IIT-JAM Physics Paper-2011

Instructions:

- Attempt all the 25 questions.
- Questions 1-15 (Objective questions) carry six marks each and each questions 16-25 (Subjective questions) carry twenty one marks each.

1. The line integral $\int_{A}^{B} \vec{F} \cdot \overrightarrow{d l}$, where $\vec{F}=\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{x}+\frac{y}{\sqrt{x^{2}+y^{2}}} \hat{y}$, along the semi-circular path as shown in the figure below is:

(a) -2
(b) 0
(c) 2
(d) 4
2. Six simple harmonic oscilltions each of same frequency and equal amplitude are superposed. The phase difference between any two consecutive oscillations i.e., $\phi_{\mathrm{n}}-\phi_{\mathrm{n}-1}=\Delta \phi$ is constant, where ϕ_{n} is the phase of the $\mathrm{n}^{\text {th }}$ oscillation. If the resultant amplitude of the superposition is zero, what is the phase difference $\Delta \phi$?
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{2}$
(d) 2π
3. A particle of mass ' m ' is moving in a potential

$$
V(x)=\frac{1}{2} m \omega_{0}^{2} x^{2}+\frac{a}{2 m x^{2}}
$$

where ω_{0} and 'a' are positive constants. The angular frequency of small oscillations for the simple harmonic motion of the particle about a stable minimum of the potential $\mathrm{V}(\mathrm{x})$ is:
(a) $\sqrt{2} \omega_{0}$
(b) $2 \omega_{0}$
(c) $4 \omega_{0}$
(d) $4 \sqrt{2} \omega_{0}$
4. Intensity of three different light beams after passing through an analyzer is found to vary as shown in the following graphs. Identify the option giving the correct states of polarization of the incident beams from the graphs.

(a) Graph 1: Linear polarization, Graph 2:Circular polarization, Graph 3: Elliptic polarization.
(b) Graph 1: Circular polarization, Graph 2: Linear polarization, Graph 3:Elliptic polarization.
(c) Graph 1: Unpolarized, Graph 2: Circular polarization, Graph 3: Linear polarization.
(d) Graph 1: Unpolarized, Graph 2: Elliptic polarization, Graph 3: Circular polarization.
5. Which of the following circuits does not satisfy the Boolean expression $A \bar{B}+\bar{A} B=F$.
(a)

(b)

(c)

(d)

6. Light described by the equation $\mathrm{E}=(90 \mathrm{~V} / \mathrm{m})\left[\sin \left(6.28 \times 10^{15} \mathrm{~s}^{-1}\right) \mathrm{t}+\sin \left(12.56 \times 10^{15} \mathrm{~s}^{-1}\right) \mathrm{t}\right]$ is incident on a metal surface. The work function of the metal is 2.0 eV . Maximum kineic energy of the photoelectrons will be
(a) 2.14 eV
(b) 4.28 eV
(c) 6.28 eV
(d) 12.56 eV
7. A gas of molecular mass ' m ' is at temperature T. If the gas obeys Maxwell-Boltzmann velocity distribution, the average speed of molecules is given by
(a) $\sqrt{\frac{\mathrm{k}_{\mathrm{B}} T}{\mathrm{~m}}}$
(b) $\sqrt{\frac{2 \mathrm{k}_{\mathrm{B}} \mathrm{T}}{\mathrm{m}}}$
(c) $\sqrt{\frac{2 \mathrm{k}_{\mathrm{B}} \mathrm{T}}{\pi \mathrm{m}}}$
(d) $\sqrt{\frac{8 \mathrm{k}_{\mathrm{B}} \mathrm{T}}{\pi \mathrm{m}}}$
8. Consider free expansion of one mole of an ideal gas in an adiabatic container from volume V_{1} to V_{2}. The entropy change of the gas, calculated by considering a reversible process between the original state $\left(\mathrm{V}_{1}, \mathrm{~T}\right)$ to the final state $\left(\mathrm{V}_{2}, \mathrm{~T}\right)$ where T is the temperature of the system, is denoted $\Delta \mathrm{S}_{1}$. The corresponding chagne in the entropy of the surrounding is $\Delta \mathrm{S}_{2}$. Which of the following combinations is correct?
(a) $\Delta \mathrm{S}_{1}=\mathrm{R} \ln \left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)$,
$\Delta \mathrm{S}_{2}=-\mathrm{R} \ln \left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)$
(b) $\Delta \mathrm{S}_{1}=-\mathrm{R} \ln \left(\mathrm{V}_{1} / \mathrm{V}_{2}\right), \quad \Delta \mathrm{S}_{2}=\mathrm{R} \ln \left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)$
(c) $\Delta \mathrm{S}_{1}=\mathrm{R} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$,
$\Delta \mathrm{S}_{2}=0$
(d) $\Delta \mathrm{S}_{1}=\mathrm{R} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right), \quad \Delta \mathrm{S}_{2}=0$
9. Equipotential surfaces corresponding to a particular charge distribution are given by $4 x^{2}+(y-2)^{2}+z^{2}=V_{i}$, where the values of V_{i} are constants. The electric field $\overrightarrow{\mathrm{E}}$ at the origin is:
(a) $\overrightarrow{\mathrm{E}}=0$
(b) $\overrightarrow{\mathrm{E}}=2 \hat{\mathrm{x}}$
(c) $\overrightarrow{\mathrm{E}}=4 \hat{\mathrm{y}}$
(d) $\overrightarrow{\mathrm{E}}=4 \hat{y}$
10. The wave function of a quantum mechanical particle is given by $\psi(x)=\frac{3}{5} \varphi_{1}(x)+\frac{4}{5} \varphi_{2}(x)$ where $\varphi_{1}(\mathrm{x})$ and $\varphi_{2}(\mathrm{x})$ are eigenfunctions with corresponding energy eigenvalues -1 eV and -2 eV , respectively. The energy of the particle in the state ψ is:
(a) $-\frac{41}{25} \mathrm{eV}$
(b) $-\frac{11}{25} \mathrm{eV}$
(c) $-\frac{36}{5} \mathrm{eV}$
(d) $-\frac{7}{5} \mathrm{eV}$
11. A train drop falling vertically under gravity gathers moisture from the atmosphere at a rate given by $\frac{\mathrm{dm}}{\mathrm{dt}}=\mathrm{kt}^{2}$, where ' m ' is the instantaneous mass, ' t ' is time and ' k ' is a constant. The equation of motion of the rain drop is:

$$
\mathrm{m} \frac{\mathrm{dv}}{\mathrm{dt}}+\mathrm{v} \frac{\mathrm{dm}}{\mathrm{dt}}=\mathrm{mg}
$$

If the drop starts falling at $\mathrm{t}=0$, with zero initial velocity and initial mass m_{0} (given: $\mathrm{m}_{0}=2 \mathrm{gm}, \mathrm{k}=12 \mathrm{gm} / \mathrm{s}^{3}$ and $\mathrm{g}=1000 \mathrm{~cm} / \mathrm{s}^{2}$), the velocity (v) of the drop after one second is:
(a) $250 \mathrm{~cm} / \mathrm{s}$
(b) $500 \mathrm{~cm} / \mathrm{s}$
(c) $750 \mathrm{~cm} / \mathrm{s}$
(d) $1000 \mathrm{~cm} / \mathrm{s}$
12. Given two $(\mathrm{n} \times \mathrm{n})$ matrices $\hat{\mathrm{P}}$ and $\hat{\mathrm{Q}}$ such that $\hat{\mathrm{P}}$ is hermitian and $\hat{\mathrm{Q}}$ is skew (anti)-hermitian. Which one of the following combintations of \hat{P} and \hat{Q} is necessarily a Hermitian matrix?
(a) $\hat{P} \hat{Q}$
(b) i $\hat{P} \hat{Q}$
(c) $\hat{\mathrm{P}}+\mathrm{i} \hat{\mathrm{Q}}$
(d) $\hat{P}+\hat{Q}$
13. An X-ray diffraction (XRD) experiment is carried out on a crystalline solid having $F C C$ structure at room temperature. The solid undergoes a phase transformation on cooling to $-20^{\circ} \mathrm{C}$ and shows orthorhombic structure with small decrease in its unit cell lengths as compared to the $F C C$ unit cell lengths. As a result, the (311) line of the XRD pattern corresponding to the $F C C$ system
(a) will split into a doublet.
(b) will split into a triplet.
(c) will remain unchanged.
(d) will split into two separate doublets.
14. A closed Gaussian surface consisting of a hemisphere and a circular disc of radius R, is placed in a uniform electric field, $\overrightarrow{\mathrm{E}}$, as shown in the figure. The circular disc makes an angle $\theta=30^{\circ}$ with the vertical. The flux of the electric field vector coming out of the curved surface of the hemisphere is:

(a) $\frac{1}{2} \pi R^{2} E$
(b) $\frac{\sqrt{3}}{2} \pi R^{2} E$
(c) $\pi R^{2} E$
(d) $2 \pi R^{2} E$
15. In experiment, the resistance of a rectangular slab of a semiconductor is measured as a function of temperature. The semiconductor shows a resistance of 300Ω at 200 K and 2Ω at 250 K . Its energy band gap is [Given: $\ln (15)=2.708, \ln (10)=2.303]$
(a) 0.138 eV
(b) 0.431 eV
(c) 0.690 eV
(d) 0.862 eV
16. Consider a vector $\vec{A}=-4 y x^{2} \hat{x}-3 y^{2} \hat{y}$

(a) Calculate the line integral $\int \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{d} \ell}$ from point $\mathrm{P} \rightarrow \mathrm{O}$ along the path $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{R} \rightarrow \mathrm{O}$ as shown in the figure.
(b) Using Stoke's theorem appropriately. Calculate $\int \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{d} \ell}$ for the same path $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{R} \rightarrow \mathrm{O}$.
17. An infinitely long solid cylindrical conductor of radius r_{1}, carries a uniform volume current density $\overrightarrow{\mathrm{j}}$. It is uniformly surrounded by another coaxial cylinder of a linear magnetic medium with permeability μ, up to radius r_{1} as shown in the figure.

(a) Determine the magnetic field \vec{H} in the region, $r<r_{1}$ and magnetic induction \vec{B} in the regions, $\mathrm{r}_{1}<\mathrm{r}<\mathrm{r}_{2}$ and $\mathrm{r}>\mathrm{r}_{2}$, where r is the radial distance from the axis of the cylinder.
(b) Sketch the variation of $\overrightarrow{\mathrm{H}}$ with r in all the three regions.
18. (a) Consider heat conduction in a medium. Let $T(x, y, z, t)$ denote the temperature of the medium at time ' t ' and position ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Consider a volume V enclosed by a surface S inside the medium. The decrease in heat energy per unit volume per unit time is $\mathrm{a} \frac{\partial \mathrm{T}}{\partial \mathrm{t}}$ an outward flux of heat per unit area of the surface per unit time is $\mathrm{b} \vec{\nabla} \mathrm{T}$, where a and b are material dependent contants. If there is no generation or loss of heat, show that T satisfies the equation.

$$
\frac{\partial \mathrm{T}}{\partial \mathrm{t}}=\mathrm{k} \nabla^{2} \mathrm{~T}, \text { with } \frac{\mathrm{b}}{\mathrm{a}}=\mathrm{k}
$$

(b) Now consider a thin annular shaped material enclosed between two concentratric circles of radii r_{0} and $2 r_{0}$ as shown in the figure. The temperature is $2 \mathrm{~T}_{0}$ at $\mathrm{r}=\mathrm{r}_{0}$ and T_{0} at $\mathrm{r}=2 \mathrm{r}_{0}$. Assuming steady state condition. Find T as a function of radial distane r from the centre O, for $r_{0}<r<2 r_{0}$.
19. An ideal gas reversible engine operates in a closed cycle. The $\mathrm{P}-\mathrm{V}$ diagram is shown below.

(a) Find out the efficiency of the reversible engine assuming both specific heats, C_{P} and C_{V} as constants.
(b) Identify the thermodynamic processes and draw the corresponding T-S diagram schematically.
20. (a) A solid having a simple cubic structure at room temperature with lattice a parameter a and one valence electron per atom, is assumed to show free electron behaviour. Calculate the magnitude of the Fermi wave vector and the corresponding equivalent temperature.
(b) Find the ratio of the magnitude of the Fermi wave vector to the radius of the largest sphere that can be inscribed within the first Brillouin zone of the solid.
21. For the given circuit usig an operational amplifier, the input is a sinusoidal signal of amplitude $\mathrm{V}_{\mathrm{m}}=1 \mathrm{mV}$ (peak - to - peak) .

(a) What is the lower cut-off frequency at which the gain is down by 3 dB as compared to the gain at midband? If the bandwidth of the amplifier is 1 MHz for unity gain, what will be the bandwidth of the given circuit?
(b) What is the output voltage $\left(\mathrm{V}_{0}\right)$ at 15 kHz ?
22. A particle of mass ' m ' and angular momentum l is moving under the action of a central force $\mathrm{f}(\mathrm{r})$ along a circular path of radius ' a ' as shown in the figure. The force centre ' O ' lies on the orbit.

(a) Given the orbit equation in a central field motion.

$$
\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{~d} \theta^{2}}+\mathrm{u}=-\frac{\mathrm{m}}{\ell^{2} \mathrm{u}^{2}} \mathrm{f}, \text { where } \mathrm{u}=\frac{1}{\mathrm{r}}
$$

determine the form of the force in terms of $l, \mathrm{~m}, \mathrm{a}$ and r .
(b) Calculate the total energy of the particle assuming that the potential energy $\mathrm{V}(\mathrm{r}) \rightarrow 0$ as $\mathrm{r} \rightarrow \infty$.
23. A particle of mass ' m ' moves in a potential given by $\mathrm{V}(\mathrm{x})=\infty$ for $\mathrm{x}<0$

$$
\begin{array}{ll}
=0 & \text { for } 0<\mathrm{x}<\mathrm{L} \\
v & \text { for } \mathrm{x}>\mathrm{L}
\end{array}
$$

(a) Write down the general solutions for wave functions in regions I and II, if the energy of the particle $\mathrm{E}<\mathrm{V}_{0}$. Using appropriate boundary conditions, find the equation that relates E to $\mathrm{V}_{0}, \mathrm{~m}$ and L .
(b) Now, set $\mathrm{V}_{0}=0$ and assume that a beam of particles is incident on the infinite step potential (from $\mathrm{x}>0$) with energy $\mathrm{E}(>0)$. Using the general solution for the wave function, calculate the reflection coefficient.
24. A diffraction grating having N slits, each ofwidth ' b ' and period d , is illuminated normally by a monochromatic plane wave of wavelength λ.
(a) Obtain an expression for the highest diffraction order that can be observed. What is the phase difference between waves from first and $\mathrm{N}^{\text {th }}$ in the highest diffraction.
(b) If alternate slits are covered with a retarder that retards the wave by π, obtain an expression for the intensity distribution of the Fraunhofer diffraction pattern?
25. Unpolarized light is incident on an air-dielectric interface. The interface is the $x-y$ plane, and the plane of incidence is y-z plane. The electric field of the reflected light is given by $\vec{E}=E_{0} \hat{x} \exp \left\{\frac{i k}{2}(\sqrt{3} y+z)-i \omega t\right\}$, where ' k ' is the propagation constant in air and ω is the angular frequency of the light. Assume magnetic permeability $\mu=\mu_{0}$.
(a) Determine the dielectric constant of the second medium.
(b) Determine the direction of the Poynting vector in the dielectric medium.

