IIT-JAM MATHEMATICS
 Test : Linear Algebra

Time : 60 Minute
Date : 23-08-2015
M.M. : 50

Instructions:

- Part-A contains 10 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. For each correct answer you will be awarded 3 marks. For each incorrect answered 1 mark will be deducted.
- Part-B contains 5 Multiple Select Questions (MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. For each correct answer you will be awarded $\mathbf{2}$ marks, there is no negative marking in this section.
- Part-C contains 5 Numerical Answer Type (NAT) questions which contain 2 Marks for each, and there is no negative marking. Answer should be in between 0 to 9 .

PART-A

1. Let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ and $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be linear transformations such that $T o S$ is the identity map of \mathbb{R}^{3}. Then
(a) So T is the identity map of \mathbb{R}^{4}
(b) SoT is one-one, but not onto
(c) SoT is onto but not one-one
(d) $S o T$ is neither one-one, nor onto
2. Let V be a 3-dimensional vector space over the field $F_{3}=\mathbb{Z} / 3 \mathbb{Z}$ of 3 elements. The number of distinct 1 -dimensional subspaces of V is
(a) 13
(b) 26
(c) 9
(d) 15
3. Let $f(x)$ be the minimal polynomial of the 4×4 matrix

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Then rank of the 4×4 matrix $f(A)$ is
(a) 0
(b) 1
(c) 2
(d) 4
4. Let A and B be 3×3 matrices. Then $\mathrm{AB}-\mathrm{BA}=\mathrm{I}$ exists if
(a) A and B both are non-singular
(b) A and B both are singular
(c) Exactly one of them is singular
(d) No such A and B exists
5. The system of linear equations $x+3 y=1 \quad$ has a unique solution if and only if

$$
\begin{aligned}
& 4 x+p y+z=0 \\
& 2 x+3 z=b
\end{aligned}
$$

(a) $a=10, b=-10$
(b) $a=12, b \in \mathbb{R}$
(c) $a \neq 10, b \in \mathbb{R}$
(d) $a \in \mathbb{R}, b \neq-10$
6. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a linear transformation satisfying $T^{3}+3 T^{2}=4 I$, where I is the identity transformation. Then the linear transformation $S=T^{4}+3 T^{3}-4 I$ is
(a) One-one but not onto
(b) Onto but not one-one
(c) Invertible
(d) Non-invertible
7. A linear transformation T rotates each vector in \mathbb{R}^{2} clockwise through 90°. The matrix T relative to the standard ordered basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is
(a) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$
(b) $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
8. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Which of the following statements implies that T is bijective?
(a) Nullity $(T)=n$
(b) Rank $(\mathrm{T})=$ Nullity $(\mathrm{T})=n$
(c) Rank $(\mathrm{T})+\operatorname{Nullity}(\mathrm{T})=n$
(d) Rank (T) - Nullity (T) $=n$
9. Let $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a linearly independent subset of a vector space V over the field Z_{2}. How many vectors are there in span(s)?
(a) 1
(b) 0
(c) $2 n$
(d) 2^{n}
10. Let A be a 5×5 matrix with real entries such that the sum of the entries in each row of A is 1 . Then the sum of all the entries in A^{3} is
(a) 3
(b) 15
(c) 5
(d) 125

www.care ${ }^{\text {PARERER }}$ deavour.in

11. Let V and W be finite dimensional vector spaces over \mathbb{R} and let $T_{1}: V \rightarrow V$ and $T_{2}: W \rightarrow W$ be linear transformations whose minimal polynomials are given by,

$$
f_{1}(x)=x^{3}+x^{2}+x+1 \text { and } f_{2}(x)=x^{4}-x^{2}-2
$$

Let $T: V \oplus W \rightarrow V \oplus W$ be the linear transformation defined by $T(V, W)=\left(T_{1}(V), T_{2}(W)\right)$ for $(V, W) \in V \oplus W$ and let $f(x)$ be the minimal polynomial of T. Then
(a) $\operatorname{deg} f(x)=7$
(b) $\operatorname{deg} f(x)=5$
(c) $\operatorname{Nullity}(T)=1$
(d) $\operatorname{Nullity}(T)=0$
12. Let n be a positive integer and V be an ($n+1$)-dimensional vector space over \mathbb{R}. If $\left\{e_{1}, e_{2}, \ldots, e_{n+1}\right\}$ is a basis of V and $T: V \rightarrow V$ is the linear transformation satisfying
$T\left(e_{i}\right)=e_{i+1}$ for $i=1,2, \ldots, n$ and $T\left(e_{n+1}\right)=0$
Then
(a) trace of T is non-zero
(b) rank of T is n
(c) nullity of T is 1
(d) $T^{n}=$ ToToTo... ${ }^{\circ} T$ (n times) is the zero map
13. Let A and B be $n \times n$ real matrices such that $\mathrm{AB}=\mathrm{BA}=0$ and $\mathrm{A}+\mathrm{B}$ is invertible. Which of the following are always true?
(a) $\operatorname{rank}(A)=\operatorname{rank}(B)$
(b) $\operatorname{rank}(A)+\operatorname{rank}(B)=n$
(c) $\operatorname{nullity}(A)+\operatorname{nullity}(B)=n$
(d) $\mathrm{A}-\mathrm{B}$ is invertible
14. Let $A \in M_{10}(\mathbb{C})$, the vector space of 10×10 matrices with entries in \mathbb{C}. Let W_{A} be the subspace of $M_{10}(\mathbb{C})$ spanned by $\left\{A^{n} \mid n \geq 0\right\}$. Choose the correct statements.
(a) For any $A, \operatorname{dim}\left(W_{A}\right) \leq 10$
(b) For any $A, \operatorname{dim}\left(W_{A}\right)<10$
(c) For some $A, 10<\operatorname{dim}\left(W_{A}\right)<100$
(d) For some $A, \operatorname{dim}\left(W_{A}\right)=100$
15. Which of the following are subspaces of \mathbb{R}^{2} ?
(a) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=0\right\}$
(b) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-y^{2}=0\right\}$
(c) $\left\{(x, y) \in \mathbb{R}^{2}: x y=0\right\}$
(d) $\left\{(x, y) \in \mathbb{R}^{2}: y=3 x\right\}$

PART-C

16. Let $T_{1}, T_{2}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be linear transformations such that Rank $\left(\mathrm{T}_{1}\right)=3$ and $\operatorname{Nullity}\left(\mathrm{T}_{2}\right)=3$. Let $T_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T_{3} T_{1}=T_{2}$. Then the $\operatorname{Rank}\left(\mathrm{T}_{3}\right)$ equals
17. Let P and Q be two real matrices of size 4×6 and 5×4, respectively. If $\operatorname{Rank}(Q)=4$ and $\operatorname{Rank}(Q P)=2$, then $\operatorname{Rank}(\mathrm{P})$ is equalto \qquad
18. For a fixed $a \in \mathbb{R}$, the dimension of the subspace of $P_{5}(\mathbb{R})$ (vector space of all polynomials of degree ≤ 5) defined by $\left\{f \in P_{5}(\mathbb{R}): f(a)=0\right\}$ is \qquad
19. Let $M_{3}(\mathbb{R})$ denote the space of all 3×3 real matrices. If $T: M_{3}(\mathbb{R}) \rightarrow M_{3}(\mathbb{R})$ is a linear transformation such that $T(A)=0$ whenever $A \in M_{3}(\mathbb{R})$ is symmetric or skew-symmetric, then $\operatorname{Rank}(\mathrm{T})$ equals. \qquad
20. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T(1,-1)=(1,0), T(2,-1)=(0,1)$. Then $T(-3,2)$ equals to \qquad

IIT-JAM MATHEMATICS
Test : Linear Algebra
Date : 23-08-2015

ANSWER KEY

PART-A

1. (d)
2. (d)
3. (b),(d)
4. (2)
5. $(-1,-1)$
6. (a)
7. (b)
8. (a)
9. (d)

PART-B

12. (b),(c)
13. (b),(c),(d)

PART-C

17. (2)
18. (5)
19. (d)
20. (d)
21. (c)
22. (a)
23. (a), (d)
24. (zero)

Career endeavour

www.careerendeavour.in

