Section-A ### **Multiple Choice Questions (MCQ)** ## Q.1 - Q.10 carry ONE mark each. 1. The correct order of pKa for the following compounds is - (A) II > I > III > IV - (B) II > I > IV > III - (C) III > IV > I > II (D) IV > II > I > III - 2. The major product formed in the following reaction is - (A) Aldol reaction and Cannizzaro reaction - (B) Aldol reaction and Claisen-Schmidt reaction - (C) Knoevenagel condensation and Cannizzaro reaction - (D) Stobbe condensation and Cannizzaro reaction - 4. The most basic amino acid among the following is - (A) tyrosine - (B) methionine - (C) arginine - (D) glutamine - 5. The crystal field stabilization energy (CFSE) in $[Mn(H_2O)_6]^{2+}$ is - (A) $0 \Delta_0$ - (B) $2.0 \Delta_0 2P$ - (C) $0.4 \Delta_0 2P$ eavour.in (D) 2.0 Δ_0 - 6. Indicator used in redox titration is - (A) Eriochrome black T - (B) Methyl orange - (C) Phenolphthalein (D) Methylene blue - 7. Among the following, the compound that has the lowest degree of ionic character is - (A) NaCl - (B) MgCl₂ - (C) AlCl₃ - (D) CaCl₂ 3. - 8. The correct order of entropy for various states of CO₂ is - (A) $CO_2(s) > CO_2(l) > CO_2(g)$ (B) $CO_2(l) > CO_2(s) > CO_2(g)$ (C) $CO_2(g) > CO_2(l) > CO_2(s)$ - (D) $CO_2(g) > CO_2(s) > CO_2(l)$ - 9. The coordination numbers of Cs⁺ and Cl⁻ ions in the CsCl structure, respectively, are - (A) 4, 4 - (B) 4, 8 - (C) 6, 6 - (D) 8, 8 - 10. Determinant of a square matrix is always - (A) a square matrix - (B) a column matrix - (C) a row matrix (D) a number # Q.11 - Q.30 carry TWO marks each. The correct order of ¹H NMR chemical shift (δ) values for the labeled methyl groups in the following 11. compound is (A) $Me^1 < Me^2 < Me^3 < Me^4$ (B) $Me^3 < Me^4 < Me^1 < Me^2$ (C) $Me^3 < Me^1 < Me^4 < Me^2$ - (D) $Me^2 < Me^4 < Me^3 < Me^1$ - Among the following, the most stable conformation of meso-2, 3-dibromobutane is 12. The major products X and Y in the following reaction sequence are 13. $$\frac{Ac_2O}{ZnCl_2, 0^{\circ}C} (X) \xrightarrow{HNO_3} (Y)$$ (B) $$X = \bigcup_{O_2 N} O$$ CY-2016 3 (C) $$X = \begin{pmatrix} O \\ O \\ O \end{pmatrix}$$ $Y = \begin{pmatrix} O \\ O \\ O \end{pmatrix}$ (D) $$X = \bigcup_{O} Y = \bigcup_{O} O$$ 14. The major product formed in the reaction of butanenitrile with phenylmagnesium bromide followed by acidification is $$(A) \qquad (B) \qquad (C) \qquad (D) \qquad (B) \qquad Ph$$ 15. An organic compound on reaction with 2, 4-dinitrophenylhydrazine (2, 4-DNP) gives a yellow precipitate. It also gives silver mirror on reaction with ammonical AgNO₃. It gives an alcohol and sodium salt of a carboxylic acid on reaction with concentrated NaOH. It yields benzene-1, 2-dicarboxylic acid on heating with alkaline KMnO₄. The structure of the compound among the following is 16. The major products X and Y in the following reaction sequence are (C) $$X = \bigvee_{O} \bigvee_$$ | | | | | Delhi-09 Ph: 011-65462244 65662255 | |-----|--|--|--------------------------------------|--| | | [Given: atomic mass of Cu is 63.6; $F = 96500 \text{ C mol}^{-1}$]
(A) 0.88 (B) 1.18 (C) 0.29 (D) 0.59 | | | | | | $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$
The mass of copper (in grams) dissolved on passing 0.5A current for 1 hour is | | | | | | $AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$ $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$ | | | | | 26. | An electrochemical cell consists of two half-cell reactions $A = CI(s) + s^{-1} + A(s) + CI^{-1}(ss)$ | | | | | 26 | (A) 4.9 | (B) 4.6 | (C) 4.3 | (D) 2.3 | | | The pH of the resulting solution is [Given: pK _a of acetic acid is 4.75] | | | | | 25. | At 298K, 0.1 mol of ammonium acetate and 0.14 mol of acetic acid are dissolved in 1 L of water. | | | | | | (A) 0 | (B) +∞ | (C) −∞ | (D) $\frac{1}{\sqrt{a}}$ | | 24. | The maximum of a function $Ae^{-ax^2}(A > 0; a > 0)$ is at $x =$ | | | | | | (A) $BF_3 > NH_3 > NF_3 > PH_3$ (B) $PH_3 > BF_3 > NF_3 > NH_3$ (C) $BF_3 > PH_3 > NH_3 > NF_3 > NF_3 > PH_3$ | | | | | 23. | The correct order of bond angles in BF ₃ , NH ₃ , NF ₃ and PH ₃ is | | | | | 22. | The final products (A) B(OH) ₃ and C | in the reaction of BF ₃ with DF ₂ (B) H ₃ BO ₃ and | h water are HBF_4 (C) B_2O_3 and | 1 HBF_4 (D) B_2H_6 and HF | | | (A) d-d transition of Cr³⁺ ion in Cr₂O₃ lattice (B) d-d transition of Cr³⁺ ion in Al₂O₃ lattice. (C) ligand to metal charge transfer transition (D) metal to metal charge transfer transition | | | | | 21. | The red color of ruby is due to | | | | | | (A) $NO^{+} > NO > [NiCp(NO)] > [Cr(Cp)_{2}(NO)_{4}]$
(B) $[Cr(Cp)_{2}(NO)_{4}] > [NiCp(NO)] > NO^{+} > NO$
(C) $NO^{+} > [Cr(Cp)_{2}(NO)_{4}] > NO > [NiCp(NO)]$
(D) $[NiCp(NO)] > NO > [Cr(Cp)_{2}(NO)_{4}] > NO^{+}$ | | | | | 20. | The correct order of $v_{NO}\left(cm^{-1}\right)$ in the following compounds is | | | | | | (A) 6 | (B) 5 | (C) 4 | (D) 3 | | 19. | The value of 'x' in $\left[\text{Cu}(\text{CO})_{x} \right]^{+}$ such that it obeys the 18 electron rule is | | | | | | (A) paramagnetic, paramagnetic(C) paramagnetic, diamagnetic | | • • • | (B) diamagnetic, diamagnetic(D) diamagnetic, paramagnetic | | 18. | The complexes $\left[Pt(CN)_4 \right]^{2^-}$ and $\left[NiCl_4 \right]^{2^-}$, respectively, are | | | | | | (A) All Cu-O bond lengths are equal (B) One Cu-O bond length is shorter than the remaining five (C) Three Cu-O bond lengths are shorter than the remaining three (D) Four Cu-O bond lengths are shorter than the remaining two | | | | | 17. | The TRUE statement about $[Cu(H_2O)_6]^{2+}$ is | | | | - For a zero order reaction, the half-life depends on the initial concentration $[C_0]$ of the reactant as 27. - (A) $[C_0]$ - (B) $[C_0]^0$ - (C) $[C_0]^{-1}$ - (D) $[C_n]^{1/2}$ - 28. The effective nuclear charge of helium atom is 1.7. The first ionization energy of helium atom in eV is - (A) 13.6 - (B) 23.1 - (C) 39.3 - (D) 27.2 - 29. The relationship between the van der Waals 'b' coefficient of N₂ and O₂ is - (A) $b(N_2) = b(O_2) = 0$ (B) $b(N_2) = b(O_2) \neq 0$ (C) $b(N_2) > b(O_2)$ - (D) $b(N_2) < b(O_2)$ - From the kinetic theory of gases, the ratio of most probable speed (C_{mp}) to root mean square speed 30. (C_{rms}) is - (A) $\sqrt{3}$ - (B) $\sqrt{2} / \sqrt{3}$ - (C) $\sqrt{3}/\sqrt{2}$ (D) $3/\sqrt{2}$ ## **Section-B** ## **Multiple Select Questions (MSQ)** # Q.31 - Q.40 carry TWO marks each. The correct statement(s) about the following species is(are) 31. - (A) I and II are resonance structures - (B) II and III are resonance structures - (C) II and III are diastereomers - (D) III is a tautomer of I - 32. Consider the following reaction: (D)-glucose $\xrightarrow{\text{Ph-NH-NH}_2}$ (X) Among the following, the compound(s) whose osazone derivatives(s) will have the same melting point as that of X is(are) CHO 33. The appropriate reagents required for carrying out the following transformation are - (A) (i) PCC, CH₂Cl₂; (ii) Ph₃P=CHCO₂Et; (iii) aq. NaOH, heat, then acidify - (B) (i) CrO₃, H₂SO₄, aq. acetone (ii) Ac₂O, NaOAc - (C) (i) MnO₂; (ii) CH₂(CO₂H)₂, piperidine, pyridine - (D) (i) PCC; CH₂Cl₂; (ii) BrCH₂CO₂C(CH₃)₃, Zn (iii) H₃O⁺, heat - 34. The appropriate reagents required for carrying out the following transformation are - (A) (i) succinic anhydride, AlCl₃; (ii) Zn/Hg, HCl; (iii) polyphosphoric acid - (B) (i) maleic anhydride, AlCl₃; (ii) H₂N-NH₂, KOH; (iii) H₂SO₄ - (C) (i) succinic anhydride, FeCl₃; (ii) LiAlH₄; (iii) H₂SO₄ - (D) (i) phthalic anhyride, F₃B.OEt₂; (ii) HS(CH₂)₂SH, H⁺; (iii) Raney Ni; (iv) polyphosphoric acid - The protein(s) that belong to the class of blue copper proteins is(are) 35. - (A) ceruloplasmin - (B) superoxide dismutase (C) hemocyanin - (D) azurin - The ion(s) that exhibit only charge transfer bands in the absorption spectra (UV-visible region) is/are 36. - (A) $\left[\operatorname{Cr} \left(\operatorname{C}_{2} \operatorname{O}_{4} \right)_{3} \right]^{3-}$ (B) $\left[\operatorname{Cr} \operatorname{O}_{4} \right]^{2-}$ - (C) $\left[\text{Re O}_4 \right]^-$ (D) $\left[\text{NiO}_2 \right]^{2-}$ - 37. The type(s) of interaction(s) that hold layers of graphite together is(are) - (A) $\pi \pi$ stacking - (B) van der Waals - (C) hydrogen bonding (D) Coulombic - TRUE statement(s) about Langmuir isotherm is(are) 38. - (A) valid for monolayer coverage - (B) all adsorption sites are equivalent - (C) there is dynamic equilibrium between free gas and adsorbed gas - (D) adsorption probability is independent of occupancy at the neighboring sites - 39. The 3p₂ orbital has - (A) one radial node - (B) two radial nodes - (C) one angular node (D) two angular nodes - 40. The diatomic molecule(s) that has (have) two π -type bonds is(are) - (A) B₂ (B) C₂ - (C) N₂ - (D) O₂ ### **Section-C** ### **Numerical Answer Type (NAT)** ## Q.41 - Q.50 carry ONE mark each. 41. Among the following, the number of molecules that are aromatic is - 42. The number of all possible isomers for the molecular formula C_6H_{14} is ______ - 43. Hydrolysis of 15.45g of benzonitrile produced 10.98 g of benzoic acid. The percentage yield of acid formed is _____ - 44. Acetic acid content in commercial vinegar was analyzed by titrating against 1.5 M NaOH solution. A 20 mL vinegar sample required 18 mL of titrant to give endpoint. The concentration of acetic acid in the vinegar (in mol L⁻¹) is ______ - 45. The bond order of Be₂ molecule is _____ - 46. The number of P-H bonds in hypophosphorus acid is ______ - 47. The isotope ²¹⁷₈₄ Po undergoes one alpha and one beta particle emission sequentially to form an isotope "X". The number of neutrons in "X" is ______ - 48. In a diffraction experiment with X-rays of wavelength 1.54Å, a diffraction line corresponding to $2\theta = 20.8^{\circ}$ is observed. The inter-planar separation in Å is _____ - 49. The potential energy of interaction between two ions in an ionic compound is given by $U = 1389.4 \left[\frac{Z_1 Z_2}{r/\mathring{A}} \right] kJ \text{ mol}^{-1}. \text{ Assuming that CaCl}_2 \text{ is linear molecule of length 5.6Å, the potential energy}$ for CaCl₂ molecule in kJ mol⁻¹ is ______ - 50. The enthalpy of formation for $CH_4(g)$, C(g) and H(g) are -75, 717 and 218 kJ mol⁻¹, respectively. The enthalpy of the C-H bond in kJ mol⁻¹ is ._____ ## Q.51 - Q.60 carry TWO marks each. - 51. Specific rotation of the (R)-enantiomer of a chiral compound is 48°. The specific rotation of a sample of this compound which contains 25% of (S)-enantiomer is ______ - 52. Among the following, the number of compounds, which can participates as 'diene' component in a Diels-Alder reaction is _____ 53. Among the following, the number of molecules that possess C₂ axis of symmetry is ______ - 54. Effective nuclear charge for 3d electron in vanadium (atomic number = 23) according to Slater's rule is - 55. The total number of isomers possible for the molecule $\left[\text{Co}(\text{NH}_3)_4 \text{Cl}(\text{NO}_2) \right]^+$ is ______ - 56. The bond angle in PBr₃ is 101°. The percent 's' character of the central atom is _____ - Cu(s)+4H⁺(aq)+2NO₃ (aq) → 2NO₂(g)+Cu²⁺(aq)+2H₂O(ℓ) In the above reaction at 1 atm and 298K, if 6.36 g of copper is used. Assuming ideal gas behaviour, the volume of NO₂ produced in liters is ______ [Given: atomic mass of Cu is 63.6; R = 0.0821 L atm K⁻¹ mol⁻¹] - 58. The ΔH^0 for the reaction $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ at 400K in kJ mol⁻¹ is ______ Given at 298K: $$\begin{array}{ccccc} \Delta H_{\rm f}^0 & C_{\rm p}^0 \\ & kJ \; mol^{-1} & J \; mol^{-1}K^{-1} \\ O_2 & 0 & 29.4 \\ CO & -110 & 29.1 \\ CO_2 & -394 & 37.1 \end{array}$$ CY-2016 9 59. The rate constants for a reaction at 300 and 350 K are 8 and 160 L mol $^{-1}$ s $^{-1}$, respectively. The activation energy of the reaction in kJ mol $^{-1}$ is ______ [Given: $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$]. 60. A 10 L flask containing 10.8 g of N_2O_5 is heated to 373K, which leads to its decomposition according to the equation $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$. If the final pressure in the flask is 0.5 atm, then the partial pressure of $O_2(g)$ in atm is ______ [Given: R = 0.0821 L atm K^{-1} mol⁻¹] # *** END OF THE QUESTION PAPER ***