Section-A

Multiple Choice Questions (MCQ)

Q.1 – Q.10 carry ONE mark each.

1. The correct order of pKa for the following compounds is

(A) II > I > III > IV (B) II > I > IV > III (C) III > IV > I > II (D) IV > II > I > IIIThe major product formed in the following reaction is

2. The major product formed in the following reaction is

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

8.	The correct order of entropy for various states of CO_2 is					
	(A) $CO_2(s) > CO_2(l) > CO_2(g)$		(B) $CO_2(l) > CO_2(s) > CO_2(g)$			
	(C) $CO_2(g) > CO_2(l) > CO_2(s)$		(D) $CO_2(g) > CO_2(s) > CO_2(l)$			
9.	pectively, are					
	(A) 4, 4	(B) 4, 8	(C) 6, 6	(D) 8, 8		
10.	Determinant of a square matrix is always					
	(A) a square matrix	(B) a column matrix	(C) a row matrix	(D) a number		

Q.11 - Q.30 carry TWO marks each.

11. The correct order of ¹H NMR chemical shift (δ) values for the labeled methyl groups in the following compound is

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

14. The major product formed in the reaction of butanenitrile with phenylmagnesium bromide followed by acidification is

(A)
$$(B)$$
 (B) (C) (B) (C) (D) (D)

15. An organic compound on reaction with 2, 4-dinitrophenylhydrazine (2, 4-DNP) gives a yellow precipitate. It also gives silver mirror on reaction with ammonical AgNO₃. It gives an alcohol and sodium salt of a carboxylic acid on reaction with concentrated NaOH. It yields benzene-1, 2-dicarboxylic acid on heating with alkaline KMnO₄. The structure of the compound among the following is

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

17. The TRUE statement about $[Cu(H_2O)_6]^{2+}$ is (A) All Cu-O bond lengths are equal (B) One Cu-O bond length is shorter than the remaining five (C) Three Cu-O bond lengths are shorter than the remaining three (D) Four Cu-O bond lengths are shorter than the remaining two The complexes $\left[Pt(CN)_{4} \right]^{2-}$ and $\left[NiCl_{4} \right]^{2-}$, respectively, are 18. (A) paramagnetic, paramagnetic (B) diamagnetic, diamagnetic (C) paramagnetic, diamagnetic (D) diamagnetic, paramagnetic The value of 'x' in $\left[Cu(CO)_{x} \right]^{+}$ such that it obeys the 18 electron rule is 19. (B) 5 (A) 6 (C) 4 (D) 3 The correct order of $\nu_{_{\rm NO}}\left(cm^{^{-1}}\right)$ in the following compounds is 20. (A) NO⁺ > NO > [NiCp(NO)] > [Cr(Cp)₂(NO)₄] (B) $[Cr(Cp)_2(NO)_4] > [NiCp(NO)] > NO^+ > NO$ (C) NO⁺ > $[Cr(Cp)_2(NO)_4] > NO > [NiCp(NO)]$ (D) $[NiCp(NO)] > NO > [Cr(Cp)_2(NO)_4] > NO^+$ 21. The red color of ruby is due to (A) d-d transition of Cr^{3+} ion in Cr_2O_2 lattice (B) d-d transition of Cr^{3+} ion in Al_2O_3 lattice. (C) ligand to metal charge transfer transition (D) metal to metal charge transfer transition The final products in the reaction of BF₃ with water are 22. (B) H_3BO_3 and HBF_4 (C) B_2O_3 and HBF_4 (D) B_2H_6 and HF (A) $B(OH)_3$ and OF_2 The correct order of bond angles in BF_3 , NH_3 , NF_3 and PH_3 is 23. (B) $PH_3 > BF_3 > NF_3 > NH_3$ (A) $BF_3 > NH_3 > NF_3 > PH_3$ (C) $BF_3 > PH_3 > NH_3 > NF_3$ (D) $NH_3 > NF_3 > BF_3 > PH_3$ The maximum of a function Ae^{-ax^2} (A > 0; a > 0) is at x = 24. (D) $\frac{1}{\sqrt{2}}$ ∞– (O) (A) 0 (B) $+\infty$ At 298K, 0.1 mol of ammonium acetate and 0.14 mol of acetic acid are dissolved in 1 L of water. 25. The pH of the resulting solution is [Given : pK_a of acetic acid is 4.75] (A) 4.9 (B) 4.6 (C) 4.3 (D) 2.3 26. An electrochemical cell consists of two half-cell reactions $AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$ $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$ The mass of copper (in grams) dissolved on passing 0.5A current for 1 hour is [Given: atomic mass of Cu is 63.6; $F = 96500 \text{ C mol}^{-1}$] (B) 1.18 (A) 0.88 (C) 0.29 (D) 0.59

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 31.

32.

27.	For a zero order reaction, the half-life depends on the initial concentration $[C_0]$ of the reac $(A) [C_0]$ $(B) [C_0]^0$ $(C) [C_0]^{-1}$ $(D) [C_0]^{1/2}$					
28.	0	0	Ū	energy of helium atom in eV is		
	(A) 13.6	(B) 23.1	(C) 39.3	(D) 27.2		
29.	The relationship between	ationship between the van der Waals 'b' coefficient of N_2 and O_2 is				
	(A) $b(N_2) = b(O_2) = 0$		(B) $b(N_2) = b(0)$	(B) $b(N_2) = b(O_2) \neq 0$		
	(C) $b(N_2) > b(O_2)$	$_{2}) > b(O_{2})$		(D) $b(N_2) < b(O_2)$		
30.	From the kinetic theory of gases, the ratio of most probable speed (C_{mp}) to root mean square (C_{rms}) is					
	(A) $\sqrt{3}$	(B) $\sqrt{2} / \sqrt{3}$	(C) $\sqrt{3} / \sqrt{2}$	(D) $3/\sqrt{2}$		

5

Section-B Multiple Select Questions (MSQ) Q.31 – Q.40 carry TWO marks each. The correct statement(s) about the following species is(are) Ph' Ph Ph OH (III) **(II) (I)** (A) I and II are resonance structures (B) II and III are resonance structures (C) II and III are diastereomers (D) III is a tautomer of I Consider the following reaction: (D)-glucose $\xrightarrow{Ph-NH-NH_2}_{(3 \text{ equiv})}$ (X)

Among the following, the compound(s) whose osazone derivatives(s) will have the same melting point as that of X is(are)

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 33. The appropriate reagents required for carrying out the following transformation are

- (A) (i) PCC, CH₂Cl₂; (ii) Ph₃P=CHCO₂Et; (iii) aq. NaOH, heat, then acidify
- (B) (i) CrO_3 , H_2SO_4 , aq. acetone (ii) Ac_2O , NaOAc
- (C) (i) MnO_2 ; (ii) $CH_2(CO_2H)_2$, piperidine, pyridine
- (D) (i) PCC; CH_2Cl_2 ; (ii) $BrCH_2CO_2C(CH_3)_3$, Zn (iii) H_3O^+ , heat
- 34. The appropriate reagents required for carrying out the following transformation are

- (A) (i) succinic anhydride, AlCl₃; (ii) Zn/Hg, HCl; (iii) polyphosphoric acid
- (B) (i) maleic anhydride, AlCl₃; (ii) H₂N-NH₂, KOH; (iii) H₂SO₄
- (C) (i) succinic anhydride, $FeCl_3$; (ii) LiAlH₄; (iii) H₂SO₄
- (D) (i) phthalic anhyride, F₃B.OEt₂; (ii) HS(CH₂)₂SH, H⁺; (iii) Raney Ni; (iv) polyphosphoric acid
- 35. The protein(s) that belong to the class of blue copper proteins is(are)(A) ceruloplasmin (B) superoxide dismutase (C) hemocyanin (D) azurin
- 36. The ion(s) that exhibit only charge transfer bands in the absorption spectra (UV-visible region) is/are
 - (A) $\left[Cr \left(C_2 O_4 \right)_3 \right]^{3-}$ (B) $\left[Cr O_4 \right]^{2-}$ (C) $\left[Re O_4 \right]^{-}$ (D) $\left[NiO_2 \right]^{2-}$
- 37.The type(s) of interaction(s) that hold layers of graphite together is(are)(A) $\pi \pi$ stacking(B) van der Waals(C) hydrogen bonding(D) Coulombic
- 38. TRUE statement(s) about Langmuir isotherm is(are)(A) valid for monolayer coverage
 - (B) all adsorption sites are equivalent
 - (C) there is dynamic equilibrium between free gas and adsorbed gas
 - (D) adsorption probability is independent of occupancy at the neighboring sites
- 39. The 3p_z orbital has (A) one radial node (B) two radial nodes (C) one angular node (D) two angular nodes
- 40. The diatomic molecule(s) that has (have) two π -type bonds is(are) (A) B₂ (B) C₂ (C) N₂ (D) O₂

Section-C

Numerical Answer Type (NAT)

Q.41 – Q.50 carry ONE mark each.

41. Among the following, the number of molecules that are aromatic is

- 42. The number of all possible isomers for the molecular formula C_6H_{14} is _____
- 43. Hydrolysis of 15.45g of benzonitrile produced 10.98 g of benzoic acid. The percentage yield of acid formed is ______
- 44. Acetic acid content in commercial vinegar was analyzed by titrating against 1.5 M NaOH solution. A 20 mL vinegar sample required 18 mL of titrant to give endpoint. The concentration of acetic acid in the vinegar (in mol L⁻¹) is _____
- 45. The bond order of Be, molecule is _____
- 46. The number of P-H bonds in hypophosphorus acid is _____
- 47. The isotope ${}^{217}_{84}$ Po undergoes one alpha and one beta particle emission sequentially to form an isotope "X". The number of neutrons in "X" is ______
- 48. In a diffraction experiment with X-rays of wavelength 1.54Å, a diffraction line corresponding to $2\theta = 20.8^{\circ}$ is observed. The inter-planar separation in Å is _____
- 49. The potential energy of interaction between two ions in an ionic compound is given by $U = 1389.4 \left[\frac{Z_1 Z_2}{r/\text{\AA}} \right] \text{kJ mol}^{-1}$. Assuming that CaCL is linear molecule of length 5.6Å, the potential energy for CaCl₂ molecule in kJ mol⁻¹ is _____
- 50. The enthalpy of formation for $CH_4(g)$, C(g) and H(g) are -75, 717 and 218 kJ mol⁻¹, respectively. The enthalpy of the C-H bond in kJ mol⁻¹ is ._____

Q.51 - Q.60 carry TWO marks each.

- 51. Specific rotation of the (R)-enantiomer of a chiral compound is 48°. The specific rotation of a sample of this compound which contains 25% of (S)-enantiomer is ______
- 52. Among the following, the number of compounds, which can participates as 'diene' component in a Diels-Alder reaction is _____

53. Among the following, the number of molecules that possess C₂ axis of symmetry is _____

- 54. Effective nuclear charge for 3d electron in vanadium (atomic number = 23) according to Slater's rule is
- 55. The total number of isomers possible for the molecule $\left[Co(NH_3)_4 Cl(NO_2) \right]^+$ is ______
- 56. The bond angle in PBr₃ is 101°. The percent 's' character of the central atom is _____
- 57. $Cu(s) + 4H^+(aq) + 2NO_3^-(aq) \rightarrow 2NO_2(g) + Cu^{2+}(aq) + 2H_2O(\ell)$ In the above reaction at 1 atm and 298K, if 6.36 g of copper is used. Assuming ideal gas behaviour, the volume of NO₂ produced in liters is _____

[Given : atomic mass of Cu is 63.6; $R = 0.0821 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$]

58. The ΔH^0 for the reaction $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ at 400K in kJ mol⁻¹ is ______ Given at 298K :

 $\begin{array}{cccc} \Delta H_{\rm f}^0 & C_{\rm p}^0 \\ k J \, {\rm mol}^{-1} & J \, {\rm mol}^{-1} K^{-1} \\ {\rm O}_2 & 0 & 29.4 \\ {\rm CO} & -110 & 29.1 \\ {\rm CO}_2 & -394 & 37.1 \end{array}$

- 59. The rate constants for a reaction at 300 and 350 K are 8 and 160 L mol⁻¹ s⁻¹, respectively. The activation energy of the reaction in kJ mol⁻¹ is ______ [Given : $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$].
- 60. A 10 L flask containing 10.8 g of N_2O_5 is heated to 373K, which leads to its decomposition according to the equation $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$. If the final pressure in the flask is 0.5 atm, then the partial pressure of $O_2(g)$ in atm is ______ [Given : R = 0.0821 L atm K^{-1} mol⁻¹]

*** END OF THE QUESTION PAPER ***

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009