2}D_{3/2}$

8. Benzene reacts with methyl chloride inpresence of anhydrous AlCl, to give toluene. This reaction is called
(a) alkylation of benzene
(b) Friedel-Crafts reaction
(c) methylation reaction
(d) All of the above

9. Following two compounds are

1

10. Outer electronic configuration of lanthanides is (a) ns^{1-2}

(a)
$$ns^{1-2}$$

(b) $(n-1) d^{1-10}ns^2$
(c) $(n-1) f^{1-14}ns^2$
(d) $(n-2) f^{1-14}(n-1)^{0-1}ns^2$

11. The variation of molar conductane of strong electrolyte with concentration is shown below

20. The energy can be represented in terms of partition functions by the following equation

	(a) $\mathbf{E} = \mathbf{k} \mathbf{T} \left(\frac{\partial \ln \theta}{\partial \mathbf{T}} \right)_{\mathbf{V}}$	(b) $E = kT^2 \left(\frac{\partial \ln \theta}{\partial T}\right)_V$	
	(c) $E = \frac{k}{T} \left(\frac{\partial \ln \theta}{\partial T} \right)_{V}$	(d) $E = \frac{k}{T^2} \left(\frac{\partial \ln \theta}{\partial T} \right)_V$	
21.	According to Bose-Einstein statistics the p	robability distribution is given by	
	(a) $\frac{\mathbf{n}_i}{\mathbf{g}} = \frac{1}{\mathbf{e}^{\alpha + \beta \varepsilon_i}}$ (b) $\frac{\mathbf{n}_i}{\mathbf{g}} = \frac{1}{\mathbf{e}^{\alpha + \beta \varepsilon_i} - 1}$	(c) $\frac{n_i}{g} = \frac{1}{e^{\alpha + \beta \varepsilon_i} + 1}$ (d) None of these	
22.	The half-life of radium is 1600 years. After (a) 1800 years (b) 1600 years	 how much time will 1 gm radium reduce to 125 mg ? (c) 3200 years (d) 4800 years 	
23.	The vibrational degrees of freedom for (i) (a) 3, 1, 6, 6, 30 (b) 1, 3, 9, 30, 6	$\begin{array}{c} O_{2}, (ii) N_{2}O, (iii) CH_{2}O, (iv) C_{6}H_{6}, (v) CHCl_{3} \text{ are respectively} \\ (c) 1, 3, 6, 30, 6 \\ (d) 3, 6, 9, 6, 15 \end{array}$	
24.	The shift of an absorption maximum towar (a) hhypsochromic effect (c) hyperchromic effect	ds longer wavelength is known as (b) bathochromic effect (d) hypochromic effect	
25.	The actual value of nuclear spin depends o (a) mass number (b) atomic number	n (c) both (1) and (2) (d) shielding effect	
26.	The relationship between dihedral angle θ a is	and vicinal coupling constant $\boldsymbol{J}_{\!H\!H}$ is given by Karplus equation which	
	(a) $J_{HH} = 8.5 \cos \phi - 0.50$	(b) $J_{\rm HH} = 9.5 \cos \phi - 0.30$	
	(c) $J_{HH} = 8.5 \cos^2 \phi - 0.28$	(d) $J_{\rm HH} = 3.8 \cos \phi - 0.40$	
27.	Centrifugal forces due to rotation of molecule about any given axis tend to (a) increase the moment of inertia about the axis (b) decrease the effective rotational constant		
	(c) both (a) and (b)	(d) None of these	
28.	 Which of the following is correct for photochemical reactions ? (a) Temperature has the same effect as on thermal reaction (b) Temperature has opposite effect as on thermal reaction (c) Temperature has no effect in the photochemical reaction (d) None of these 		
29.	Chemisorption first increases and then dec	creases with increase in temperature because	
	(a) $\Delta H = -ve$ (b) $\Delta S = -ve$	(c) ε_a is high (d) ε_a is low	
30.	The gold numbers of A, B, C and D are 0.0 and D are	04, 0.002, 10 and 25 respectively. The protective power of A, B, C	
	(a) $B > A > C > D$ (b) $A > B > C > L$	D (c) D > C > A > B (d) B > A > D > C	
31.	When KCl is heated in an atmosphere of k(a) the electrons diffuse into the crystal an(b) the electrons diffuse into crystal and oc	K the violet colour appears which is due to d occupy the vacant sites creasted by Cl ions ccupy the vacant sites	

- (c) the K⁺ ions diffuse into the crystal and occupy the vacant sites created by Cl ions
- (d) None of these

32.	For a simple cubic system the spacing of (100) , (110) and (111) planes are in the ratio of				
	(a) $1:\frac{1}{\sqrt{2}}:\frac{1}{\sqrt{3}}$	(b) $\frac{1}{\sqrt{2}}:\frac{1}{\sqrt{3}}:1$	(c) 1:1:1	(d) $\sqrt{3}:\sqrt{2}:1$	
33.	Which of the following sets of quantum numbers is correct for an electron of $4f$ orbital 3			ron of 4 <i>f</i> orbital?	
	(a) $n = 4, l = 3, m = +$	4, s = $+\frac{1}{2}$	(b) $n = 4, l = 4, m = -4$	4, s = $-\frac{1}{2}$	
	(c) $n = 4, l = 3, m = +$	1, s = $+\frac{1}{2}$	(d) $n = 3, l = 2, m = -2$	2, $s = +\frac{1}{2}$	
34.	The ionisation energy (a) 13.6 eV	of hydrogen atom is 13. (b) 54.4 eV	6 eV. What will be the io (c) 122.4 eV	nisation energy of He ⁺ ? (d) zero	
35.	 BaSO₄ is insoluble in water because (a) hydration energy is equal to lattice energy (b) hydration energy is more than lattice energy (c) lattice energy is more than hydration energy (d) BaSO₄ does not form hydrogen bonds with water molecules 				
36.	Which of the following	combination of atoms of	of A and B forms bonding	g molecular orbitals?	
	(a) $\left(\psi_{A}-\psi_{B}\right)$	(b) $\left(\psi_{A}+\psi_{B}\right)$	(c) $\left(\psi_{A} \times \psi_{B}\right)$	(d) $\frac{\Psi_{\rm A}}{\Psi_{\rm B}}$	
37.	Which of the following	g processes involves incr	easing in bond order?		
	(a) $N_2 \rightarrow N_2^+ + e^-$	(b) $CO + e^- \rightarrow CO^-$	(c) NO \rightarrow NO ⁺ + e ⁻	(d) $O_2 + e^- \rightarrow O_2^-$	
38.	In which salt are the an (a) LiF	ion cation iso-electronic (b) NaCl	c? (c) KCl	(d) KBr	
39.	Oxygen may be prepared by heating potassium chlorate. What is the other product ?(a) Potassium oxide(b) Potassium chloride(c) Potassium hypochlorite(d) Potassium chlorite				
40.	Radioactive decay of radon produces lead. Wh (a) Alpha particles (c) Neutrons and polonium		hat would be the other product / products ? (b) Neutrons (d) Alpha particles and polonium		
41.	From each pair given below identify the ion which is larger in size $[Co^{2+}, Co^{3+}] [Fe^{2+}, Zn^{2+}] [Na^+, F^-] [O^{2-}, S^{2-}]$ (a) $Co^{2+}, Zn^{2+}, F^-, S^{2-}$ (b) $Co^{3+}, Fe^{2+}, Na^+, S^{2-}$ (c) $Co^{2+}, Fe^{2+}, F^-, S^{2-}$ (d) $Co^{3+}, Zn^{2+}, Na^+, O^{2-}$				
42.	Which one, among the (a) C	given atoms, has the hig (b) N	ghest number of unpaired (c) O	d electrons in its ground state ? (d) F	
43.	How many unpaired el	lectrons are there in an a	tom of silver in its grour	nd sate ?	
	(a) 2 moles	(b) 6 moles	(c) $\frac{1}{3}$ mole	(d) $\frac{1}{6}$ mole	
44.	How many moles of P_4O_{10} will react with one mole of water?				
	(a) 2 moles	(b) 6 moles	(c) 1/3 mole	(d) 1/6 mole	

45.	If 22 g of N_2O_5 reacts v acid ? (a) 32	with 10 g of water to pro (b) 69	oduce 22 g of nitric acid. (c) 87	What is the percentage yield of nitric (d) 100	
46.	10 ml of 0.10 N sodium against 0.10 N sodium (a) 5 ml	n hydroxide is added to 2 hydroxide. What will be (b) 10 ml	20 ml 0.10 N sulphuric ac e the titre value at the en (c) 20 ml	cid and the resultant solution is titrated id point ? (d) 30 ml	
47.	An aqueous solution of a substance gives a white precipitate when a few drops of sodium hydroxide at added. The precipitate dissolves when excess of sodium hydroxide is added. The substance may be (a) aluminium sulphate (b) silver nitrate (c) cadmium chloride (d) mercuric chloride			a few drops of sodium hydroxide are added. The substance may be	
48.	When reagent may be used to precipitate barium from aqueous solutions ?(a) Hydrochloric acid(b) Sulphuric acid(c) Silver nitrate(d) Ammonium chloride			ns ? e	
49.	An element crystallizes (a) 1	s in an FCC latttice. How (b) 2	w many atoms are there p (c) 3	per unit cell ? (d) 4	
50.	A non-stoichiometric oxide of silver has composition $Ag_{1.8}O$. What percentage of Ag is present in the form Ag^{2+} ?				
	(a) 11	(b) 14	(c) 20	(d) 25	
51. A sample of water contains 200 ppm of Ca^{2+} in it. What is the molality of the solution with resp mass of $Ca = 40$)				of the solution with respect to Ca? (At	
	(a) 0.2 m	(b) 2 m	(c) 5×10^{-3} m	(d) 0.05 m	
52.	What is the charge (n)	on the silicate ion $Si_2O_2^2$	¹ ?		
	(a) - 2	(b) - 4	(c) - 6	(d) - 7	
53.	Silver is extracted from the crude metal by leaching with a solution of NaCN in the pressence of air. The role				
	of NaCN is to (a) oxidize Ag to Ag ⁺ (c) form the complex [$Ag(CN)_{4}]^{2-}$	(b) form the complex [(d) form the complex [$[Ag(CN)_4]^{3-}$ $[Ag(CN)_2]^{-}$	
54.	$CoCl_4^{2-}$ and $Co(H_2O)_6^{2+}$ have different colours. This is because (a) they have Co in different oxidation states				
	(b) $CoCl_4^{2-}$ is tetrahedral while $Co(H_2O)_6^{2+}$ is octahedral				
	(c) they have different number of unpaired electrons				
	(d) CoCl_4^{2-} is square planar while $\text{Co}(\text{H}_2\text{O})_6^{2+}$ is octahedral				
55.	Dimethyloglyoxime reg (a) Ca ²⁺	gent is used to test for (b) Ni ²⁺	(c) Fe ³⁺	(d) Al ³⁺	
56.	Which molecule has ze	ero bond order?			
	(a) H_2^+	(b) H ₂	(c)HeH	(d) He_2	
57.	What is the bond order (a) 2.5	r in NO molecule ? (b) 2	(c) 1.5	(d) 1	

				6		
 58. An AB₃ molecule with A as the central atom bonded to three B atoms may have the shape triangle or a triangular pyramid. Which one, among those given, is the most appropriate technic between these two structures ? (a) Measurement of dipole moment 				oms may have the shape of an equilateral e most appropriate technique to distinguish		
	(c) Measurement of v	viscosity	(d) Measurement o	f boiling point		
59.	Cul_2 is unstable becau	use, it readily decompos	ses to			
6.0	(a) Cu and I ⁻	(b) Cu and I_2	(c) Cul and I_2	(d) CuI and I ⁻		
60.	Which one among the tions?	Which one among the chlorides ZnCl ₂ , HgCl ₂ , BaCl ₂ , AlCl ₃ , is dissociated to the least extent in aqueous solutions ?				
	(a) ZnCl ₂	(b) $HgCl_2$	(c) BaCl ₂	$(d) AlCl_3$		
61.	Which one, among th (a) Na ⁺	e given ions, has the hig (b) Ca ²⁺	ghest polarizing power $(c) Mg^{2+}$? (d) Al ³⁺		
62.	Which compound cat (a) H_2O	n act as a Lewis acid as (b) SnCl ₂	s well as a Lewis base (c) NH ₃	? (d) BF ₃		
63.	Perovskite is the mir some flurides. Which perovskite structure	neral CaTiO ₃ . The Pero n one, among the given ?	vskite crystal structur formulae; most likely	e is adopted by several oxides as well as repreasents a known fluoride having the		
	(a) $CaTiF_3$	(b) KZnF ₃	(c) CaTiF ₅	(d) CaMgF ₄		
64.	CsF adopts the NaCl between the cation a	l crystal structure. If the nd anion in the crystal?	e unit cell edge is of ler	ngth 4.02 A, what is the shortest distance		
	(a) 2.01 A	(b) 2.84 A	(c) 3.48 A	(d) 4.02 A		
65.	The boron mineral, t anion?	The boron mineral, borax contains the anion, $[H_4B_4O_9]^{2-}$. What is the formal oxidation number of B in this anion ?				
	(a) 2.5	(b) 3	(c) 3.5	(d) 4		
66.	In its reaction with ac (a) Co	ueous solutions of Cu ² · (b) Cl ⁻	, the cyanide ion is sim (c) I ₂	ilar to (d) I ⁻		
67.	Which ligand can lead (a) Azide	d to linkage isomers ? (b) Cyanate	(c) Oxalate	(d) Nitrate		
68.	If you were to prepare $[Cr (oxalate)_2(OH_2)_2]^-$ ion, how many isomers, including geometrical and optical, you expect to get 2					
	(a) Only one	(b) Two	(c) Three	(d) Four		
69.	Two isomers are obtained for Pt(NH ₃) ₂ Cl ₂ . This is because (a) the two complexes differ in the oxidation state of the metal (b) the two complexes differ in the oxidation state of the metal as well as coordination number (c) the two complexes differ in their coordination number (d) the two complexes differ in their coordination number					
70.	Consider the followin $[Co(NH_3)_4Cl_2]^++H_2$ The above reaction in	ng reaction $O \rightarrow [Co(NH_3)_4(H_2O)C_3]$ nvolves	Cl] ²⁺ +Cl ⁻			
	(a) substitution (c) oxidation	11011103	(b) substitution and (d) substitution and	l reduction l oxidation		

71. Identify the acids in the following two reactions $NOF + ClF_3 = NO + ClF_4^ XeO_3 + OH^- = HXeO_4^-$ (a) ClF_3 and XeO_3 (b) ClF_3 and OH^- (c) NOF and OH^- (d) NOF and XeO_3 What are the formal oxidation states of the iron atons labelled (A) and (B) in the compound 72. $\operatorname{Fe}_{4}^{(A)}\left[\operatorname{Fe}^{(B)}(CN)_{6}\right]$? (a) $Fe^{(A)}$, 2+ and $Fe^{(B)}$, 3+ (b) $Fe^{(A)}$, 2+ and $Fe^{(B)}$, 4+ (d) $Fe^{(A)}$, 3+ and $Fe^{(B)}$, 2+ (c) $Fe^{(A)}$, 3+ and $Fe^{(B)}$, 3+ The magnetic moment of $Co(H_2O)_6^{3+}$ is zero and that of $Mn(CN)_6^{3-}$ is 2.9 BM. From this it may be con-73. cluded that (a) both ions are high spin (b) both ions are low spin (c) $Co(H_2O)_6^{3+}$ is low spin, $Mn(CN)_6^{3-}$ is high spin (d) $Co(H_2O)_6^{3+}$ is diamagnetic, $Mn(CN)_6^{3-}$ is high spin 74. Which among the following compounds/ions are diamagnetic? $CuCl_{6}^{4-}; Cu(SCN); CoCl_{4}^{2-}; Ni(CO)_{4}; PdCl_{4}^{2-}$ (a) $CoCl_4^{2-}$ and $PdCl_4^{2-}$ (b) $CuCl_{6}^{4-}$, Cu(SCN) and $Ni(CO)_{4-}$ (d) Cu(SCN), $Ni(CO)_4$ and $PdCl_4^{2-}$ (c) Cu(SCN) and $Ni(CO)_4$ Which one is an example of a 'sandwich' compound? 75. (a) $Cr(C_6H_6)_2$ (b) $Cr(CO)_{6}$ (c) $Cr_2(CH_3COO)_2$ $(d) [Pt(NH_3)_2] [PtCl_4]$ 76. Adsorption chromatography is also known as (a) liquid-liquid chromatography (b) liquid-gas chromatography (c) liquid-solid chromatography (d) paper chromatography Planar chromatographic method includes 77. (A) high-performance liquid chromatography (B) thin-layer chro, atography (C) paper chromatography (D) electrochromatography (c) B, C and D (a) only A (b) both A and B (d) A, B and C 78. The plate count in column chromatography is given by

(a)
$$N = 16 \left(\frac{t_R}{W}\right)^2$$
 (b) $\frac{N}{16} = \left(\frac{t_R}{W}\right)$ (c) $N = 160 \left(\frac{t_R^2}{W}\right)$ (d) $\frac{N}{16} = \frac{W^2}{t_R}$

79.Twenty millilitres of an aqueous solution of 0.10 M butyric acid is skaken with 10 mL ether. After the layers are
separated, it is determined by titration that 0.5 m mol butyric acid remains in the aqueous layer. The distribution
(a) 0.6
(b) 6.0
(c) 0.06
(d) 6.5

In countercurrent distribution, the fraction, F_{rn}, of solute contained in the rth tube after n transfers using equal 80. volumes of the two solvents is given by

(a)
$$F_{r,n} = \frac{\angle n}{\angle r \angle (n-r)} \left(\frac{1}{D+1}\right)^n D^r$$

(c)
$$F_{r,n} = \frac{\angle n \angle r}{\angle (n-r)} \left(\frac{1}{D+1}\right)^n D^r$$

- 81. Which one is semi-microanalysis? (a) > 0.1 g(b) 0.01 to 0.10 g
- 82. Which one is trace analyte level? (a) 1% to 100% (b) 0.01% to 1.0%

(b)
$$F_{r,n} = \frac{\angle r}{\angle n \angle (n-r)} \left(\frac{1}{D+1}\right)^n D^r$$

(d)
$$F_{r,n} = \frac{\angle n}{\angle r \angle (n-r)} \left(\frac{D+1}{D}\right) D^r$$

(c) 0.001 to 0.01 g (d)
$$< 10^{-4}$$
 g

(c) 1 ppb to 100 ppm (d) < 1 ppb

83. ppb amount is

(a)
$$\frac{g}{L}$$
 (b) $\frac{\mu g}{L}$ (c) $\frac{mg}{L}$ (d) $\frac{ng}{L}$

The result antilog $12.5 = 3.162277 \times 10^{12}$ can be represented better by retaining significant digits as 84. (a) antilog $12.5 = 3 \times 10^{12}$ (b) antilog $12.5 = 3.2 \times 10^{12}$

- (c) antilog $12.5 = 3.1 \times 10^{12}$
- (d) antilog $12.5 = 3.162 \times 10^{12}$
- 85. The equation for the normal error curve is

(a)
$$y = \frac{e^{-z^2/2}}{\sigma\sqrt{2\pi}}$$
 (b) $y = \frac{e^{-z^2/2}.\sigma}{\sqrt{2\pi}}$ (c) $y = \frac{e^{z^2/2}}{\sigma\sqrt{2\pi}}$ (d) $y = \frac{e^{-z^2/2}.\sqrt{2\pi}}{\sigma}$

86. The coefficient of variation is (a) % relative statndard deviation (c) standard deviation

(b) relative standard deviation (d) square of the standard deviation

- The analysis of a calcite sample yieldd CaO percentage of 55.95, 56.00, 56.04, 56.08 and 56.23. The last 87. value appears anomalous and rejection quotient at 95% confidence level is 0.71. Should the last value be rejected or retained at 95% confidence level? (a) Retained (b) Rejected (c) All are acceptable (d) Cannot say
- 88. Standard EDTA [H, Y] solution is ordinarily prepared by dissolving weighed amount of (a) $Na_{2}H_{2}Y_{2}H_{2}O$ (b) Na₂H₂Y (c) NaH,Y (d) Na₂HY
- 89. Which is the optimum velocity according to van Deemter plot?

(a)
$$U_{opt} = \sqrt{\frac{B}{C}}$$
 (b) $U_{opt} = \sqrt{\frac{AB}{C}}$ (c) $U_{opt} = \frac{B}{\sqrt{C}}$ (d) $U_{opt} = \frac{\sqrt{B}}{C}$

90. Quadrivalent cerium is widely used in redox titration because (a) it is cheaper (b) it can be easily prepared (c) its aqueous solution is highly stable (d) its aqueous solution can be standardized easily

- 91. If you do not have eriochrome black-T indicator for the complexometric titration of a metal, which following option is left with you?
 - (a) Able to perform titration without indicator
 - (c) Wait until eriochrome black-T is procured (d) Cannot be able to perform titration
- (b) Able to perform titration using phenolphthalein

- 92. Eriochrome black-T can be used in EDTA titration at pH 7 because (a) end point is indicated by a contrast colour change
 - (b) it is stable at this pH
 - (d) buffer of pH7 can easily be prepared
- 93. Ferroin is ferrous complex of

- 94. Mg²⁺ can be precipitated by oxine using metaloxine ratio (a) 1:4 (b) 1:2 (c) 1:1
- 95. Von Weimarn ratio depicts the relative supersaturation (Q²) of solution during the precipitation process in term

of the degree of supersaturation (Q) and solution (S) of precipitate in the manner Q' = $\frac{Q-S}{S}$. The favourable

condition for the precipitation is(a) keep Q low and S high(c) keep Q and S both low

(b) keep Q high and S low(d) keep Q and S both high

(b) precipitation titration

(d) gravimetric estimation

(d) 2:1

(c) EDTA is stable at this pH

- 96. Phenol can be quantitatively determined by(a) complexation reaction(c) bromate-brmide reaction
- 97. How many moles of Br₂ are generated if 3 moles of KBrO₃ are reacted with 15 moles of KBr ? (a) 6 (b) 9 (c) 15 (d) 1
- 98. Select the procedure which you recommend for the quantification of organic compound(s) involved in the following reaction

(a) Malaprade oxidation	(b) Karl Fisher titration
(c) Cerate titration	(d) Bromate oxidation

- 99.The best photometric accuracy can be had within the following range of transmittance (T)
(a) 20-80% T(b) 30-90% T(c) 15-65% T(d) 65-100% T
- 100. Aqueous solution of potassium chromate offer a typical example of an apparent deviation from Beer's law which may be attributed to unsymmetrical chemical equilibria

 $2CrO_4^{-2} + 2H^+ \rightleftharpoons 2HCrO_4^- \rightleftharpoons Cr_2O_7^{-2} + H_2O$

Predict the condition under which the Beer's law can be obeyed

- (a) Dilute the potassium chromate solution
- (b) Make the strongly alkaline solution of potassium chromate
- (c) Make the moderately alkaline solution of potassium chromate
- (d) Make the neutralized solution (pH7.0) of potassium chromate

101.	Potassium bromate in	basic solution exhibits a	n absorption maximum	of 372 nm. A basic solution containing
	3.00×10^{-5} M KBrO ₃ absorbance of the solu	transmits 10% of the in tion is	cident radiation at 372 r	nm when it placed in a 1.0 cm cell. The
	(a) 0	(b) 1	(c) 2	(d) 3
102.	The pH at the end poi (a0 7	nt for the titration of we $(b) > 7$	ak acid is (c) < 7	(d) 0
103.	The pH of 10 ⁻² M Na (a) 2	OH solution is (b) 12	(c) 5	(d) 9
104.	In the potentiometric	titration of Fe ⁺² with Ce ⁺	⁴ , the equivalence point	potential an be computed as
	(a) $E = E_{Fe}^{\circ} + E_{Ce}^{\circ}$	(b) $E = \frac{E_{Fe}^{\circ} + E_{Ce}^{\circ}}{2}$	(c) $E = \frac{E_{Fe}^{\circ} - E_{Ce}^{\circ}}{2}$	(d) $E = E_{Fe}^{\circ} - E_{Ce}^{\circ}$
105.	Chloramine-T acts as (a) a metallochromic-i (c) a highly reactive so	if it indicator odium hypochlorite	(b) a pH-indicator (d) a redox-indicator	
106.	The molar absorptivity (a) L mol cm ⁻¹	y has the unit (b) L ⁻¹ mol ⁻¹ cm	(c) $L \mod^{-1} \operatorname{cm}^{-1}$	(d) No unit
107.	In the isotropic dilution method (a) known weight of isotropically labelled species is mixed with the sample (b) any amount of isotropically labelled species is mixed with the sample (c) half of the sample amount is mixed with the isotropically labelled species (d) dilution is necessary with water			
108.	Which one is pertinet (a) Ocean	receptor of photochemic (b) Plant	cal smog ? (c) Soil	(d) Man
109.	Which one is sink of (a) Soil	CO ₂ ? (b) Ocean	(c) Plant	(d) Air
110.	Which one is contamin (a) CO	nant ? (b) Mercury	(c) SO ₂	(d) Chlorine
112.	What happens when t (a) Global warming	here is rise in CO ₂ emiss (b) Global cooling	ion in the air ? (c) Storm	(d) Acid rain
113.	The major organic pro	oduct in the following rea	action is	
		CH	$H_2 \xrightarrow{\text{NBS}} CCl_4 \longrightarrow A$	
	(a) CH ₂	(b) CH ₂ Br	(c) CHBr	(d) None of these

- An S $_{\rm N}2$ reaction at an asymmetric carbon atom of a dextro alkyl halide always gives a 114.
 - (a) laevo product

(b) recemic mixture (d) dextro product

Br

(c) single optically active isomer

- 115. Aqueous solution of phenol is known as (a) benzoic acid (b) carbolic acid (c) phenoxide (d) None of these
- 116. What happens when 1-naphthalenesulphonic acid is heated in sulphuric acid at 160°C? (a) Naphthalenesulphonic acid is obtained in major amount
 - (b) A mixture of 2-naphthalenesulphonic acid and naphthalene-1, 2-disulphonic acid is obtained
 - (c) Naphthalene-1, 2-disulphonic acid is obtained in major amount
 - (d) 1-Naphthalenesulphonic acid is recovered
- 117.Clemmenson's reduction will convert cyclohexanone into
(a) cyclohexanoic acid (b) cyclohexane(c) n-hexane(d) benzene
- 118. The final product(s) of the following reaction is/are

125.	Fenton's reagent is use (a) mutarotation (c) Ruff degradation	d in	(b) Killiani-Fischer syn (d) Wohl degradation	thesis
126.	When 2-chloro-2-meth (a) $(CH_3)_2C=CHCH_3$ (c) $CH_2=C(CH_3)CH_2C$	nylbutane is refluxed wit CH ₃	h alcoholic KOH, the match $(b) (CH_3)_2C(OH)CH_2$ (d) $(CH_3)_3CCH_2OH$	ain product obtained is CH ₃
127.	Which of the following (a) Terylene	is a polyamide molecule (b) Rayon	e? (c) Polystyrene	(d) Nylon 6
128.	Which one of the follow (a) Glucose and Fructo (c) Fructose and Sucro	wing pairs can be disting ose ose	uished by Fehling solutic (b) Glucose and Mann (d) Maltose and Gluco	on? ose ose
129.	Piperine on hydrolysis with KOH gives (a) piperidine and piperic acid and this shows the presence of an amide group (b) piperidine and piperic acid and this shows the presence of an ester group (c) pyridine and piperic acid and this shows the presence of an amide group (d) pyridine and piperic acid and this shows the presence of an ester group			group group roup oup
130.	 Which of the follwing statements is correct ? (a) Citral-a is also known as geranial and exists in Z form (b) Citral-a is also known as geranial and exists in E form (c) Citral-b is also known as neral and exists in E form (d) Citral-a and citral-b represent the same compound 			
131.	Which of the following (a) Beckmann	rearrangements involve (b) Hofmann	s nitrene as intermediate (c) Baeyer-Villiger	? (d) Pinacol-pinacolone
132.	Preferred conformation (a) chair and chair with (c) boat and chair with	ns of cyclohexane and m equatorial methyl equatorial methyl	ethylcyclohexane, repec (b) chair and chair with (d) boat and boat with	tively are a axial methyl equatorial methyl
133.	Propiophenone on read (a) 2-propylindole	ction with phenylhydrazi (b) 2-propionylindole	ne followed by treatmen (c) 2-ethylindole	t with ZnCl ₂ gives (d) 2-methylindole
134.	The correct order of migratory aptitude of the froups in Baeyer-Villiger oxidation is (a) phenyl>p-chlorophenyl>p-methoxyphenyl>p-hydroxyphenyl (b) p-chlorophenyl>p-methoxyphenyl>p-hydroxyphenyl>phenyl (c) p-methoxyphenyl>p-hydroxyphenyl>p-chlorophenyl (d) p-hydroxyphenyl> phenyl>p-methoxyphenyl> p-chlorophenyl			
135.	An aqueous solution of (a) α - and β -anomers	fD-glucose in eqillibrium s in equal amounts (b)	α - anomer in major amo	bunt and β -anomer in minor amount
	(c) α - anomer in mino	r amount and β -anome	r in major amount	
	(d) α -and β -anomers	in variable amounts		
136.	The Chichibabin reaction of pyridine gives (a) 2-aminopyridine in good yield along with trace amount of 4-aminopyridine (b) 2-aminopyridine in good yield anlong with trace amount of 3-aminopyridine (c) 4-aminopyridine in good yield along with trace amount of 2-aminopyridine (d) only 4-aminopyridine			
137.	Bakelite is obtained fro (a) HCHO	om phenol by the reacting (b) CH ₃ OH	g with (c) CH ₃ CHO	(d) CH ₃ COCH ₃

