IIT-JAM Physics Paper- 2010

Instructions:

- Attempt all the 25 questions.
- Questions 1-15 (Objective questions) carry six marks each and each questions 16-25 (Subjective questions) carry twenty one marks each.

1. A matrix is given by $M=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}i & 1 \\ 1 & i\end{array}\right)$. The eigenvalues of the M are
(a) Real and positive
(b) Purely imaginary with modulus 1
(c) Complex with modulus 1
(d) Real and negative.
2. The value of θ at which the first-order peak in X-ray $(\lambda=1.53 \AA)$ diffraction corresponding to (111) plane of a simple cubic structure with the lattice constant, a $=2.65 \AA$, is approximately
(a) 15°
(b) 30°
(c) 45°
(d) 60°
3. The magnetic field associated with the electric field vector $\vec{E}=E_{0} \sin (k z-\omega t)$ is given by
(a) $\vec{B}=-\frac{E_{0}}{c} \sin (k z-\omega t) \hat{i}$
(b) $\vec{B}=\frac{E_{0}}{c} \sin (k z-\omega t) \hat{i}$
(c) $\vec{B}=\frac{E_{0}}{c} \sin (k z-\omega t) \hat{j}$
(d) $\vec{B}=\frac{E_{0}}{c} \sin (k z-\omega t) \hat{k}$
4. Consider the following truth table:

A	B	C	D
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

The logic expression for F is:
(a) $A B+B C+C A$
(b) $\bar{A} B+A \bar{C}+\bar{B} C$
(c) $C \bar{A} \bar{B}+A \bar{B}$
(d) $\bar{C}(A+\bar{B})+A \bar{B}$
5. The following are the plots of the temperature dependence of the magnetic susceptibility for three different samples.

The plots A, B and C correspond to
(a) Ferromagnet, paramagnet and diamagnet, respectively.
(b) Paramagnet, diamagnet and ferromagnet, respectively
(c) Ferromagnet, diamagnet and paramagnet, respectively
(d) Diamagnet, paramagnet and ferromagnet, respectively.
6. The equation of a surface of revolution is $z= \pm \sqrt{\frac{3}{2} x^{2}+\frac{3}{2} y^{2}}$

The unit normal to the surface at the point $A\left(\sqrt{\frac{3}{2}}, 0,1\right)$ is:
(a) $\sqrt{\frac{3}{5}} i+\frac{2}{\sqrt{10}} \hat{k}$
(b) $\sqrt{\frac{3}{5}} i-\frac{2}{\sqrt{10}} \hat{k}$
(c) $\sqrt{\frac{3}{5}} i+\frac{2}{\sqrt{5}} \hat{k}$
(d) $\sqrt{\frac{3}{10}} i+\frac{2}{\sqrt{10}} \hat{j}$
7. Agas of molecules each having mass ' m ' is in thermal equilibrium at a temperature T . Let v_{x}, v_{y}, v_{z} to be the Cartesian components of velocity, \vec{v}, of a molecule. The mean value of $\left(v_{x}-\alpha v_{y}+\beta v_{z}\right)^{2}$ is:
(a) $\left(1+\alpha^{2}+\beta^{2}\right) \frac{k_{B} T}{m}$
(b) $\left(1-\alpha^{2}+\beta^{2}\right) \frac{k_{B} T}{m}$
(c) $\left(\beta^{2}-\alpha^{2}\right) \frac{k_{B} T}{m}$
(d) $\left(\alpha^{2}+\beta^{2}\right) \frac{k_{B} T}{m}$
8. A circular platform is rotating with a uniform angular speed ω counterclockwise about an axis passing through its centre and perpendicular to its plane as shown in the figure. Aperson of mass ' m ' walks radially inward with a uniform speed ' v ' on the platform. The magnitude and the direction of hte Corolis force (with respect to the direction along which the person walks) is:

(a) $2 m \omega v$ towards his left
(b) $2 m \omega v$ towards his front.
(c) $2 m \omega v$ towards his right
(d) $2 m \omega v$ towards his back.
9. A quarter-wave plate is placed in between a polarizer and a photo-detector. When the optic axis of the quarter-wave plate is kept initially parallel to the pass axis of the polarizer and perpendicular tothe direction of light propagation. The intensity of light passing through the quarter-wave plate is measured to be I_{0} (see figure). If the quarter wave plate is now rotated by 45° about an axis parallel to the light propagation, what would be the intensity of the emergent light measured by the photo-detector?

(a) $\frac{I_{0}}{\sqrt{2}}$
(b) $\frac{I_{0}}{2}$
(c) $\frac{I_{0}}{2 \sqrt{2}}$
(d) I_{0}
10. A particle of mass ' m ', moving with a velocity $\overrightarrow{\mathrm{v}}=\mathrm{v}_{0}(\hat{i}+\hat{j})$, collides elastically with another particle of mass ' 2 m ' which is at rest initially. Here, v_{0} is a constant. Which of the following statements is correct?
(a) The direction along which the centre of mass moves before collision is $-\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)$
(b) The speed of the particle of mass ' m ' before collision in the centre of mass frame is $\sqrt{2} v_{0}$.
(c) After collision the speed of the particle with mass $2 m$ in the centre of mass frame is $\frac{\sqrt{2}}{3} v_{0}$.
(d) The speed of the particle of mass 2 m before collision in the centre of mass frame is $\sqrt{2} v_{0}$.
11. A trapped air bubble of volume V_{0} is released from a depth ' h ' measured from the water surface in a large water tank. The volume of the bubble grows to $2 \mathrm{~V}_{0}$ as it reaches just below the surface. The temperature of the water and the pressure above the surface of water $\left(10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$ remain constant throughout the process. If the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$, then the depth ' h ' is:
(a) 1 m
(b) 10 m
(c) 50 m
(d) 100 m
12. A particle of mass ' m ' is confined in a two-dimensional infinite square well potential of side ' a '. The eightenergy of the particle in a given state is $E=\frac{25 \pi^{2} \hbar^{2}}{m a^{2}}$. The state is:
(a) 4-fold degenerate
(b) 3-fold degenerate
(c) 2-fold degenerate
(d) Non-degenerate.
13. For a wave in a medium the angular frequency ' ω ' and the wave vector \vec{k} are related by, $\omega^{2}=\left(\omega_{0}^{2}+c^{2} k^{2}\right)$, where ω_{0} and c are constants. The product of group and phase velocities, i.e. $v_{g} v_{p}$ is:
(a) $0.25 c^{2}$
(b) $0.4 c^{2}$
(c) $0.5 c^{2}$
(d) c^{2}
14. Three identical non-interacting particles, each of spin $1 / 2$ and mass ' m ', are moving in a one-dimensional infinite potential well given by

$$
V(x)= \begin{cases}0 & \text { for } 0<x<a \\ \infty & \text { for } x \leq 0 \text { and } x \geq a\end{cases}
$$

The energy of the lowest energy state of the system is:
(a) $\frac{\pi^{2} \hbar^{2}}{m a^{2}}$
(b) $\frac{2 \pi^{2} \hbar^{2}}{m a^{2}}$
(c) $\frac{3 \pi^{2} \hbar^{2}}{m a^{2}}$
(d) $\frac{5 \pi^{2} \hbar^{2}}{2 m a^{2}}$
15. Assume that $\mathrm{z}=0$ plane is th interface between two linear and homogeneous dielectrics (see figure). The relative permitivities are $\varepsilon_{r}=5$ for $\mathrm{z}>0$ and $\varepsilon_{r}=4$ for $\mathrm{z}<0$. The electric field in the region $\mathrm{z}>0$ is $\vec{E}_{1}=(3 \hat{i}-5 \hat{j}+4 \hat{k}) \mathrm{kV} / \mathrm{m}$. If there are no free charges on the interface, the electric field in the region $\mathrm{z}<0$ is given by

(a) $\vec{E}_{2}=\left(\frac{3}{4} \hat{i}-\frac{5}{4} \hat{j}+\hat{k}\right) k V / m$
(b) $\vec{E}_{2}=(3 \hat{i}-5 \hat{j}+\hat{k}) k V / m$
(c) $\vec{E}_{2}=(3 \hat{i}-5 \hat{j}-5 \hat{k}) k V / m$
(d) $\vec{E}_{2}=(3 \hat{i}-5 \hat{j}+5 \hat{k}) k V / m$
16. A particle of mass $2 / 3 \mathrm{~kg}$ is subjected to a potential energy function $V(x)=\left(3 x^{2}-2 x^{3}\right) j$, where $x \geq 0$ and expressed in meteres.
(a) Sketch $V(x)$ with respect to x in the range 0 to 2 m . Mark the positions of all the maxima and minima. What is the maximum value of the potential energy?
(b) Supposing the particle is released at $x=4 / 3 \mathrm{~m}$, find its velocity when it reaches $x=3 / 2 \mathrm{~m}$.
17. A vector field is given by,

$$
\overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{r}})= \begin{cases}\alpha(x \hat{j}-y \hat{i}) & \text { for }\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \leq \mathrm{r}_{0}^{2}(\text { region-I }) \\ \alpha r_{0}^{2} \frac{(x \hat{j}-y \hat{i})}{\left(x^{2}+y^{2}\right)} & \text { for }\left(x^{2}+y^{2}\right)>r_{0}^{2}(\text { region }-I I)\end{cases}
$$

Here α and r_{0} are two constants.
(a) Find the curl of this field both the regions.
(b) Find the line integral $\oint \overrightarrow{\mathrm{F}} . \mathrm{d} \vec{\ell}$ along the closed semicircle path of radius $2 \mathrm{r}_{0}$ as shown in the figure below.

18. A solid cylinder C of mass 10 kg rolls without slipping in an inclined plane which offers friction. The angle of the inclined plane with the horizontal is 30° as shown in the figure below. A massless inextensible string is wrapped around the cylinder and it passes over a frictionless pulley, P. The other end of the string holds ablock B of mass 2 kg as shown in the figure. Take $\mathrm{g}=10 \mathrm{~ms}^{2}$.
(a) Draw the free body diagram of the cylinder and the block. If the block B moves down by 0.01 m , how much distance does C move along the incline?
(b) If the block moves with an acceleration of 0.05 g upward, find the magnitude of the frictional force.

19. (a) Aphoton of initial momentum p_{0} collides with an electron of rest mass ' m_{0} ' moving with relativistic momentum P and energy E . The change in wavelength of the photon after scattering by an angle θ is given by, $\nabla \lambda=2 \mathrm{c} \lambda_{0} \frac{\mathrm{p}_{0}+\mathrm{P}}{\mathrm{E}-\mathrm{cP}} \sin ^{2} \frac{\theta}{2}$, where c is the speed of the light and λ_{0} is the wavelength of the incident photon before scattering. What will be the value of $\Delta \lambda$ when the electron is moving in a direction opposite to that of the incident photon with momentum P and energy E ? Show that the value of $\Delta \lambda$ becomes independent of the wavelength of the incident photon when the electron is at rest before collision.
(b) In a Compton experiment, the ultraviolet light of the wavelength $2000 \AA$ is scattered from an electron at rest. What should be the minimum resolving power of an optical instrument to measure the Compton shift, ifthe observation is made at 90° with respect to the direction of the incident light?
20. A conducting spherical shell of radius R_{1} carries a total charge Q. A spherical layer of a linear, homogeneous and isotropic dielectric of dielectric constant K and outer radius $R_{2}\left(>R_{1}\right)$ covers the shell as shown in the figure.

21. Two spaceships A and B of proper length 50 m each are moving with relativistic speeds 0.8 c and 0.6 c , respectively, in the same direction with respect to a stationary observer S . Here c is the speed oflight. At $\mathrm{t}=0$, the spaceship A is just behind the spaceship B as shown below.

sig
(a) Find the time taken by the spaceship A to completely overtake the spaceship B (that is the back of A is in the line with the front of B) as seen by the observer S.
(b) Find the time taken by the spaceship A to completely overtake the spaceship B as seen by observer in the spaceship B.
22. A free particle of mass ' m ' with energy $v_{0} / 2$ is incident from left on a step potential of height V_{0} as shown in the figure below.

Writing down the time independent. Schrodinger equation in both the regions, obtain the corresponding general solutions. Apply the boundary conditions to find the wave functions in both the regions. Determine the reflection coefficient R . What is the transmission coefficient T ?
23. For the transistor shown in the figure, the dc current gain $\beta_{\mathrm{dc}}=50$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. The switch S is initially open.
(a) Calculate the voltage at point A . If the switch S is now closed, what would be the voltage at point A ?
(b) Draw the dc load line and find the Q-point of the circuit with the switch S remaining closed.

24. Consider a capacitor placed in free space, consisting of two concentric circular parallel plates ofradii r. The separation z between the plates oscillates with a constant frequency ω, i.e., $z(t)=z_{0}+z_{1} \cos \omega t$. Here z_{0} and $\mathrm{z}_{1}\left(<\mathrm{z}_{0}\right)$ are constants. The separation $\mathrm{z}(\mathrm{t})(\ll \mathrm{r})$ is varied in such a way that the voltage V_{0} across the capacitor remains constant.
(a) Calculate the displacement current density and the displacement current between the plates through a concentric circle of radius $\mathrm{r} / 2$.
(b) Calculate the magnetic field vector $(\overrightarrow{\mathrm{H}})$ between the plates at a distance $\mathrm{r} / 2$ from the axis of the capacitor.
25. One mole of an ideal monatomic gas in an initial state with pressure, p_{1}, and volume, V_{i}, is to be taken to a final state d with $p_{f}=B^{2} p_{i}$ and $V_{f}=V_{i} / B$ through the path $a \rightarrow b \rightarrow c \rightarrow d$ as shown in the figure below for a particular value of $\mathrm{B}(>1)$. Here $\mathrm{a} \rightarrow \mathrm{b}$ and $\mathrm{c} \rightarrow \mathrm{d}$ are adiabatic while $\mathrm{b} \rightarrow \mathrm{c}$ is an isotherm with temperature T_{0}. States b and c correspond to $\left(\mathrm{p}_{1}, \mathrm{~V}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{~V}_{2}\right)$, respectively.

Find the ratio $\frac{V_{2}}{V_{1}}$ and the total work done by the gas in terms of p_{i}, V_{i}, T_{0} and B.

