

BHU M.Sc. CHEMISTRY ENTRANCE - 2011

Time: 2½ Hours Full Marks: 450

T 4	4 •
Inctri	ictions:
HISU U	icuons.

Instr	uctions:			
(<i>i</i>)	Attempt as many que	estions as you can. Each qu er. Zero mark will be award		a. One mark will be deducted for ed question.
(ii)	If more than one alter	mative answers seem to be a	approximate to the corre	ect answer, choose the closest one.
1	TTI 1	1		1. 1.10% 1 1
1.	•	d to twice its initial tempera	•	compressed to half its volume and
	(1) $R \ln 2$	$(2) 3R \ln 2$	$(3) 5R \ln 2$	$(4) 7R \ln 2$
2.		es between 1000 K and 600 of heat is supplied by the ho	_	d into the cold sink in a reversible
	(1) 2 kJ	(2) 2.5 kJ	(3) 3 kJ	(4) 5.5 kJ
3.	For which of the following	lowing processes $q = 0, w =$	$=0, \Delta U=0 \text{ and } \Delta H=$	0?
4.	(2) Reversible adiab(3) Adiabatic expan(4) Reversible const	<u> </u>	s neuum rfect gas	ence of its chemical potential from
	(1) $200R \ln 25$	(2) $200R \ln 2$	(3) $-200R \ln 2$	(4) $-200R \ln 25$
5.	The entropy of mixir	* *	mole of heptane at 298	K is 11.4 JK^{-1} . The Gibbs energy (4) 3.44 kJ
6.	, ,	ees of freedom of the syste	` /	. ,
0.	(1) zero	(2) one	(3) two	(4) three
7.	` '	,	` /	ents in a mixture is known as
	(1) van't Hoff equat		(2) Gibbs-Duhe	
	(3) Duhem-Margule	s equation	(4) Raoult's law	7
8.	For a very dilute elec	etrolyte solution with $\gamma_+ < 1$	$,\gamma_{+}$ should increase wi	th increase in
	(1) solvent's density		(2) solvent's die	
	(3) ionic strength		(4) cationic cha	rge

						[2]		
9.	Which of the following statements is <i>not</i> con	rrect?						
	(1) ΔG_{mix} at constant temperature and pressure must be negative							
	(2) Intermolecular interactions are negligible							
	(3) Solute-solute interactions are negligible			tion				
	(4) Activity coefficients are never negative	,						
10.	Which of the following statements is correct	?						
	•	(1) If $\Delta G^{\circ} > 0$, no amount of products can be obtained when the reaction is run at constant temperature						
	(2) It is possible for the entropy of a closed	d system to de	crease si	ubstantial	lly in an irreversible	process		
	(3) In any closed system with $P - V$ work of	only, G is alwa	ays minir	mised at e	equilibrium			
	$(4) \Delta(TS) = T\Delta S + S\Delta T$							
11.	The condition for the attainment of phase-eq	uilibrium in a	closed ele	ectrocher	nical system is the ec	quality of		
	(1) surface potentials	-		potentials	•			
	(3) chemical potentials			chemical p				
12.	The direction of a chemical reaction at cons			_				
	(1) decrease of Gibbs free energy of the sy	vstem (2)	decrease	e of Helm	holtz free energy of th	ne system		
	(3) increase of entropy of the system (4) decrease of enthalpy of the system							
13.	The quantum yield of the photochemical dec	composition of	HI					
	$HI + hv \rightarrow H$	[+ I						
	$H + HI \rightarrow H_2$	2 + I						
	$I + I + M \rightarrow$	$I_2 + M$						
	with respect to HI is							
	(1) 0.5 (2) 1	` '	1.5		(4) 2			
14.	HI is absorbed strongly on gold. Assuming Langmuir isotherm to apply, the order of the reaction							
	$2HI \rightarrow H_2 + I_2$ on gold is							
	(1) zero (2) 0.25	` '	0.5		(4) 1			
15.	Which of the following statements is <i>not</i> correct for Langmuir isotherm?							
	(1) It applies to monolayer adsorption							
	(2) Under conditions $\theta \ll 1$ and α (Freundlich exponent) ≈ 1 , it reduces to Freundlich isotherm							
	(3) It applies to dissociative adsorption							
	(4) It applies to chemisorption				-00	. 1 .		
16.	The activation energy and entropy of a bim –200 JK ⁻¹ mol ⁻¹ respectively. The free energy	rgy of activati	on is			ol⁻¹ and		
	(1) 70 kJ mol ⁻¹ (2) 80 kJ mol ⁻¹			mol ⁻¹ ((4) 320 kJ mol ⁻¹			
17.	Among the following statements which is the							
	(1) The heat of chemisorption is always large			-				
	(2) Langmuir isotherm specifically assumes	the existence of	of active	centres				
	(3) Promoters are themselves catalysts				·			
10	(4) Increase in surface tension with concent		•	-				
18.	The activation energy of the gas-phase assorthe reactants, is 58.6 kJ mol ⁻¹ . The activation				irst-order reaction in	each of		

(1) 53 kJ mol⁻¹

(2) 55.8 kJ mol⁻¹

(3) 58.6 kJ mol⁻¹ (4) 61.4 kJ mol⁻¹

19.				m light is 2×10^2 moleinstein ⁻¹ . After number of photons absorbed by A is (4) 9×10^{18}
20.	· /		` '	Michaelis-Menten kinetics, is half
	$(1) [S] \ll K_{\scriptscriptstyle M}$	(2) $[S] = K_M$	(3) $[S] = K_M / 2$	$2 (4) [S] \gg K_{\scriptscriptstyle M}$
21.	For the mechanism			
		$A_2 \rightleftharpoons 2A \text{ (fast)}$		
		$A + B \rightarrow P (slow)$		
	the reaction order wit	h respect to A ₂ is		
	(1) 0	(2) 0.5	(3) 1	(4) 2
22.	Which of the followin	g relations does not hold for	the activity (A) of a	radioactive substance?
	$(1) \ \frac{A}{A_0} = \left(\frac{1}{2}\right)^{t/t_{1/2}}$		$(2) \frac{A}{A_0} = \exp\left(-\frac{1}{2}\right)$	$-0.693 \frac{t}{t_{0.5}}$
	(3) $t_{0.5} / t_{0.1} = \ln 2$		(4) $\frac{A}{A_0} = 1 - 0.6$	$593 \frac{t}{t_{0.5}} \text{ at } t \to 0$
23.	-	photograph from tungsten sh 400), The symmetry of the		ices as (110), (200), (211), (220),
	(1) primitive	(2) end-centred	(3) face-centred	d (4) body-centred
24.	Among the following	halides which one forms van	der Walls crystals?	
	(1) NaCl	(2) BeCl ₂	(3) $HgCl_2$	
25.		has orthorhombic lattice we temperature. The number of		8.0 Å, $c = 5.6$ Å and density = cell of the crystal is
	(1) 1	(2) 2	(3) 4	(4) 8
26.	The ratio of the transl	ational partition functions of	FD_2 and H_2 at the same	me temperature and volume is
	(1) 2	(2) 1.414	(3) 2.83	(4) 4
27.		ring systems is the energy lev	•	=
	, ,	adical in a field of 0.300 T		us in 600 MHz NMR spectrometer
	(3) a proton in the sa	me spectrometer	(4) a deuteron	in the same spectrometer
28.	Which of the following	g functions is not an eigenfur	action of $\frac{d^2}{dx^2}$?	
	(1) $\cos kx$	$(2) \exp(-kx^2)$	(3) kx	(4) $\exp(ikx)$
29.			sample as determined	d by light scattering, sedimentation
	-	measurement methods is		
	(1) 1:1:2	(2) 2:1:2	(3) 1:2:1	(4) 2:2:1
30.	In milk at 37°C Lactorelative to the initial v	•	eneration time of 75	minutes. What is the population
	(1) 4.0	(2) 2.25	(3) 2.0	(4) 1.75
31.	If the pressure of a ga	as at constant temperature is	doubled, the viscos	ity of the gas will be
	(1) quadrupled	(2) doubled	(3) halved	(4) unchanged

	(1) N2	(2) H2S	(3) CO ₂	(4) CH_4		
33.	The SI unit of radiation	on dose is	-	·		
	(1) becquerel	(2) curie	(3) rad	(4) gray		
34.	•	icle in a one-dimensional that of frequency v . If the lemes	· ·			
	(1) $v/4$	(2) $v/2$	(3) 2 <i>v</i>	(4) 4 <i>v</i>		
35.	For a hydrogen atom is	in an $n = 4$ state, the max	kimum possible z-compo	onent of orbital angular n	nomentum	
	(1) 2ħ	(2) 3ħ	$(3) \sqrt{12}\hbar$	(4) $\sqrt{6}\hbar$		
36.	Which one of the foll	owing is an acceptable ap	pproximate wave functi	on for a state of the heli	um atom?	
	(1) $[1s(1)1s(2) - 1s($	1)1s(2)][$\alpha(1)\beta(2)$]				
	(2) $[1s(1)1s(2)][\alpha(1)]$	$)\alpha(2) + \beta(1)\beta(2)]$				
	(3) $[1s(1)2s(2) + 2s($	1)1s(2)][α (1) α (2)]				
	(4) $[1s(1)2s(2) + 2s($	1)1s(2)][α (1) β (2) – β ($(1)\alpha(2)$			
37.	Which one of the following statements concerning H_2^+ is incorrect?					
	(2) The lowest energ(3) The ground state	te LCAO–MOs (without sy MO (without spin) of thas a multiplicity of two rm into AOs of the heliu	he molecule is anti-sym	metric for inversion	or inversior	
38.	Which one of the following is the correct formula for the lowest energy eigenfunction for a particle in a one-					
	dimensional box having infinite barriers at $x = -L/2$ and $L/2$?					
	$(1) \sqrt{\frac{2}{L}} \sin\left(\frac{\pi x}{L}\right)$		$(2) \sqrt{\frac{2}{L}} \cos \left(\frac{1}{L}\right)$	$\left(\frac{dx}{dx}\right)$		
	(3) $\sqrt{\frac{2}{L}} \exp\left(\frac{i\pi x}{L}\right)$		$(4) \sqrt{\frac{2}{L}} \exp\left(-\frac{1}{2}\right)$	$\frac{-i\pi x}{L}$		
39.	Which of the following equations is used to calculate the number of theoretical plates?					
	$(1) \frac{t_R - t_0}{t_0}$		$(2) 16 \left(\frac{t_R}{W}\right)^2$			
	(3) $\frac{k_2}{k_1}$		$(4) \ \ 2(t_{R_2} - t_{R_1})$	$/(W_1+W_2)$		
40.	Which of the followin	g techniques is based on s	selectively inducing radi	pactivity and measuring t	he emitted	

Among the following molecules which one shows pure rotation spectra?

radiation?

Isotope dilution analysis
 Neutron activation analysis

32.

(2) Radiometric titration

(4) All of the above

41.	Which of the following tecl	nniqu	es can be used only for	or vo	latile compound	ds?		
	(1) Gas chromatography			(2)	HPLC			
	(3) Ion chromatography			(4)	All of the above	ve		
42.	Which of the following refe	rs to	ion exchange capacit	ty?				
	(1) Nature of exchanging ions							
	(2) Nature of strong cation exchanger							
	(3) Nature of strong anion	(3) Nature of strong anion exchanger						
	(4) Total number of ion ac	tive g	groups per unit length	of m	naterial			
43.	In electrogravimetry of cati	ons t	he working electrode	is				
	(1) anode			(2)	cathode			
	(3) both cathode and anod	le		(4)	neither anode	nor c	athode	
44.	Which of the following tech	nique	es is / are feasible appr	oach	in the determina	ation	of a substance that cannot	
	be isolated in pure form for	grav	imetry or for determi	inatic	on by other met	hods	?	
	(1) Neutron activation anal	ysis		(2)	Isotope dilution	n ana	llysis	
	(3) Radiometric titration			(4)	All of the above	ve		
45.	Which of the following free	uenc	eies corresponds to ca	rbon	yl stretch vibrat	ion i	n acids?	
	(1) 1625 cm^{-1}			(2)) 1715 cm ⁻¹			
	$(3) 1745 \text{ cm}^{-1}$			(4)	1800 cm^{-1}			
46.	A particular vibration in a p	olya	tomic molecule is IR	activ	e if during vibra	ition,	there is a change in	
	(1) polarizability			(2)	dipole moment			
	(3) frequency			(4)	potential energ	y		
47.	Moisture in a drug can be determined by							
	(1) Malaprade reagent			(2)	EDTA reagent			
	(3) Karl Fischer reagent			(4)	chloramine-T r	eage	nt	
48.	Which one is more toxic?							
	(1) Hg	(2)	$(CH_3)_2Hg$	(3)	Hg^{2+}	(4)	Hg_2^{2+}	
49.	The most efficient technique	e for	the separation of ami	ino a	cids is			
	(1) adsorption chromatogra	phy		(2)	partition chrom	natog	raphy	
	(3) ion-exchange chromato	grapl	ny	(4)	paper chromate	ograj	phy	
50.	Which one is not a pollutar	ıt?						
	(1) CO		CO_2	(3)	SO_3	(4)	NO_2	
51.	Which one is the sink of C	_		(2)				
52	(1) Plant	` /	Ocean	(3)	Air	(4)	Soil	
52.	Ozone layer is a protective (1) visible light		ultraviolet light	(3)	infrared rays	(4)	cosmic rays	
53.	Nessler's reagent is	(2)	uniaviolet light	(3)	inital cartays	(1)	cosmic rays	
	(1) $KHgI_4$			(2)	$K_2HgI_4 + NH$	OH		
	(3) K2HgI4			(4)	$\overline{KHgI_4} + NH_4$	OH		
54.	Which of the following stat							
	(1) In instrumental method		· ·		-			
	(2) In classical volumetric to				-			
	(3) In classical qualitative a	_		_				
	(4) Spectroanalytical techniques can be applied for qualitative and quantitative analysis							

55.	Visible region in the electron	omagı	netic spectrum exten	ds fror	n		
	(1) 200-400 nm			(2)	800-900 nm		
	$(3) 400-4000 \text{ cm}^{-1}$			(4)	400-800 nm		
56.	Hard water can be softened	ed in					
	(1) a calorimeter			(2)	a chromatogr	aph	
	(3) an ion exchanger			(4)	an earthen wa	are po	t
57.	The technique used for the	e sepa	ration of componen	ts of a	mixture is cal	led	
	(1) chromatography			(2)	IR spectrosco	ру	
	(3) electronic spectroscop	У		(4)	polarography		
58.	Essential constituent of an	amalg	gam is				
	(1) Ag	(2)	Hg	(3)	Mg	(4)	Fe
59.	Potential of which of the f	ollow	ing electrodes does	not de	pend on pH of	f the s	olution?
	(1) Glass electrode			(2)	Hydrogen ele	ctrode	;
	(3) Quinhydrone electrode	•		(4)	calomel electr	ode	
60.	The unit of equivalent con-	ducta	nce is				
	(1) $ohm^{-1} cm^{-1}$			(2)	$\mathrm{ohm}^{-1}\ \mathrm{cm}^{-2}$		
	$(3) ohm^{-1} cm^2$			(4)	None of the	above	
61.	Which quantity remains un	chang	ged on changing temp	peratur	re?		
	(1) Mole fraction			(2)	Molarity		
	(3) Normality			(4)	None of the	above	
62.	The strongest ligand in spe	ectro-	chemical series is				
	(1) F ⁻	(2)	OH-	(3)	H_2O	(4)	CO
63.	The iron is rusted, then it	is					
	(1) oxidized	(2)	reduced	(3)	evaporated	(4)	decomposed
64.	Two elements cannot be c	ombii	ned chemically to ma	ake			
	(1) a compound	(2)	another element	(3)	a gas	(4)	a liquid
65.	Choose the law that states	, "effe	ective chemical char	nges ar	e brought abo	ut by a	absorbed radiations only"
	(1) Beer's law			(2)	Grotthus-Dra	per lav	W
	(3) Lambert's law			(4)	law of photoc	hemic	al equivalence
66.	What quantity of limeston	e on l	neating will give 56	kg of (CaO?		
	(1) 10 kg	(2)	55 kg	(3)	44 kg	(4)	100 kg
67.	The unit of absorptivity is						
	(1) $cm^{-1} g^{-1}L$	(2)	cm ⁻¹ mol ⁻¹ L	(3)	$cm^{-1} g L^{-1}$	(4)	No unit
68.	Oxine is a						
	(1) precipitating reagent	(2)	redox reagent	(3)	drug	(4)	dye
69.	Free radicals may be dete	cted l	ру				
	(1) mass spectrometry			(2)	NMR spectro	scopy	I
	(3) ESR spectroscopy			(4)	infrared spect	rosco	ру
70.	Lead can be the best analy	sed co	olorimetrically using	which	of the followi	ng rea	agents?
	(1) Dithizone	(2)	EDTA	(3)	DMG	(4)	Acetyl acetone
71.	Which of the following is	a hyd	ride ion donor?				
	(1) NAD	(2)	ATP	(3)	NADH	(4)	Coenzyme A

72.	Na and K can be estim	nated using		
	(1) X-ray fluorescence		(2) IR spectrosc	ору
	(3) ion selective electro	ode	(4) All of the ab	ove
73.	How many mL of conce to 1.00 L to produce a	•	g/mL, 36.0 wt % HC	Cl, $MW = 36.5$) should be diluted
	(1) 8.59 mL	(2) 85.9 mL	(3) 0.859 mL	(4) 17.18 mL
74.	A 1.00×10^{-3} M solutio	on of HCl includes $^{36}_{17}$ Cl ($t_{1/2}$	$_2 = 3.09 \times 10^5$ y). The	specific activity (the activity per
	unit mass or unit volum are ³⁶ Cl atoms?	e) of the solution is 5000 dec	cays $min^{-1} mL^{-1}$. Wha	at fraction of Cl atoms in solution
	(1) 0.194	(2) 0.0194	(3) 1.940	(4) 0.00194
75.	nm. What is the concentration 410 nm in a 0.500 cm	stration of Ti-peroxide comp cell?	lex in a solution that	heasured in a 1.00 cm cell at 410 had $T = 0.516$ when measured at
	(1) $7.89 \times 10^{-2} \text{ M}$	(2) $15.78 \times 10^{-2} \text{ M}$		
76.	The partition coefficient	at for ethyl iodide, E , between	en octanol and water	is
		$K_p = \frac{[E]_0}{[E]_w} \approx 100$		
	What percent of <i>E</i> pres of octanol?	ent in 50.00 mL of water w	ould remain if the wa	ter was extracted with 10.00 mL
	(1) 47.6%	(2) 4.76%	(3) 9.52%	(4) 95.2%
77.	Arrange the ionization of (A) $Fe^{2+} \rightarrow Fe^{3+}$ (B) $Mn^{2+} \rightarrow Mn^{3}$ (C) $Fe^{+1} \rightarrow Fe^{2+}$	energies of the following ion	s in increasing order	
	Choices are			
	(1) A <b<c (At. No. of Fe and M</b<c 	(2) C <b<a< td=""><td>(3) C<a<b< td=""><td>(4) B < C < A</td></a<b<></td></b<a<>	(3) C <a<b< td=""><td>(4) B < C < A</td></a<b<>	(4) B < C < A
78.	In the first row transition	n metal ion (2+) having four ypothetical diamagnetic tetra		s (with $4s$ and $4p$ orbitals empty), A^{-1} with A^{-1} anion. The electronic
	$(1) [Ar] 3d_{xy}^2 3d_{xz}^2 3d_{yz}^0 3$	$3d_{z^2}^0 3d_{x^2-y^2}^0 4s^0 4p^0$	(2) $[Ar]3d_{xy}^0 3d_x^0$	$(23d_{yz}^23d_{z^2}^23d_{x^2-y^2}^04s^04p^0)$
	(3) [Ar] $3d_{xy}^{0}3d_{xz}^{0}3d_{yz}^{0}3$	$3d_{z^2}^2 3d_{x^2-y^2}^2 4s^0 4p^0$	(4) $[Ar]3d_{xy}^13d_{xy}^1$	$_{z}3d_{yz}^{2}3d_{z^{2}}^{0}3d_{z^{2}-y^{2}}^{0}4s4p^{0}$
79.	Out of the following w	which has the least tendency	to form $M = O$ spec	ies?
	(I) $Sc = O$	(II) $P = O$	(III)Ln = O	(IV)Ac = O
	(1) $Sc = O$ and $P = O$)	(2) Ln = O	
	(3) Ac = O		(4) $Sc = O, P =$	O = O and $Ac = O$
	(Ln = Lanthanides and	Ac = actinides)		

80.	The magnetic properties of lanthanides are largely determined by the formula
	(1) $\mu_{\text{eff}} = \sqrt{n(n+2)}$

(2)
$$\mu_{\text{eff}} = \sqrt{n(n+2)} + \text{ some contribution of orbital contribution}$$

(3)
$$\mu_{\rm eff} = \sqrt{L(L+2)}$$

(4)
$$\mu_{\text{eff}} = g_J \sqrt{J(J+1)}$$
, where $g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$

- 81. Ln²⁺ ions are largely coloured while Ln³⁺ ions are not coloured. The colour of Ln²⁺ compounds are due to transition
 - $(1) \quad 4f \rightarrow 5d$

- (2) $4f \rightarrow 4f$
- (3) charge transfer from liquid to metal ion
- (4) $5d \rightarrow 5d$ transition
- 82. Transition metals (some ions) form complexes with molecular N_2 . There are two modes of coordination of N_2 in the complexes of the type $[M(N_2)(L)_n]$. These modes are (a) end-on and (b) side-on. The stability of these complexes in these two modes is
 - (1) end-on more stable than side-on
 - (2) side-on more stable than end-on
 - (3) both are highly unstable (the relative stability depends on ligands)
 - (4) both are equally stable
 - (L = ligand)
- 83. The structure of hyponitrous acid molecule $(H_2N_2O_2)$ is
 - (1) linear (A–B–C–D type)

(2) bent (\tag{type})

- (3) square planar (type)
- (4) triangular (\(\sum \) type)
- 84. We have two complexes $[Mn(H_2O)_6]^{3+}$ ion $(d^4$ system) and $[Re(H_2O)_6]^{3+}$ ion $(d^4$ system). Their CFSE and the pairing energy (per pair of electrons) are given below

$$[Mn(H_2O)_6]^{3+} - 10Dq = 250 \text{ kJ/mol};$$
 Pairing energy = 300 kJ/mol $[Re(H_2O)_6]^{3+} - 10Dq = 400 \text{ kJ/mol};$ Pairing energy = 180 kJ/mol

Predict from their data, the complexes are

(1) both high spin

(2) Mn-high spin and Re-low spin

(3) both low spin

- (4) Mn-low spin, Re-high spin
- 85. $[\text{NiCl}_2(\text{PPh}_3)_2]$ is paramagnetic with $\mu_{\text{eff}} = 2.9\,\text{BM}$. All the four ligands are monodentate. The geometry of the molecule is
 - (1) square planar

(2) octahedral

(3) square pyramidal

- (4) tetrahedral
- 86. There is no d-d transition in $[Mn(H_2O)_6]^{2+}$ (d^5 system). This is high spin complex. The absence of any transition in the visible region is due to breaking of
 - (1) Laporte rule
 - (2) parity selection rule $(g \rightarrow g \text{ and } u \rightarrow u \text{ not allowed})$
 - (3) spin selection rule (spin of the electron cannot be changed during transition)
 - (4) All the above three rules (1, 2 and 3)

- 87. According to the IUPAC system which is the correct formula for the complex [diaquadibromodi (methylamine) cobalt (III) nitrate?
 - (1) $[Co(H_2O)_2Br_2(MeNH_2)_2]NO_3$

(2) $[CoBr_2(H_2O)_2(MeNH_2)_2]NO_3$

(3) $[Co(H_2O)_2(MeNH_2)_2Br_2]NO_3$

- (4) $[Co(MeNH_2)_3(H_2O)_2Br_2]NO_3$
- 88. $[Cr(H_2O)_6]^{3+}$ is violet whereas $[Cr(NH_3)_6]^{3+}$ is yellow. The wavelength absorbed by $[Cr(NH_3)_6]^{3+}$ as compared to that by $[Cr(H_2O)_6]^{+3}$ in their absorption spectra will be
 - (1) higher

- (2) lower
- (3) same
- (4) These complexes will not show any absorption in the visible region
- 89. Although fluorine is better oxidizing agent than oxygen, but Mn₂O₇ exists and MnF₇ does not. This is because of
 - (1) steric crowding and difficult to fitting seven fluoride ions around Mn centre
 - (2) very high electron affinity of fluorine as compared to oxygen
 - (3) very low lattice energy of MnF₇ compared to oxygen compound
 - (4) very low bond energy of Mn-F bond compared to Mn-O bond
- 90. Covalent radius of gold (125 pm) is less than that of silver (1.33 pm). This is because of
 - (1) transition metal contraction
 - (2) lanthanide contraction
 - (3) lack of shielding of 4d orbitals compared to 5d orbitals
 - (4) relatively less effective shielding by 3p and 3s orbitals in silver as compared to that by 4s, 4p and 4d
- 91. Using VSEPR model, the shaper of the following molecules

$$IF_5^{-2}(A), XeF_4(B), IO_3^-(C), BrF_3(D)$$

are

- (1) (A) pentagon shape, (B) square planar, (C) trigonal pyramid, (D) T-shape
- (2) (A) trigonal bipyramid, (B) tetrahedral, (C) planar, (D) planar
- (3) (A) square pyramid, (B) tetrahedral, (C) trigonal pyramid, (D) planar
- (4) (A) pentagonal pyramid, (B) tetrahedral, (C) trigonal pyramid, (D) planar
- 92. Arrange the hydrides of 15-group elements (NH₃, PH₃, AsH₃, SbH₃ < BiH₃) in increasing contribution of *p*-orbital of X in the X–H bond. Choose the correct alternative from the following alternatives given below
 - $(1) \ Bi < Sb < As < P < N$

(2) P < N < As < Bi < Sb

(3) N < P < As < Sb < Bi

- (4) Bi < Sb < N < P < As
- 93. What are A, B and C in the following reactions?
 - $(I) B_2H_6 + NH_3 \rightarrow (A)$
 - (II) $B_2H_6 + H_2O \rightarrow (B)$
 - (III) $B_2H_6 \xrightarrow{\text{Heated at } 100^{\circ}C} (C)$

Here A, B and C respectively are

(1) borazine, B₂O₃ and B₄H₈

(2) $2BH_3 \cdot NH_3$, $H_3BO_3 + H_2$, $B_{10}H_{14}$

(3) BN, H₃BO₃ only, B₄H₈

- (4) BN, $H_3BO_3 + H_2$, B_4H_8
- 94. Which one of the following contain (3c 2e) bonds?
 - (a) $\mathrm{Mg}(\mathrm{CH_3})_2$, (b) BeCl_2 , (c) BeH_2 , (d) $\mathrm{Be}(\mathrm{NO_3})_2$
 - (1) (a), (b) and (c)

(2) (a) and (c)

(3) (a), (c) and (d)

(4) (b) and (c)

- 95. Which one of the following orders of two properties of 14- and 15-group elements is *not* correct?
 - (A) $BI_3 < BBr_3 < BCl_3 < BF_3$ (Lewis acidity)
 - (B) $Pb(CH_3)_4 < Sn(CH_3)_4 < Ge(CH_3)_4 < Sc(CH_3)_4$ (thermal stability)

The correct alternative from the following ones is

(1) (B)

(2) (A)

(3) No one is wrong

- (4) Both are wrong
- 96. Which ones of the following compounds do not exist?

$$[AuXe_{4}]$$
, $[KrF_{2}]$, $[ArF_{2}]$ $[He-F]$

Choose the correct choice out of the following

(1) $[AuXe_4]$ and [He-F]

(2) $[KrF_2]$ and $[ArF_2]$

(3) $[Ar-F_2]$, and [He-F]

- (4) $[ArF_2]$ [He-F], $[AuXe_4]$
- 97. Alkalides and electrides are crystalline compounds of
 - (1) alkali metals in (+1) oxidation states and electrons respectively
 - (2) alkali metals in (-1) oxidation states and electron acting as anion
 - (3) methyl group and electron acting as anion respectively
 - (4) methyl group and alkali metal group
- 98. Among the molecules, BiF₃, BiCl₃, BiBr₃ and BiI₃, the one which is most coloured is
 - (1) BiF₃

- (2) BiBr₃
- (3) BiCl₃
- (4) BiI₃

- [CrO₈]³⁻ ion is known. This ion probably is 99.
 - (1) complex of peroxide ion with Cr⁵⁺ ion
 - (2) polymeric complex with oxide ion acting as bridges
 - (3) complex of molecular oxygen and oxide ion (e.g. $Cr^{5+}(O_2)_2O_4)^{3-}$
 - (4) complex of molecular oxygen and peroxide ions
- Iodine dissolves in oleum to give bright blue colour. The blue colour is due to the formation of A, where 100. A is
 - (1) I⁻ ion

- (2) I_2^- ion
- (3) I_2^+ ion (4) I_4^+ ion
- The order of increasing size of V, Nb, Ta, Db (at. no. 106) is 101.
 - (1) V < Nb < Ta < Db

(2) Db < Ta < V < Nb

(3) $V < Nb \approx Ta \approx Db$

- (4) V < Db < Ta < Nb
- 102. Given the following reaction conditions for the formations of the fluorides of Xe

$$Xe(g) + F_2(g) \xrightarrow{\text{one atm pressure}} A... (Xe in excess)$$

$$Xe(g) + F_2(g) \xrightarrow{600^{\circ}C} B... (Xe : F_2 = 1:1.6)$$

$$Xe(g) + F_2(g) \xrightarrow{300^{\circ}C} C... (Xe : F_2 = 1:20)$$

A, B and C in these reactions respectively are

(1) XeF_4 , XeF_2 , XeF_6

(2) XeF_2 , XeF_4 , XeF_6

(3) XeF_6 , XeF_4 , XeF_2

- (4) XeF_2 , XeF_6 , XeF_4
- In the preparation of P_4O_6 , a mixture of N_2 and oxygen is used instead of pure oxygen. The reason is 103.
 - (1) pure oxygen will form ozone in presence of P
 - (2) pure oxygen will form P_4O_{10} despite excess of P_4 , in pure oxygen
 - (3) pure oxygen will form $[P(O_3)_4]$ ozonide
 - (4) pure oxygen will not react with P. N₂ acts as a catalyst

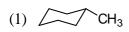
104.	Arsenic, antimony and bism	nuth react with concentrat	ed HNO ₃ . These giv	e respectively
	(1) H_3AsO_4 , H_3SbO_2 , (Bi	$(O_3)^-$ ion	(2) H_3 AsO ₄ , Sb_2	O_3 , $(BiO_3)^-$ ion
	(3) As_2O_3 , Sb_2O_3 , Bi_2O_3		(4) H_3AsO_4 , Sb_2O_4	O_5 and Bi^{3+} ion
105.	In borazine (B ₃ N ₃ H ₆) mole	ecule, the number of isom		ble of its disubstituted borazine
	molecule of the formula [B	$_{3}N_{3}H_{4}X_{2}$] without changing	g its ring structure is	S
	(1) one	(2) two	(3) four	(4) six
106.	Solution of alkali metals in	liquid NH ₃ conducts elect	ricity. It is due to fo	rmation of
	(1) $Na^+ + Na^-$ ion in liqui	d ammonia		
	(2) $Na^+ + e^- (NH_3)_x$ in liq	uid ammonia		
	(3) Na^- , $(NH_2)^-$ and NH_2^-	ion in liquid NH ₃		
	(4) The solution conducts	like a metallic conductor v	with solvated electro	ns carrying the charge
107.	A compound alloy of meta	ls P and Q has a unit cell c	containing P atoms a	t the corners, while atom Q are
	present at the face centres.	-	ound should be	
	(1) PQ	$(2) PQ_2$	$(3) PQ_3$	3
108.	•	<u> </u>		unpaired electrons) and another
	=		state is diamagnetic.	The complex is octahedral. The
	central metal could be one (Cr ³⁺ , Mn ²⁺ , Fe ²⁺ , Mn			
	Cr^{3+} ion is $[Ar]4d^3$ system	. The metal ion is		
	(1) Mn^{2+}	(2) Fe^{2+}	(3) Co^{2+}	(4) Fe^{3+}
109.	The enthalpy of hydration	(ΔH) of Cr^{2+} [$(d^4$ system of	octahedral complex	$(Cr(H_2O)_6)^{2+}$] is -460 kcal/mol.
	In the absence of CFSE, t	his value of ΔH is (-435)) kcal/mole. The val	lue of 10Dq (or Δ_0) is
	(1) 14600 cm^{-1}	$(2) 21500 \text{ cm}^{-1}$	$(3) 9525 \text{ cm}^{-1}$	$(4) 25252 \text{ cm}^{-1}$
	$(1 \text{ kcal} = 350 \text{ cm}^{-1})$			
110.	Which of the d^n ion will hat d^9 , d^{10} ?	ve the smallest CFSE if Δ	(or 10Dq) is greate	or than pairing energy d^6 , d^7 , d^8 ,
	(1) d^6 , d^{10}	(2) d^7 , d^9	(3) d^{10}	(4) d^5 , d^8 , d^{10}
111.	During excessive physical	stress (like running), the b	oody makes <u>A</u> whic	ch reacts with water to form its
	conjugate base and <u>B</u> ions	. These, in turn, lowers the	pH in the muscles w	which causes pain in the muscles.
	Here A and B respectively	are		
	(1) citric acid and H ₃ O ⁺		(2) lactic acid and	$d H_3O^+$
	(3) enzyme and NH_4^+		(4) gluconic acid	and NH ₄ ⁺
112.	Which ones of the following	ng are closed packed struc	tures?	
	(a) AABB AABB		(b) ABAC ABAC	Z
	(c) AB AB AB		(d) ABC ABC A	BC
	Choose the correct choice	out of the following		
	(1) a, b, c	(2) a, c, d	(3) b, c, d	(4) b, c
113.	Out of following actinides relatively important state is	(I) Np, (II) Pu, (III) Es,	(IV) Am one having	g +2 oxidation state as the only
	(1) Np	(2) Pu	(3) Es	(4) Am
	-			

114.	Which is not an ambident r	nucleophile?		
	(1) CN ⁻	(2) SCN ⁻	(3) NO_2^-	(4) DMSO
115.	What is the increasing orde	er of stability of following	carbocations (give	least stable first)?
	(I) Tropylium cation	(II) CH ₂ =CH-CH ₂ ⁺	$(III)(C_6H_5)_2C^+$	(IV) CH ₃ ⁺
	(1) III <i<ii<v< td=""><td>(2) IV<ii<iii<i< td=""><td></td><td>(4) IV<iii<ii<< td=""></iii<ii<<></td></ii<iii<i<></td></i<ii<v<>	(2) IV <ii<iii<i< td=""><td></td><td>(4) IV<iii<ii<< td=""></iii<ii<<></td></ii<iii<i<>		(4) IV <iii<ii<< td=""></iii<ii<<>
116.	The type of rearrangement	, ,	. ,	, ,
	O OH OH → R II R-C-N-H	−NH ₂		
	is			
	(1) Lossen	(2) Beckmann	(3) Schmidt	(4) Curtius
117.	What is the nucleophilicity	order for S_N^2 reaction?		
	(I) $C_6H_5S^-$	(II) $C_2H_5O^-$	(III) NO_3^-	(IV)CN ⁻
	(V) I ⁻			
	(1) V > II > IV > I > III		(2) III > IV > V	
	(3) I > IV > V > II > III		(4) II > IV > V	
118.	Select order of effectivene	•		
	(1) $AlCl_3 > FeCl_3 > ZnCl_3$	- 3	3 3	$> \operatorname{ZnCl}_2 > \operatorname{FeCl}_3$
110	(3) $AlCl_3 > ZnCl_2 > BF_3$		3	$l_3 > BF_3 > ZnCl_2$
119.	One of the modern method (1) IR spectra	is of studying free radical	(2) CIDNP	
	(3) UV spectra		(4) microwave sp	nectra
120.	For a reaction between alk	vl halide and OH ⁻ increase	•	•
	(1) decreases the rate of S	•	F	, 8
	(2) increases the rate of S	= '		
	(3) increases the rate of S	- '		
	(4) does not alter the rate	of $S_N 1$ and $S_N 2$ reaction	ns	
121.	Ethyl acetoacetate is prepa	ared from ethyl acetate by		
	(1) Benzoin condensation		(2) Aldol conden	
100	(3) Claisen condensation		(4) Dieckmann c	
122.	Conversion of acetophenor	ne to acetanilide is best ac		g
	(1) Curtius		(2) Hofmann	
123.	(3) Lossen The order of the ease of th	e following leaving group	(4) Beckmann	
123.	(I) CH ₃ COO ⁻	ic following leaving group	(II) CH ₃ O ⁻	
	(III) CH ₃ SO ₃		$(IV) CF_3SO_3^-$	
				N IV
	(1) $IV > III > I > II$ (3) $I > III > II > IV$		(2) $I > II > III > II > III$	
124.	In an S_N 2 reaction there is	S	(., _, _, _, _, _, _, _, _, _, _, _, _, _,	
	(1) complete racemisation		(2) mostly invers	sion and little racemisation
	(3) partial racemisation		(4) a little inversi	ion and mostly racemisation

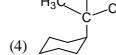
- 125. The number of carbon atoms in piperine is
 - (1) 13

(2) 15

- (3) 17
- (4) 19


- 126. In Beckmann rearrangement, the migrating group
 - (1) is always syn to the hydroxyl group
 - (2) is always anti to the hydroxyl group
 - (3) is either anti or syn
 - (4) depends on the stereochemistry of the molecule
- 127. In Baeyer-Villiger oxidation, rate of reaction is accelerated by
 - (1) electron donating groups in the ketone
 - (2) electron withdrawing groups in the peracid
 - (3) Both 1 and 2 are correct
 - (4) None of these
- 128. Reactive intermediate formed in the following reaction is

$$\begin{array}{c|c} O & & & \\ \hline & NH_2 & & Br_2 \\ \hline & NaOH & & \\ \end{array} + CO_2$$


- (1) carbene
- (2) nitrene
- (3) carbocation
- (4) carbanion
- 129. The increasing order of energy of various conformations of cyclohexane molecule is
 - (1) twist boat < boat < chair < half chair
- (2) boat < twist boat < half chair < chair
- (3) chair < half chair < twist boat < boat
- (4) chair < twist boat < boat < half chair
- 130. In cyclohexane molecule, when one chair conformation changes to other

- (1) all hydrogens originally axial become equatorial
- (2) potential energy of chair conformation increases
- (3) angle strain reduces
- (4) None of the above
- 131. Which of the following is least stable?

(2) CH

- $(3) \quad \bigcirc C \longrightarrow CH_3$
- 132. Which of the following is not an alkaloid?
 - (1) Quinine
- (2) Reserpine
- (3) Camphor
- (4) Piperine

- 133. Indigo dye is deep blue colored due to
 - (1) conjugation of double bond and non-planarity of molecule
 - (2) conjugation of double bond and planarity of molecule
 - (3) hydrogen bonding and planarity of molecule
 - (4) None of the above

- 134. A powerful anti-malarial agent obtained from cinchona bark is
 - (1) emetine
- (2) piperine
- (3) quinine
- (4) colchicine
- 135. A polynuclear compound having three benzene rings fused angularly is
 - (1) naphthalene
- (2) anthracene
- (3) phenanthrene
- (4) chrysene

- 136. IUPAC name of nicotine is
 - (1) N-methyl-(3'-pyridyl)-2-pyrrolidine
- (2) 2'-(N-methylpyrrolidyl)-3-pyridine
- (3) N-methyl-(2'-pyrrolidyl)-3-pyridine
- (4) *N*-methyl-(5'-pyridyl)-2-pyrrolidine
- 137. Predict the product for the following reaction

$$\frac{\mathsf{HNO_3}}{\mathsf{H_2SO_4}} ?$$
Room temp

138. Structure of piperine is

- (4) None of these
- 139. In Chichibabin reaction, base used is
 - (1) KNH₂
- (2) NaNH₂
- (3) $C_6H_5NH_2$
- (4) NH₃

- 140. Sulphonation in indole takes place at
 - (1) position-2
- (2) position-3
- (3) both
- (4) None of these

- 141. Isoquinoline on oxidation with alkaline KMnO₄ gives
 - (1) phthalic acid

(2) benzoic acid

(3) cinchomeric acid

- (4) both 1 and 3
- 142. α -Terpeneiol gives p-Cymene on treatment with
 - (1) HNO₃
- (2) H_2SO_4
- (3) HCl
- (4) CH₃COOH

- 143. The sweetest sugar amongst the following is
 - (1) lactose
- (2) fructose
- (3) glucose
- (4) sucrose
- 144. The bond that determines the secondary structure of protein is
 - (1) coordinate bond
- (2) covalent bond
- (3) hydrogen bond (4) ionic bond

145.	The main structural feature	of protein is				
	(1) ester linkage	(2) ether linkage	(3)	peptide linkag	ge (4) ionic linkage	
146.	Buna-S is obtained by the p	olymerization of butadie	ene and	f		
	(1) chloroprene	(2) styrene	(3)	acrylonitrile	(4) adipic acid	
147.	Terylene is a polymer of					
	(1) adipic acid and hexamethylene diamine			terephthalic acid and ethylene glyc		
	(3) phenol and formaldehyde			adipic acid an	d ethylene glycol	
148.	Which is an example of ther	mosetting polymer?				
	(1) Polyethene		(2)	Neoprene		
	(3) Polyvinyl chloride		(4)	Bakelite		
149.	Which of the following is chain growth polymer?					
	(1) Glyptal		(2)	Nylon-66		
	(3) Nylon-6		(4)	Polypropylene		
150.	Alkaloids are found in					
	(1) seeds		(2)	root		
	(3) bark		(4)	All of the abo	ove	