ISM M.Sc. Chemistry Entrance -2010

Answer all questions. Each question is of 10 marks.

- 1. (a) Indicate the maximum number of ions accommodated in a plane of a unit cell of NaCl?
 - (b) Between NH₃ and NF₃ which molecule will have smaller dipole moment and give the reasoning of your answer ?
 - (c) One mole of ionic crystal MX(s) is formed from the following reaction, $M_{(g)}^+ + X_{(g)}^- \rightarrow MX_{(s)}$
 - Whether energy is absorbed or released for the formation of the ionic crystal?
 - (d) $Na_2S_2O_3$ gives $Na_2S_4O_6$ in a particular reaction. What is the equivalent weight of $Na_2S_2O_3$ if you assume the molecular weight of $Na_2S_2O_3$ is M?
 - (e) Indicate the direction of reaction if the reactants are mixed together at high temerature.

$$K + NaCl = Na + KCl$$

(d) Write the name of the reaction and explain the mechanism.

$$\longrightarrow$$
 H₂C=CH-CH₂-CH₂-X

(e) Write down the products of the following reactions.

3. (a) Ephedrine, a central nervous system stimulant, is used in nasal sprays as a decongestant. This compound is a weak organic base:

 $C_{10}H_{15}ON(aq) + H_2O(1) \longrightarrow C_{10}H_{15}ONH^+(aq) + OH^-(aq)$

A 0.035 M solution of ephedrine has a pH of 11.33. Calculate K_{b} for ephedrine.

(b) For the reaction A + B \rightarrow C, the rate constant at 215°C is 5.0×10^{-3} and the rate constant at 452°C is

 1.2×10^{-1} ·

(a) What is the activation energy in kJ/mol? (b) What is the rate constant at 100°C?

(c) Give two reasons why most molecular collisions do not lead to a reaction?

(d) Indicate the surface charge of AgCl precipitate when (i) trace amount of AgNO₃ solution is mixed with large excess of NaCl solution and (ii) trace amount NaCl solution is mixed with large excess of AgNO₃ solution (ignore surface charge neutralization by double layer).

- (e) The degeneracy of the level of hydrogen atom that has energy $R_{\rm H}/16$ is
- (a) 16 (b) 4 (c) 2 (d) 1

1

- 4. (a) A test tube contains an aqueous solution of cobaltous nitrate and another test tube contains [Fe(bipyridyl)₃]²⁺ complex of same concentration. Using a visible spectrophotometer how would you distinguish the compounds ?
 - (b) A precipitate of PbI_2 (obtained from an aqueous solution of $Pb(NO_3)_2$ and KI) another precipitate of $PbCrO_4$ (obtained from an aqueous solution of $Pb(NO_3)_2$, and K_2CrO_4) are given to you in two different test tubes. Both are yellow in colour. How can you perform an experiment to identify the precipitates without using any reagent ?
- 5. (a) Which one is more basic in aqueous solution ? CH_3NH_2 , $(CH_3)_2NH$, $(CH_3)_3N$ and how do you distinguish between the following two compounds ?

(b) Write down product of the following reaction with proper mechanism.

and convert RCHO to RCHOHCHO in maximum three steps.

?

$$\xrightarrow{BH_3}$$
 A

What is A? Tell one utility of A in organic synthesis and convert m-nitro toluene from toluene

In maximum four steps and write down the products of the following reactions.

$$(\qquad NH_3 \\ H^+ ? \qquad R_3B + CO \xrightarrow{1.LiBH_4})$$

- 7. (a) Sketch diagrams for the reversible Carnot cycle of an ideal gas with constant C_p and C_v (i) U versus p and (ii) H versus S.
 - (b) Hydrogen reacts with oxygen explosively; yet a mixture of hydrogen and oxygen can exist indefinitely together at room temperature without reacting. Explain.
- 8. (a) Draw a potential energy diagram for a two-step exothermic reaction where step 2 is the rate-dtermining step.
 - (b) Write down the half cell reaction for $Pt/fumarate^{2-}$, $2H^+$, succinate.
- 9. A solid crystalline compound (A) upon heating with a strong base (B) evolves NH_3 . The compound A with aqueous solution of MgCl₂, aqueous NH_3 solution does not give any precipitate. But then the mixture (containing A + MgCl₂ + NH₃) with Na₂HPO₄ given a white crystalline compoud C as a precipitate. Identify A, B and C.

What would be your observation when MgCl₂ solution is mixed first with NH₃ solution and then with the compound A?

Again what will you notice if MgCl, solution is mixed first with A and then with NH₃.

2

(a) How can you relate the d⁶ high spin octahedral arrangement with the d¹ octahedral case ?
(b) Write down the products with mechanism. Name the reaction.

(c) THe first ionization energy for magnesium is 730 kJ/mol. The third ionization energy for magnesium is 7700 kJ/mol. What is the most probable value for second ionization energy for magnesium ? (i) 490 kJ, (ii) 1400 kJ, (iii) 4200 kJ, (iv) 7100 kJ, (v) 8400 kJ

3