

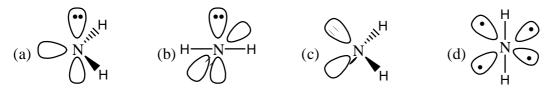
DU-M.Sc. ENTRANCE TEST PAPER-2014 [CHEMISTRY]

MCEN

SECTION-A

1. The ground state term symbol for Eu^{3+} is

(a) ${}^{7}F_{0}$ (b) ${}^{7}F_{6}$ (c) ${}^{3}F_{0}$ (d) ${}^{3}F_{6}$

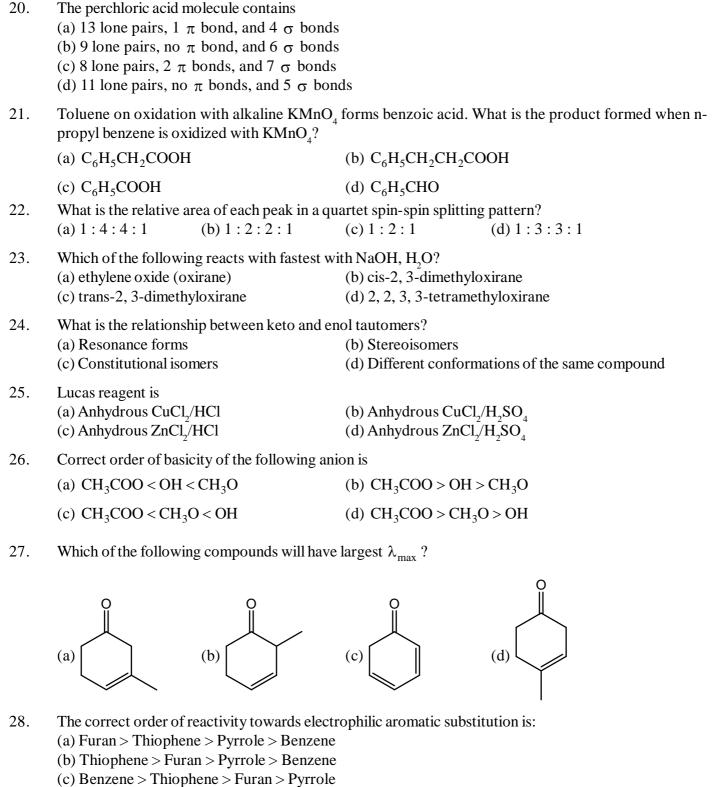

- 2. Which of the following compound would be drawn most strongly into a magnetic field? (a) $TiCl_4$ (b) VCl_3 (c) $FeCl_2$ (d) $CuCl_2$
- 3. Which of the following correctly represents the balanced chemical reaction between aluminum and sulfur?

(a) $16\text{Al} + 3\text{S}_8 \longrightarrow 8\text{Al}_2\text{S}_3$ (b) $12\text{Al} + \text{S}_8 \longrightarrow 4\text{Al}_3\text{S}_2$

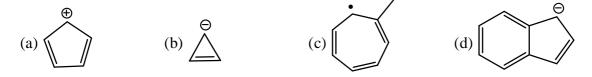
- (c) $8Al + S_8 \longrightarrow 8AlS$
- 4. When two ionic compounds are dissolved in water, a double replacement reaction can
 - (a) Never occur since all ions in water are "spectator ions"
 - (b) Occur if two of the ions form an insoluble ionic compound, which precipitates out of solution
 - (c) Occur if the ions react to form a gas, which bubbles out of the solution
 - (d) Occur only if the ions form covalent bonds with each other.
- 5. Which Bronsted acid $(H_2 O \text{ or } H_2 S_{(aq)})$ is the stronger acid and why is it the stronger acid?
 - (a) H_2O is the stronger acid because oxygen has a greater electronegativity than sulfur, which gives the attached hydrogen atom more proton character

(d) $4Al + S_8 \longrightarrow 8AlS_2$

- (b) H_2O is the stronger acid because H_2S is a gas and gases are not acids.
- (c) H_2S is the stronger acid because the hydrogen-sulfur bond is much weaker than the hydrogen-oxygen bond due to a greater difference in atomic orbital energy levels.
- (d) H_2S is the stronger acid because it is a heavier molecule and therefore has more energetic collisions.
- 6. The common features among the species CN, CO, and NO are
 - (a) Bond order three and iso-electronic
 - (b) Bond order three and weak-field ligands
 - (c) Bond order two and stronger-field ligands
 - (d) Iso-electronic and weak-field ligands
- 7. The central atom in BrF_5 has_?_bonding pairs of electrons and _?_ non-bonding pairs of electrons (a) 1 and 5 (b) 0 and 5 (c) 5 and 1 (d) 5 and 0
- 8. Which of the following best represents the three-dimensional view of H_2N ion?

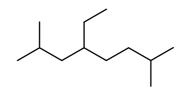


9.	What you call an element if it has 18 electrons in penultimate shell and 3 electrons in outer most shell? (a) s block element (b) p block element (c) d block element (d) f block element						
10.	What is the geometry of [AuCl ₄] ⁻ compl (a) Square-planar (c) Trigonal monopyramidal	(b) Tetrahedral (d) See-saw					
11.	The complex ions $[Cr(en)_2 ClBr]Br$ and $[Cr(en)_2 Br_2]Cl$ are called (where "en" stands for ethylene d amine):						
10	(a) Optical isomers (b) Linkage isom						
12.		hose name is hexaamminechromium (III) nitrate is $(1) \begin{bmatrix} C_{T}(N U_{1}) \\ 0 \end{bmatrix} = 0$					
	(a) $[Cr(NH_2)_6](NO_3)_3$	(b) $\left[\operatorname{Cr}(\operatorname{NH}_3)_6 \right] (\operatorname{NO}_2)_3$					
	(c) $\left[Cr(NH_3)_6 \right] (NO_3)_3$	(d) $\left[Cr(NO_3)_3 \right] (NH_3)_6$					
13.	The expected spin-only magnetic moments for $\left[\text{Fe}(\text{CN})_6 \right]^4$ and $\left[\text{Fe}_6 \right]^3$ are						
	(a) 1.73 and 1.73 B.M.(c) 0.0 and 1.73 B.M.	(b) 1.73 and 5.92 B.M. (d) 0.0 and 5.92 B.M.					
14.	The molecule $\left[Pt(NH_3)(OH_2)BrCl \right]$ is square planar. How many geometrical isomers of this molecule can exist?						
	(a) 2 (b) 3	(c) 4 (d) 6					
15.	Which statement about octahedral complex ions is correct? (a) A C ₃ axis makes the d_{xy} , d_{xz} and d_{yz} orbitals indistinguishable, or degenerate						
	(b) AC ₃ axis destablizes the d_{xy} , d_{xz} and d_{yz} orbitals relative to the $d_{x^2-y^2}$ and d_x^2 orbitals						
	(c) The donor atoms of the ligands point directly toward the d_{xy} , d_{xz} and d_{yz} orbitals.						
	(d) The t_{2g} orbitals are destablized by $+3/5\Lambda_0$						
16.	Which equation best represents the first ionization energy of magnesium?						
	(a) $Mg(s) \rightarrow Mg^+(s) + e^-$	(b) $Mg(g) \rightarrow Mg^{3+}(g) + 2e^{-}$					
	(c) $Mg(s) \rightarrow Mg^{+}(g) + e^{-}$	(d) $Mg(s) \rightarrow Mg^{+}(g) + e^{-}$					
17.	Which pair of species describes the correct increasing order of the property given?						
	(a) Covalent character : HI, HBr (c) Melting point : I ₂ , Br ₂	 (b) Ionic radius : Mg, Mg²⁺ (d) First ionization potential : O, S 					
18.	Consider the following nuclear reaction						
	60 Ni _{2s} + $\alpha \rightarrow X \rightarrow {}^{63}$ Zn ₃₀ + Y						
	The X and Y are						
	(a) 63 Zn ₃₀ and neutron	(b) 63 Zn ₃₀ and β particle					
	(c) 64 Zn ₃₁ and proton	(d) ${}^{64}Zn_{32}$ and neutron					
19.	The reaction between hexacyanoferrate (III) and iodide ion in strongly acidic solution produces:						
	Г () ¬3-	(b) $\left[\text{Fe}(\text{CN})_{6} \right]^{2-}$ and iodide ion					
	(a) $\left[\text{Fe}(\text{CN})_6 \right]^{3-}$ and iodine	(b) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}_{6} \end{bmatrix}$ and folder for					


CAREER ENDEAVOUR

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16, Ph : 011-26851008, 26861009 www.careerendeavour.in

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991



- (d) Pyrrole > Furan > Thiophene > Benzene
- 29. Which of the following compound is aromatic?

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.in

- Ethylene molecules may be joined together in large numbers to form polymer which of the following best 30. describes this process?
 - (a) Electrophilic addition catalyzed by an acid
 - (b) Nucleophilic addition catalyzed by an acid
 - (c) Addition reaction involves free radicals
 - (d) Substitution reaction catalyzed by oxgyen
- 31. IUPAC name of the following compound is

(a) 2-Methyl-5-isobutylheptane (c) 2, 7-Dimethyl-5-ethyloctane (b) 2, 7-Dimethyl-4-ethyloctane (d) 2, 7, 7-trimethyl-4-ethylheptane Δ

- 32. Amino acids with OH group are
 - (a) Serine and alanine
 - (c) Serine and threonine

- (b) Alanine and valine
- (d) Valine and isoleucine
- 33. In accordance with the sequence rule, correct order of priority of the following group is

(a) $COOH > CH = CH_2 > CH_2CH = CH_2 > CH_2CH_2CH_3$

- (b) $COOH < CH = CH_2 < CH_2CH = CH_2 < CH_2CH_2CH_3$
- (c) $\text{COOH} < \text{CH}_2\text{CH}_2\text{CH}_3 > \text{CH} = \text{CH}_2 > \text{CH}_2\text{CH} = \text{CH}_2$
- (d) $COOH > CH_2CH = CH_2 > CH = CH_2 > CH_2CH_2CH_3$
- 34. The fingerprint region of the infrared spectrum, which is characteristic for each individual compound, is between

(a) $400-1400 \text{ cm}^{-1}$	(b) $1400-900 \text{ cm}^{-1}$
(c) 900–600 cm ^{-1}	(d) $600-250 \text{ cm}^{-1}$

- Which of the following techniques would be most useful to identify and quantify the presence of a known 35. impurity in a drug substance? (a) HPLC (b) NMR (c) IR (d) UV
- Which of the following compounds does not absorb light in the UV/visible spectrum? 36. (c) Chloral hydrate (a) Aspirin (b) Paracetamol (d) Phenobarbitone
- Victor Meyer test is used for the confirmation of 37. (a) 1°, 2°, 3° Amines (b) 1°, 2°, 3° Alcohols (c) Carbonyl group (d) Nitro group
- 38. Correct statement about carbonyl stretching frequency in the IR of cyclopentanone and cyclohexaone is?
 - (a) Both have same frequency stretching
 - (b) Cyclopentanone : 1745 cm⁻¹; Cyclohexanone : 1715 cm⁻¹
 - (c) Cyclopentanone : 1715 cm⁻¹; Cyclohexanone : 1745 cm⁻¹
 - (d) Cyclopentanone : 1690 cm⁻¹; Cyclohexanone : 1675 cm⁻¹
- An acid (HA) has $K_a = 10^{-7}$, what will be its pK_a ? (a) 7 (b) -7 (c) -439. (c) - 0.7(d) 1/7
- 40. Major product that would be formed when 2-bromo-hexane undergoes 1 : 1 elimination reaction (a) Z-2-Hexane (b) 1-Hexene (c) E-2-Hexene (d) Mixture of E/Z-2-hexene

				<u>_</u>				
41.	-	ion for n moles of a ga						
	(a) $\left(P+a/V^2\right)\left(V-\right)$		(b) $\left(P + na / V^2\right) \left(V\right)$					
	(c) $\left(P + na / V^2\right) \left(V + na / V^2\right)$	(-b) = nRT	(d) $\left(P + n^2 a / V^2\right) \left(V + n^2 a / V^2\right)$	V-nb)=nRT				
42.	With increase in temp (a) Increase, decrease (c) Increase, increase	se	ies of gases and liquids respectively : (b) Decrease, increase (d) Decrease, decrease					
43.	The fraction of molecules of a gas possessing velocities in a given range depends on(a) Total number of molecules(b) Temperature(c) Volume of the gas(d) Pressure of the gas							
44.	The triple point of w (a) 0	ater is 273.16K; what (b) 0.01	will be the temperature (c) -0.01	e in degree Celsius: (d) 100				
45.	 correct statement (a) A has greater vap (b) A has greater free (c) A has lower free 	our pressure than B e energy than B	-	er-cooled water at –10°C. Choose the				
46.	Reverse osmosis is a (a) Reversible proce (c) Equilibrium proce	SS	(b) Irreversible process(d) Non-spontaneous process					
47.	 A gas (system) at 0.1 atm, pressure is enclosed in a cylinder fitted with a weightless, frictionless piston and the cylinder is placed in the surroundings, where the pressure is 1 atm. In the spontaneous process that occur isothermally. (a) Entropy of the system increases, that of surroundings decreases (b) Entropy of the system decreases, that of surroundings increase (c) Entropy of the system and the surroundings increase (d) Entropy of the system and the surroundings decreases 							
48.	Mean velocity, most (a) 1.13 : 1 : 1.23	probable velocity and (b) 1.23 : 1 : 1.13	root mean square veloc (c) 1.23 : 1.13 : 1	city are approximately in the ratio (d) 1:1.13:1.23				
49.	Which one of the foll (a) dG	lowing is not a perfect (b) dT	differential? (c) dQ	(d) dH				
50.	A condition for equilibrium is							
	(a) $\delta G = 0$	(b) $\delta G_{T,V} = 0$	(c) $\delta G_{T,P} = 0$	(d) $\delta G_{P,V} = 0$				
51.	The E_{cell}^0 of an Al-ai (a) 3161.340 kJ	r battery is 2.73 V and (b) –32.76 kJ	d it involves a 12 electr (c) 32.76 kJ	fon process. The ΔG^0 in kJ will be (d) -3161.340 kJ				
52.	For the first order reaction, if the time taken for 50% of the reaction is t secs; the time required for completion of 99.99% reaction is (a) 5 t (b) 10 t (c) 2 t (d) 100 t							
53.	If $e^{\alpha x}$ is an eigen fur	action and d^n / dx^n is	an operator then the eig	gen value will be				
	(a) α^n	(b) α	(c) n	(d) n^{α}				

5

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16, Ph: 011-26851008, 26861009 www.careerendeavour.in

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

49. (c)

56. (c)

							6		
54.	A projectile of mass 1.0 g is known to be within 1μ ms ⁻¹ . Calculate the minimum uncertainty in its position.								
	(a) 5×10^{26}	5 m s^{-1} (b)	$5 \times 10^{26} m$	(c) 5×10^{-2}	$^{6} {\rm m s}^{-1}$ (d)) 5×10 ⁻²⁶ m			
5.	In NMR spectroscopy, by what mechanism the saturation effect is removed, to maintain the population difference								
	(a) spin-spin relxation(c) Magic angle spinning			· · · •	(b) spin-lattice relaxation(d) Nuclear Overhauser effect.				
5.	In the hydr constant B	-	, when hydroge	is replaced by deuterium. What will happen to the rotational					
	(a) Increas	e (b)	Becomes zero	(c) Decreas	ses (d)	Remains same			
7.	Choose the correct statement (a) For a real gas C_p changes with temperature, but does not change with pressure (b) For an ideal gas C_p changes neither with temperature nor with pressure (c) For a real gas C_p changes with temperature, but does not with pressure (d) For a real gas C_p changes with both temperature and pressure								
8.	Bragg's lav	w can be stated	as						
	(a) $n\lambda = 2d\sin\theta$ (b) $n\lambda = 2a\sin\theta$			(c) $n\lambda = \sqrt{2}$	$\overline{2}d\sin\theta$ (d)	$d = 2\lambda \sin \theta$			
9.	. To be classified as "nanoscale" an object must have one dimension in the order (a) 10^{-10} m (b) 10^{-15} m (c) 10^{-8} m (d) 10^{-9} m								
60.	How many phase are present in the equilibria, $CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$?								
	(a) 1 (b) 2 (c) 3			(d) 4					
				Answer Key					
	1. (a)	2. (c)	3. (a)	4. (b)	5. (c)	6. (a)	7. (c)		
	8. (c)	9. (b)	10. (a)	11. (d)	12. (c)	13. (d)	14. (b)		
	15. (a)	16. (c)	17. (d)	18. (a)	19. (c)	20. (d)	21. (c)		
	22. (d)	23. (a)	24. (c)	25. (c)	26. (a)	27. (c)	28. (d)		
	29. (d)	30. (c)	31. (b)	32. (c)	33. (a)	34. (b)	35. (a)		
	36. (c)	37. (b)	38. (b)	39. (a)	40. (c)	41. (d)	42. (a)		

43. (b)	44. (b)	45. (c)	46. (d)	47. (b)	48. (a)
50. (c)	51. (d)	52. (b)	53. (a)	54. (d)	55. (b)
57. (c)	58. (a)	59. (d)	60. (c)		