BHU M.Sc. Chemistry Entrance -2013

Instructions:

- (1) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be answered for each unattempted questions.
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

1	P. 1	1.		1 4		1
ı	HIGHTES A	emning	nrecision c	าก ทกา	men	INA
1	i igui co u		precision c	io noi	ши	uc
	\mathcal{C}	\mathcal{C}	1			

- (a) absolute standard deviation
- (b) relative standard deviation

(b) coefficient of variance

- (d) limit of detection
- 2. Which of the following statements is false?
 - (a) A precise measurement may be inaccurate
 - (b) An accurate measurement is always precised.
 - (c) Accuracy applies only to attribute data whereas precision to attribute both simple data and geographic
 - (d) High accuracy and high precision are both expensive and difficult to aquire
- 3. Absorption chromatography is also known as
 - (a) Liquid-liquid chromatography
- (b) Liquid-gas chromatography
- (c) Liquid-solid chromatography
- (d) Paper chromatography
- Adsorption chromatography is the best separation technique for 4.
 - (a) charged species

- (b) non-polar compounds
- (c) compounds bearing lone pair
- (d) compounds bearing halide groups
- Which one of the following is 2-D chromatography? 5.
 - (a) Gas chromatography

(b) HPLC

(c) Paper chromatography

- (d) Ion-exchange chromatography
- Which one of the following is not a planar chromatography? 6.
 - (a) High performance liquid chromatography
 - (b) High performance thin layer chromatography
 - (c) Paper chromatography
 - (d) Electrochromatography
- 7. The precision of the mean of a series of N measurements can be beter represented as
 - (a) S/\sqrt{N}
- (b) S/N
- (c) $S/\sqrt{N-1}$
- (d) S/N 1
- The efficiency of a chromatographic column can be increased by 8.
 - (a) increasing plate height

- (b) decreasing plate height
- (c) increasing length of the column
- (d) decreasing length of the column
- 9. The number of plates (N) can be computed in terms of the retention time of a peak t_R and the width of the peak at its base W by the relationship

(a)
$$N = 16 \left(\frac{W}{t_R} \right)$$

(b)
$$N = 16 \left(\frac{t_R}{W}\right)^2$$

(c)
$$N = 16 \left(\frac{t_R}{W}\right)^{1/2}$$

(a)
$$N = 16 \left(\frac{W}{t_R}\right)^2$$
 (b) $N = 16 \left(\frac{t_R}{W}\right)^2$ (c) $N = 16 \left(\frac{t_R}{W}\right)^{\frac{1}{2}}$ (d) $N = 16 \left(\frac{W}{t_R}\right)^{\frac{1}{2}}$

- 10. EDTA stands for
 - (a) ethylene diamine tetraacetic acid
 - (b) disodium salt of ethylene diamine tetraacetic acid
 - (c) tetrasodium salt of ethylene diamine tetraacetic acid
 - (d) ethylene diamine.

				2
11.	Liquid-liquid chrom (a) ion-exchange chr (c) adsorption chron		(b) affinity chromato (d) partition chromat	C 1 2
12.	(a) In which the stat	-		
13.	The solute polarities (a) $A > B > C$	are in the order $A > B >$ (b) $C > B > A$	C. In reverse-phase chro	omatography the order of elution will be $(d) B > A > C$
14.	(b) Cation-exchange(c) Anion-exchange(d) Anion-exchangeAnswer codes:	resins have primary ami resins have sulfonic acid resins have tertiary amine resins have carboxylic ad	d groups. e groups cid groups	(1) [D] 11 (I)
	(a) [A] and [D]	(b) [B] and [C]	(c) [A] and [C]	(d) [B] and [C]
15.	(b) Ion-exchange an (c) Adsorption and p	correct? d ion-exclusion chromated ion-chromatography a cartition chromatography on-exclusion chromatography	re same technique y as same techniques	
16.	Identify the structure	ofoxine		
	(a) OH	(b) OH	(c) OH NH ₂	$(d) \overbrace{\hspace{1cm}}^{N}$
17.	Oxine forms comple (a) deprotonated sta (c) neutral state	xes with metal ions in te	(b) protonated state (d) zwitterionic state	
18.	One mole of potassis (a) One mole Br ₂	um bromate in bromate- (b) Two moles Br ₂	bromide reaction produ (c) Three moles Br ₂	
19.	Which one is redox (a) Methyl red	indicator? (b) Fluorescein	(c) Ferroin	(d) Phenolphthalein
20.	Which Ce(IV) solut (a) Basic Ce(IV) solut (c) Neutral Ce(IV) s		(b) Acidic Ce(IV) so (d) Complex form of	lution
21	As(III) oxide is used	l in standardizing reager	nt as a nrimary standard	The best method to prepare a standard

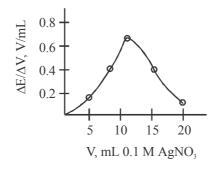
(c) dissolving weighed amount of As₂O₃ in a basic water followed by neutralisation with an acid.

(d) dissolving weighed amount of As₂O₃ in acid followed by neutralisation with a base.

solution of As (III) oxide is

(a) dissolving weighed amount of As₂O₃ in water

(b) dissolving weighed amount of As₂O₃ in acidic water

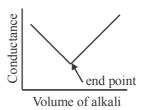

- 22. If you do not have Eriochrome Black-T for complexometric titration, can you perform this titration?
 - (a) Not at all
 - (b) Yes, with the use of an alternative indicator like phenolphthalein
 - (c) Yes, with the use of an alternative indicator like ferroin
 - (d) Wait until a suitable metallochromic indicator is procured.
- 23. EDTA often combines with metal ion (regardless the charge on the cation) in the ratio of
 - (a) 1:4
- (b) 1:3
- (c) 1:2
- (d) 1:1
- 24. Metal ions through oxinate precipitation can be estimated by
 - (a) bromate titration

(b) direct titration

(c) back titration

- (d) colourimetric titration
- 25. EDTA titrations require a buffer of pH
 - (a) 12
- (b) 10
- (c)4

- (d) 6
- 26. In the titratio of iron (II) with cerium (IV), the equivalence point potential (E_{eq}) is
 - (a) $E_{eq} = E_{Fe^{3+}/Fe^{2+}}^0 + E_{Ce^{+4}/Ce^{3+}}^0$
- (b) $E_{eq} = \frac{E_{Fe^{3+}/Fe^{2+}}^0 + E_{Ce^{+4}/Ce^{3+}}^0}{2}$
- (c) $E_{eq} = 2(E_{Fe^{3+}/Fe^{2+}}^{0} + E_{Ce^{+4}/Ce^{3+}}^{0})$
- (d) $E_{eq} = E_{Ce^{+4}/Ce^{3+}}^0 E_{Fe^{3+}/Fe^{2+}}^0$
- 27. In the following potentiometric titration curve for the determination of chloride with silver nitrate.


the equivalence point is

- (a) 10 mL
- $(b) 20 \,\mathrm{mL}$
- (c) 15 mL
- (d) 22 mL
- 28. The equivalence point pH in the titration of acetic acid with standard sodium hydroxide is:
 - (a) in acidic range
- (b) in basic range
- (c) in mild acidic range (d) neutral
- 29. The pH values at 0, 10, 90 and 100% titration of 50.0 mL of 0.100 M HCl with 0.100 M NaOH are
 - (a) 1.0, 1.09, 2.28, 7.00

(b) 1.1, 1.20, 2.50, 7.50

(c) 0.1, 0.11, 0.23, 0.70

- (d) 1.09, 1.00, 7.00, 2.28
- 30. The conductometric graph given below

represents a titration involving

- (a) strong acid against strong base
- (b) strong acid against weak base
- (c) strong base against weak acid
- (d) weak base against weak acid.

31.	Phenolphthalein (K _{In} = (a) 1–4	= 1×10 ⁻⁹) is used as an (b) 4–6	indicator when transition (c) 8–10	n pH is in the range of (d) 10–12		
32.	Which of the following relationships is correct one?					
	$(a) \log \%T = \frac{I_t}{I_0} \times 100$)	(b) $A = 2.0 - \log \% T$			
	$(c) \log \%T = \frac{I_0}{I_t} \times 100$)	(d) $\log \%T = 2.0 - A$	A.		
33.	The unit of 'molar abs (a) L mol cm ⁻¹ (c) L ⁻¹ mol ⁻¹ cm ⁻¹	orptivity' is	(b) L mol cm (d) L mol ⁻¹ cm ⁻¹			
34.	Beer's law is obeyed: (a) metal in large exce (c) metal: ligand mole		(b) ligand in large exc	s formed by taking (b) ligand in large excess (d) metal: ligand mole ratio greater than 1.0		
35.	Beer's law is obeyed in the case of an aqueou (a) solution is made acide (c) solution is made neutral		us solution of a weak acid, if (b) solution is made basic (d) solution is made dilute			
36.		O ₄ solution has transmi bance of this solution is (b) 1.00		ured in a 2.10 cm cell at a wavelength (d) 0.10		
37.		* *		d water is 85. What is the concentration $.00 \times 10^{-3}$ M I ₂ with the 50.0 mL of the (d) 5.29×10^{-10} M		
38.	Green gases responsition (a) hydrocarbon and (c) NO _x and SO _x		(b) CO _x and NO _x (d) CO and CO ₂			
39.	Which ion is isoelectro (a) Li ⁺	onic with F ⁻ ? (b) Cl ⁻	(c) Ca ²⁺	(d) O ²⁻		
40.	How many protons as (a) 6	re there in the nucleus of (b) 7	of a ¹⁵ N atom? (c) 8	(d) 10		
41.	Which one of the follo (a) Sodium	wing elements normally (b) Aluminium	y exists in the form of dia (c) Xenon	tomic molecules? (d) Iodine		
42. From each pair given below identify the ion which is smaler in size						
		$\left[\operatorname{Co}^{2+},\operatorname{Co}^{3+}\right]\left[\operatorname{K}^{+},\operatorname{O}^{3+}\right]$	$\mathbb{C}a^{2+}$ \mathbb{I} $\mathbb{N}a^+, \mathbb{F}^ \mathbb{I}$ $\mathbb{S}^{2-}, \mathbb{S}$	e^{2-}		
	(a) Co^{2+} , K^+ , F^- , S^{2-}		(b) Co ³⁺ , Ca ²⁺ , Na ⁺	$, S^{2-}$		
	(c) Co ²⁺ , Ca ²⁺ , F ⁻ , S	2–	(d) Co ³⁺ , K ⁺ , Na ⁺ , S	Se^{2-}		
43.	Which one among the (a) hydrogen sulphide (c) Ozone	following molecules ha	as a linear structure? (b) Sulphur dioxide (d) Hydrogen cyanide	e		

to calcium carbonate?			•
(a) 22 L	(b) 44 L	(c) 56 L	(d) 28 L
Which molecules form (a) H–F and H–Cl	n strong H-bonds? (b) H ₂ O and HCl	(c) H ₂ O and H ₂ S	(d) HF and H ₂ O
The bond angles in bota (a) 90 degrees	ron trifluride molecule ar (b) 109 degrees	e (c) 120 degrees	(d) 104 degrees
Which one of the follo (a) Na, Rb, Fe	owing sets contains one e (b) Cs, Ru, Bi	element each from s-bloc (c) B, Br, Sr	ck, p-block, d-block? (d) Sc, Pt, Te
	5.0	that will evolve when an (c) 44 L	aqueous solution containing 1 mole of (d) 6 L
	=	_	
` '	*	(b) acts as an electron (d) always ionizes to gi	=
What is the formal oxida (a) 2.5	dation number of the ele (b) 3	ment 'E' in the formula (c) 3.5	$[H_4E_4O_9]^{2-}$? (d) 4
anion, cyclopentadien	yl(-1)?	U U Z II	he +2 oxidation state and C_5H_5 is the (d) +1
An aqueous solution	of a substance gives a v	white precipitate when a	a few drops of sodium hydroxide are
(a) sodium chloride		ions from aqueous solut (b) Barium chloride (d) Sodium hydroxide	tions?
Which is the most con $(a)-1$	nmon oxidation state obs (b) +2	erved for the lanthanide (c) +3	elements in their compounds? (d) +4
bination (i) it is a nickel(II) con (iii) it is paramagnetic	nplex	(ii) it is an octahedral continuous (iv) nickel atom has a continuous (iv)	
Pick all the gases from (i) nitrogen (v) ozone	the list which dissolve in (ii) carbon dioxide (vi) hydrogen bromide	n water to give an acidic (iii) sulphur dioxide	
			(d) Planar
	to calcium carbonate? (a) 22 L Which molecules form (a) H–F and H–Cl The bond angles in bot (a) 90 degrees Which one of the follo (a) Na, Rb, Fe What is the maximum hydrogen peroxide is lade (a) 22 L 10 ml of 0.10 M sodium against 0.20 M sodium (a) 5 ml A Lewis base (a) acts as an electron (c) always ionizes to g What is the formal oxid (a) 2.5 What is the change (manion, cyclopentadiem (a) 0 An aqueous solution added. The precipitate (a) barium chloride (c) cadmium chloride (d) Ammonium chloride Which reagent may be (a) sodium chloride (c) Ammonium chloride (d) Ammonium chloride (i) it is a nickel(II) com (iii) it is paramagnetic (a) i, ii, iv Pick all the gases from (i) nitrogen (v) ozone (a) i, iii, iv, vi What is the correct we want in the correct want in the correct want in the correct we want in the correct want in the correct want in the correct we want in the correct wan	to calcium carbonate? (a) 22 L	(a) 22 L (b) 44 L (c) 56 L Which molecules form strong H-bonds? (a) H–F and H–Cl (b) H ₂ O and HCl (c) H ₂ O and H ₂ S The bond angles in boron trifluride molecule are (a) 90 degrees (b) 109 degrees (c) 120 degrees Which one of the following sets contains one element each from s-block (a) Na, Rb, Fe (b) Cs, Ru, Bi (c) B, Br, Sr What is the maximum volume of oxygen at STP that will evolve when an hydrogen peroxide is boiled? (a) 22 L (b) 11 L (c) 44 L 10 ml of 0.10 M sodium hydroxide is added to 10 ml 0.10 M sulphuric a against 0.20 M sodium hydroxide. What will be the titre value at the er (a) 5 ml (b) 10 ml (c) 20 ml A Lewis base (a) acts as an electron pair donor (c) always ionizes to give protons (d) always ionizes to g What is the formal oxidation number of the element 'E' in the formula (a) 2.5 (b) 3 (c) 3.5 What is the change (n) on the molecule [Cr(C ₅ H ₃) ₂] _n , where Cr is in tanion, cyclopentadienyl (-1)? (a) 0 (b) -1 (c) -2 An aqueous solution of a substance gives a white precipitate when added. The precipitate dissolves when excess of sodium hydroxide is (a) barium chloride (b) aluminium chloride Which reagent may be used to precipitate Fe ²⁺ ions from aqueous solution (d) aclium chloride Which is the most common oxidation state observed for the lanthanide (c) Ammonium chloride (d) Sodium hydroxide is (ii) it is an inckel(II) complex (ii) it is an inckel(II) complex (iii) it is paramagnetic (iv) nickel atom has a condition of the given and the given and the given and the given and giv

59.	Which one, among the given atoms, has the least number of unpaired electrons in ground state? (a) C (b) N (c) O (d) F
60.	How many unpaired electrons are there in an atom of zinc in its ground state? (a) 0 (b) 1 (c) 2 (d) 4
61.	For the preparation of PF ₃ , 3 moles of CaF ₂ was reacted with 3 moles of PCl ₃ . If the isolated yield of PF ₃ was 1.8 moles, what is the percentage yield? (a) 30 (b) 60 (c) 80 (d) 90
62.	An element crystallizes in a BCC lattice. How many atoms are there per unit cell? (a) 1 (b) 2 (c) 4 (d) 9
63.	Which one, among the given ions, has the highest polarizing power? (a) K^+ (b) Na^+ (c) Ba^{2+} (d) Al^{3+}
64.	Which compound can act as a Lewis acid as well as a Lewis base? (a) CO ₂ (b) NH ₃ (c) SnCl ₂ (d) BF ₃
65.	Two isomers are obtained for Pd(NH ₃) ₂ Cl ₂ , while only one isomer is obtained for Ni(NH ₃) ₂ Cl ₂ . This is because (a) The two complexes differ in the oxidation state of the metal (b) The two complexes differ in the oxidation state of the metal as well as coordination geometry (c) The two complexes differ in their coordination geometry (d) The two complexes differ in their oxidation state of the metal and the number of unpaired electrons.
66.	Which statement(s) is (are) true? (i) High spin complexes are always paramagnetic (ii) Low spin complexes are always diamagnetic (iii) H ₂ O is more likely to form a low spin complex than CN ⁻ . (iv) Tetrahedral complexes are more likely to be low spin than high spin (a) i, ii, iv (b) i (c) i, ii (d) i, ii and iii
67.	What products are formed when sulphur is oxidised by nitric acid? (a) SO ₂ , N ₂ and H ₂ O (b) SO ₄ ²⁻ , NO and H ₂ O (c) H ₂ S, NO and H ₂ O (d) SO ₄ ²⁻ , NO ₂ and H ₂ O
68.	If Δ_0 and Δ_t denote respectively, the octahedral and the tetrahedral crystal field splitting for a given metal ion and ligand with the same bond distance, then the ratio Δ_0 / Δ_t is: (a) 1.0 (b) 0.5 (c) 2.2 (d) 0.44
69.	Which among the ions, $\left[\text{Cu}\left(\text{CN} \right)_2 \right]^-$, $\left[\text{Ag}\left(\text{NH}_3 \right)_2 \right]^+$, $\left[\text{Au}\left(\text{CN} \right)_2 \right]^-$, $\left[\text{Hg}\left(\text{NH}_3 \right)_2 \right]^{2+}$ is (are) diamagnetic? (a) $\left[\text{Cu}\left(\text{CN} \right)_2 \right]^-$ and $\left[\text{Au}\left(\text{CN} \right)_2 \right]^-$ (b) All four of them (c) $\left[\text{Cu}\left(\text{CN} \right)_2 \right]^-$, $\left[\text{Ag}\left(\text{NH}_3 \right)_2 \right]^+$ and $\left[\text{Au}\left(\text{CN} \right)_2 \right]^-$ (d) $\left[\text{Hg}\left(\text{NH}_3 \right)_2 \right]^{2+}$

70. In the complexes $\left[\text{Fe}(\text{CN})_6 \right]^{3-}$ and $\left[\text{Co}(\text{en})_3 \right]^{3+}$, the coordination numbers of iron and co		numbers of iron and cobalt are, respec-	
	tively (en = ethylenediamine) (a) 6 and 6 (b) 12 and 6	(c) 6 and 3	(d) 3 and 3
71.	The nuclear reaction in which ²⁴ Na is p	roduced from ²³ Na is a/an	
	(a) (n, p) reaction	(b) (n, γ) reaction	
	(c) (α, p) reaction	(d) (α, γ) reaction	
72.	The element needed by the human body (a) silver (b) lead	y in small amounts, but which (c) mercury	acts as a poison in larger amounts is (d) copper
73.	When steam is passed through a glass tube containing pieces of nickel, the gas coming out at the end of the tube will contain mainly (a) hydrogen and water vapour (b) hydrogen and oxygen (c) oxygen and water vapour (d) oxygen		
74.	What are the products of thermal deco (a) NiC, C and O ₂ (c) Ni and CO	omposition of Ni(CO) ₄ ? (b) Ni and CO ₂ (d) NiCO ₃ and O ₂	
75.	How many unpaired electrons will be the (a) 0 (b) 1	here in a f ⁸ lanthanide ion? (c) 6	(d) 8
76.	Identify a pair of ions from the following	g list which are more stable tha	an the remaining two
	$\left[\operatorname{CoF}_{6}\right]^{3-}$, $\left[\operatorname{Col}\right]$	$[A_6]^{3-}, [AgF_2]^{-}, [AgI_2]^{-}$	
	(a) $[CoF_6]^{3-}$, $[CoI_6]^{3-}$	(b) $\left[\operatorname{CoI}_{6}\right]^{3-}$, $\left[\operatorname{AgF}_{2}\right]$]_
	(c) $\left[AgF_{2}\right]^{-}$, $\left[AgI_{2}\right]^{-}$	(d) $\left[\operatorname{CoF}_{6}\right]^{3-}$, $\left[\operatorname{AgI}_{2}\right]$]_
77.	Molecular formula of Geraniol is: (a) $C_{10}H_{16}O$ (b) $C_{10}H_{18}O$	(c) $C_{10}H_{16}O_2$	(d) C ₁₀ H ₁₄ O
78.	Acetaldehyde is the presence of few dr (a) aldol (b) paraldehyde		(d) crotonaldehyde
79.	Molecular formula piperine is (a) $C_{17}H_{19}NO_3$ (b) $C_{17}H_{19}NO_2$	(c) $C_{17}H_{21}NO_3$	(d) None of these
80.	The reagent that differentiates an aldos (a) Fehling solution (c) Molish test	e and a ketose is (b) Tollen's reagent (d) Bromine water	
81.	Bubbling of chlorine gas in boiling aceta (a) CH ₃ COCl (b) CH ₃ CH ₂ Cl		(d) ClCH ₂ .CH ₂ Cl
82.	The reaction of phenylacetylene with so (a) styrene (c) 1, 4-dihydrophenylacetylene	damide in liquid ammonia give (b) 2, 5-dihydrophen (d) sodium phenylace	ylacetylene

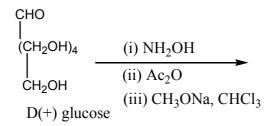
83.	In the following reactions					
	(I) $CH_3 - N = N - CH_3 \xrightarrow{\Delta}$					
	(II) $CH_2N_2 \xrightarrow{hv}$					
	(III) $(CH_3)_3 C - OH + H^+ \longrightarrow$					
	(IV) $(CH_3)_3 C - Cl + AlCl_3 \longrightarrow$ the reaction intermediates formed will be					
	I II III IV					
	(a) •CH ₃ •CH ₂ (CH ₃) ₃ C ⁻ (CH ₃) ₃ C					
	(b) ${}^{-}CH_3$: CH_2 (CH_3) ${}_3C^+$ (CH_3) ${}_3C$					
	(c) • CH3 • CH ₂ CH_3) ₃ C ⁺ (CH_3) ₃ C					
	(d) ${}^{-}CH_3$ • CH_2 (CH_3) ${}_3C^+$ (CH_3) ${}_3C$!				
84.	Oxidation is associated with (a) change in molecular weight (c) evolution of gas	(b) gain in electron (d) loss of electron				
85.	Which one of the reversible reaction in the folial Sulfonation of benzene (c) Halogenation of benzene	llowing? (b) Nitration of benz (d) Alkylation of ben				
86.	The electrophile in oleum in the sulfonation re	eaction of benzene is				
	(a) SO ₂ (b) SO ₃	(c) SO ₃ ⁻	(d) $^{+}_{SO_2}$			
87.	Vulcanisation of rubber is (a) cross-linking of hydrocarbon chain in cruc (b) heating of rubber to mould in the desired (c) decreasing its tensile strength (d) decreasing its elasticity	• •				
88.	Polyester is condensation polymer is (a) phenol – formaldehyde (c) terphthalic acid—hexamethylene diamine	(b) terphthalic acid - (d) urea–formaldehy				
89.	Which one of the phenol derivatives is more s (a) o-Nitrophenol (b) m-Nitrophenol	steam volatile? (c) Hydroquinone	(d) p-Nitrophenol			
90.	The compound readily reacts with Lucas reag (a) 2-methyl propanol (c) 2-butanol	gent at room temperatu (b) 2-methyl propan (d) 1-butanol				
91.	The compound which does not reduce Fehlin (a) formic acid (b) acetaldehyde	ngs solution is (c) benzaldehyde	(d) fructose			
92.	The acidity in decreasing order of different ad	cids is				

(a) formic acid > chloroacetic acid > acetic acid > propanoic acid (b) formic acid > propanoic acid > chloroacetic acid > acetic acid (c) chloroacetic acid > acetic acid > formic acid > propanoic acid (d) chloroacetic acid > formic acid > propanoic acid.

0.2	3371:1	1 6 1 9		
93. 94.	(a) Perkin reaction	(b) Methyl orange lehyde with ethyl α -br	(b) Knoevenaged read	
	(c) Claisen-Schmidt rea	action	(d) Reformatsky react	ion
95.	The reaction of acetald (a) yellow resin (c) metaldehyde	ehyde with concentrate	ed NaOH gives (b) aldol (d) paraldehyde	
96.	Anthracene on oxidation (a) anthranilic acid (c) phthalic acid	n with chromatic acid g	gives (b) anthraquinone (d) terphthalic acid	
97.	The order of each of hy (a) anthracene > naphtl (c) benzene > naphthal	nalene > benzene	(b) benzene > anthrac (d) naphthalene > anth	
98.	The intermediate in the	reaction of m-bromoar	nisole with sodamide in l	iquid ammonia has
	OCH₃ 	OCH₃ 	OCH₃ 	OCH ₃
	(a)	(b)	(c) Br	(d) Br
99.	α -Naphthol couples w (a) 2	rith benzenediazonium s (b) 4	salt at position. (c) 5	(d) 8
100.	Conversion of aliphatic (a) Wolf rearrangement (c) Baeyer-Villiger oxid		own as (b) Beckmann rearran (d) Clemmensen reduc	
101.	Isoquinoline on reducti (a) octahydroisoquinoli (c) 1, 4-dihydroisoquin	ne	lloric acid gives (b) 1, 2, 3, 4-dihydrois (d) 1, 2-dihydroisoqui	
102.	The reaction of pyridine (a) 1-acylpyridinium ch (c) 4-acylpyridine	-	he cold gives (b) 3-acylpyridine (d) None of the above	g
103.	Which one is least stab	le carbanion?		
	(a) $C_6H_5^-CH_2$	(b) $(CH_3)_3^- C$	(c) -CCl ₃	(d) $^{-}$ CH $_{3}$
104.	Which of the alkyl halid (a) CH ₃ CH ₂ Br	es undergoes most read (b) CH ₃ CH ₂ F	dily for nucleophilic subs	stitution reaction? (d) CH ₃ CH ₂ Cl
105.	The reaction of ethano (a) propanaldehyde (c) propan-1, 1-diol	lic KOH on 1, 1-dichlo	ropropane gives (b) propyne (d) propanone	
106.	An axial methyl at posit (a) 2a, 4e hydrogens (c) 1e, 3a hydrogens	ion 1 in methylcyclohe	xane is closer to (b) 2e, 6e hydrogens (d) 3a, 5a hydrogens	

107. Predict the product of the following reaction

108. Predict the product of the following reaction


$$\begin{array}{c} \text{CN} & \text{(i) N}_2\text{H}_4\\ \text{(ii) HNO}_2\\ \text{C-C}_2\text{H}_5 & \text{(iii) C}_2\text{H}_5\text{O-H}\\ \text{(iv) HCI} \\ \end{array}$$

- 109. A dilute solution of D(+)—glucose in presence of sodium hydroxide is converted into an almost optically inactive mixture which contains.
 - (a) D(+)-glucose, D(-)-arabinose and D(+)-mannose
 - (b) D(+)-glucose and D(+)-mannose
 - (c) D(+)-glucose, D(+)-mannose and D(-)-fructose
 - (d) D(+)-mannose and D(-)fructose
- 110. Predict the product of the following reaction

$$CH_{2} \xrightarrow{\begin{array}{c} \text{(i) Ph}_{3}P \\ \\ \text{(ii) } C_{2}H_{5}ONa \\ \\ \text{(iii) PhCHO} \\ \\ \text{(iv) } H^{+} \end{array}}$$

- (c) $Ph_3P = CHOMe$ (b) $Ph-CH_2CHO$ (c) Ph-CH = CHOMe (d) $Ph-CH_2-CH_2-OH$
- 111. Which aldoses and ketoses form same osazone when treated with excess of phenylhydrazine?
 - (a) D(+)-glucose, D(-)-mannose and D(+)-ribose
 - (b) D(+)-glucose, D(+)-mannose, D(-)-fructose
 - (c) D(+)-glucose, L(+)-arabinose
 - (d) D(+)-glucose, D(-)-arabinose

112. Predict the product of the following reaction

(a) D(–)-arabinose

(b) Gluconic acid

(c) Glucose penta acetate

- (d) D(+)-ribose
- 113. Which pair of the following pair of sugars is epimers?
 - (a) D(+)-glucose, D(-)-fructose
- (b) D(+)-glucose, D(-)-arabinose
- (c) D(+)-glucose, D(+)-mannose
- (d) D(-)-fructose, D(+)-mannose
- 114. The orbital angular momentum for a 3p electron is

(a)
$$\frac{h\sqrt{5}}{2\pi}$$

(b)
$$\frac{h\sqrt{3}}{2\pi}$$

(c)
$$\frac{h\sqrt{2}}{2\pi}$$

- (d) $\frac{h\sqrt{7}}{2\pi}$
- Which one of the following atomic spectral transitions is forbidden? 115.
 - (a) $3d \rightarrow 4f$
- (b) $2p \rightarrow 3s$
- (c) $3p \rightarrow 3d$
- (d) $4p \rightarrow 5f$
- According to quantum mechanics, the energy levels of a free partial are 116.
 - (a) continuous

- (b) discrete and equally distant
- (c) discrete but not equally distant
- (d) energy is always zero.
- 117. The quantum number which is not derived from the solution of the Schrodinger wave equation for hydrogen atom is
 - (a) azimuthal quantum number
- (b) principal quantum number
- (c) magnetic quantum number
- (d) spin quantum number
- The d-orbital which has a maximum probability density lying along two axes is knwon as 118.
 - (a) $d_{v^2-v^2}$
- (b) d_{a^2}
- (c) d_{xy}
- (d) d_{yz}
- Which one of the following molecules has the highest bond energy? 119.
 - (a) F,
- (b) Cl₂
- (c) Br₂
- $(d) I_{\lambda}$

- 120. The translational partition function has the unit of
 - (a) V
- (b) 1/V
- (c) P
- (d) a number
- The fundamental relation in Helmholtz free energy (A) and molecular partition function q is 121.
 - (a) $A = NkT \ln q$

(b) $A = -NkT \ln q$

(c)
$$A = NkT\Sigma \exp\left(-\frac{\varepsilon_i}{kT}\right)$$

(d)
$$A = -NkT\Sigma \exp\left(-\frac{\varepsilon_i}{kT}\right)$$

- 122. For an ideal monatomic gas, the particle partition function 'q' is
- (a) $\left(\frac{8\pi mkT}{h^2}\right)^{\frac{3}{2}} V$ (b) $\left(\frac{2\pi mkT}{h^2}\right)^{\frac{3}{2}} V$ (c) $\left(\frac{h^2}{8\pi mkT}\right)^{\frac{3}{2}} V$ (d) $\left(\frac{h^2}{2\pi mkT}\right)^{\frac{3}{2}} V$

			12	<u> </u>
123.	If 'v' is the fundamental frequency, μ is the reoscillator.	educed mass and k is t	he force constant, then for a harmon	nic
	(a) $k = \frac{1}{2\pi} \sqrt{\frac{v}{\mu}}$ (b) $v = 4\pi^2 k^2 \mu$	(c) $v = \frac{1}{2\pi} \sqrt{k/\mu}$	(d) $v = \frac{k}{\mu} \sqrt{1/2\pi}$	
124.	The Maxwell-Boltzmann distribution function	of speed is		
	(a) $f(v) = 4\pi \left(\frac{2\pi kT}{m}\right)^{\frac{3}{2}} v^2 \exp\left(-\frac{2kT}{mv^2}\right) dv$			

(a)
$$f(v) = 4\pi \left(\frac{2\pi kT}{m}\right)^{3/2} \exp\left(-\frac{2\pi kT}{mv^2}\right) dv$$

(b)
$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 \exp\left(-\frac{mv^2}{2kT}\right) dv$$

(c)
$$f(v) = \frac{2}{\sqrt{\pi}} \left(\frac{2\pi kT}{m}\right)^{\frac{3}{2}} v^2 \exp\left(-\frac{mv^2}{2kT}\right) dv$$

(d)
$$f(v) = \frac{2}{\sqrt{\pi}} \left(\frac{m}{2\pi kT}\right)^{1/2} v^2 \exp\left(-\frac{2kT}{mv^2}\right) dv$$

- 125. The difference between the magnitude of the magnetic fields at which 'free' nuclei and molecular nuclei resonate is called
 - (a) chemical shift
- (b) magnetic shift
- (c) screening constant (d) anisotropy in g-value
- 126. When a transition between states of the same multiplicity occurs without emitting light, the process is called
 - (a) fluorescence

(b) internal conversion (IC)

(c) quenching

- (d) intersystem crossing (ISC)
- 127. Rotational spectra are observed in the
 - (a) near infrared region

(b) visible region

(c) far infrared region

- (d) UV region
- 128. Which one of the following is adopted as the primary reference electrode, assigned standard electrode, potential equal to zero?
 - (a) Hg/KCl solution (aq)

(b) Cu/CuSO₄ solution.

(c) Ag/AgCl/Cl

- (d) -Pt/H₂(g, 1 atm)/H⁺ (aq) $(a_{H^+} = 1)$
- 129. The reverse of a photochemical reaction is called
 - (a) chemiluminescence

(b) phosphorescence

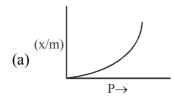
(c) fluorescence

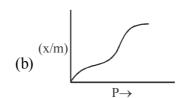
- (d) photosensitization
- A 5.0×10^{-3} M solution of K_2CrO_4 has optical density of 1.5 at 680 m μ using a 10 mm cell. Its extinction 130. coefficient in the unit of L mol-1 cm-1 is:
- (c)7.50
- (d) 30.00
- 131. For reversible isothermal expansion of a perfect (ideal) gas, which particular set of the following statements is correct?
 - (a) q > 0, w > 0, $\Delta U = 0$ and $\Delta H = 0$
- (b) q > 0, w < 0, $\Delta U = 0$ and $\Delta H > 0$
- (c) q > 0, w < 0, $\Delta U = 0$ and $\Delta H = 0$
- (d) q > 0, w < 0, $\Delta U < 0$ and $\Delta H = 0$

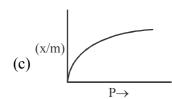
- 132. "Fugacity of a gas in a mixture is equal to the product of its mole fraction in the mixture of its fugacity in the pure state at a total pressure of the mixture." This is in accordance with
 - (a) Lewis-Randall rule

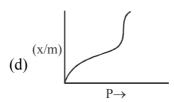
- (b) Konovalov's first law
- (c) Konovalov's second law
- (d) Mathematical form od Duhem-Margules equation
- 133. Which one of the following is not true for real gases?
 - (a) $\Delta G = nRT \ln \left(\frac{f_2}{f_1} \right)$

(b) $\lim_{P\to 0} \left(\frac{f}{p}\right) = 1$


(c) $\gamma = \frac{a}{D}$


- (d) $\Delta G = nRT \ln \left(\frac{P_2}{P_1} \right)$
- 134. In osmotic pressure method, molecular mass of polymers can be obtained from the intercept of the graph of
 - (a) π vs C
- (b) $\left(\frac{\pi}{C}\right)$ vs. C (c) $\frac{C}{\pi}$ vs. C (d) $\frac{C}{\pi}$ vs. \sqrt{C}
- The half-life of a given reaction was halved as the initial concentration was doubled. What is the order of the 135. reaction?
 - (a) Zero order


(b) Pseudo first order


(c) Second order

- (d) Third order
- 136. Which of the following ions has the highest ionic mobility in aqueous solution?
 - (a) Li⁺
- (b) Rb⁺
- (c) Na⁺
- (d) K^+
- Which of the following isotherms was successfully explained by Langmuirs unimolecular layer theory? 137.

- 138. The oscillator strength of a spectral transition has the units of
 - (a) $mol s m^{-2}$

(b) dm³ mol⁻¹ cm⁻¹ s⁻¹

(c) cm⁻¹

- (d) dimensionless quantity
- According to Debye-Huckel theory of strong electrolytes, an ion while moving in particular direction under the 139. influence electric field experiences a drag due to the presence of ionic atmosphere of excess oppositely charged ions around moving ion. This effect is known as
 - (a) asymmetric effect

(b) electrophoretic effect.

(c) Brownian effect

- (d) concentration effect.
- 140. Which one of the following statements is wrong?
 - (a) ${}_{6}^{14}$ C is a redioactive isotope of carbon
 - (b) $_{27}^{60}$ Co is an unstable radio isotope of cobalt
 - (c) Radioactive disintegration follows second-order kinetics
 - (d) Superconducting materials are diamagnetic.

141.	The violet colour of ?	$Na_{(1+\delta)}Cl$ crystal is due to	O	
	(a) Frenkel defects(c) Interstitials	. ,	(b) Schottky defect(d) F centres	
142.	The difference between the potential of the elect cal reversible potential value for the same reacti (a) concentration polarization (c) Dorn effect		ctrode when gas evolution is actually observed and the theoreti- tion is called (b) Overvoltage (d) Sedimentation potential	
143.	Sulfur can exist in (a) One phase	(b) Two phase	(c) Three phases	(d) Four phases
144.	A first-order chemica (a) 50.50 minutes		ete in 10 minutes. Its half (c) 95.6 minutes	f-life is (given $\log 3 = 0.48$) (d) 75.2 minutes
145.		300 minutes. Its rate con		nose initial concentration was 0.01 mol 1^{-1}
146.	For a reversible chemi	ical reaction $A \xrightarrow{k_1} X$	in which both the forw	ard and reverse reactions are first order
	and the intial concentrisgiven by	ration of A is a_0 and the e	quilibrium concentratin	of X is x_e , the value of k_{-1} in terms of k_1
	(a) $k_1(a_0-x_e)$	(b) $k_1 a / x_e$	(c) $k_1(a_0 - x_e)/x_e$	(d) $k_1 x_e / (a_0 - x_e)$
147. A consecutive chemical reaction, A and k ₂ . The time required to attain the				both the stages with rate constants as k_1 given by
	(a) $\frac{0.693}{(k_1 + k_2)}$	(b) $\frac{\left(\ln k_1 - \ln k_2\right)}{\left(k_1 + k_2\right)}$	(c) $\frac{\left(\ln k_1 + \ln k_2\right)}{\left(k_1 + k_2\right)}$	$(d) \frac{\left(k_1 + k_2\right)}{\left(k_1 - k_2\right)}$
148.	the following (a) Increase in entrop(b) Formation of stabl(c) Formation of free	y on decomposition of Ne intermediates	NO_2	is negative which may be due to one of
149.	_	ts at one of the following		by measuring the temperature depen- (d) High pressures
150.		k_{-1} and k_2 for the enzyl	. ,	· / · · · · · · · · · · · · · · · · · ·
		$E + S \xrightarrow{k_1} ES \xrightarrow{k_2}$	\rightarrow E + P	
	are 0.1, 0.01 and 0.05 (a) 0.6	s s ⁻¹ respectively. The M (b) 1.6	ichaelis constant for the (c) 0.066	reaction is (d) 2.25