### **Section-A**

### **Multiple Choice Questions (MCQ)**

## Q.1 - Q.10 carry ONE mark each.

1. The correct order of pKa for the following compounds is



- (A) II > I > III > IV
- (B) II > I > IV > III
- (C) III > IV > I > II (D) IV > II > I > III
- 2. The major product formed in the following reaction is



- (A) Aldol reaction and Cannizzaro reaction
- (B) Aldol reaction and Claisen-Schmidt reaction
- (C) Knoevenagel condensation and Cannizzaro reaction
- (D) Stobbe condensation and Cannizzaro reaction
- 4. The most basic amino acid among the following is
  - (A) tyrosine
- (B) methionine
- (C) arginine
- (D) glutamine
- 5. The crystal field stabilization energy (CFSE) in  $[Mn(H_2O)_6]^{2+}$  is
  - (A)  $0 \Delta_0$

- (B)  $2.0 \Delta_0 2P$
- (C)  $0.4 \Delta_0 2P$

eavour.in

(D) 2.0  $\Delta_0$ 

- 6. Indicator used in redox titration is
  - (A) Eriochrome black T
- (B) Methyl orange
- (C) Phenolphthalein (D) Methylene blue
- 7. Among the following, the compound that has the lowest degree of ionic character is
  - (A) NaCl

- (B) MgCl<sub>2</sub>
- (C) AlCl<sub>3</sub>
- (D) CaCl<sub>2</sub>



3.

- 8. The correct order of entropy for various states of CO<sub>2</sub> is
  - (A)  $CO_2(s) > CO_2(l) > CO_2(g)$

(B)  $CO_2(l) > CO_2(s) > CO_2(g)$ 

(C)  $CO_2(g) > CO_2(l) > CO_2(s)$ 

- (D)  $CO_2(g) > CO_2(s) > CO_2(l)$
- 9. The coordination numbers of Cs<sup>+</sup> and Cl<sup>-</sup> ions in the CsCl structure, respectively, are
  - (A) 4, 4

- (B) 4, 8
- (C) 6, 6
- (D) 8, 8

- 10. Determinant of a square matrix is always
  - (A) a square matrix
- (B) a column matrix
- (C) a row matrix (D) a number

# Q.11 - Q.30 carry TWO marks each.

The correct order of <sup>1</sup>H NMR chemical shift ( $\delta$ ) values for the labeled methyl groups in the following 11. compound is

(A)  $Me^1 < Me^2 < Me^3 < Me^4$ 

(B)  $Me^3 < Me^4 < Me^1 < Me^2$ 

(C)  $Me^3 < Me^1 < Me^4 < Me^2$ 

- (D)  $Me^2 < Me^4 < Me^3 < Me^1$
- Among the following, the most stable conformation of meso-2, 3-dibromobutane is 12.



The major products X and Y in the following reaction sequence are 13.

$$\frac{Ac_2O}{ZnCl_2, 0^{\circ}C} (X) \xrightarrow{HNO_3} (Y)$$

(B) 
$$X = \bigcup_{O_2 N} O$$

CY-2016 3

(C) 
$$X = \begin{pmatrix} O \\ O \\ O \end{pmatrix}$$
  $Y = \begin{pmatrix} O \\ O \\ O \end{pmatrix}$ 

(D) 
$$X = \bigcup_{O} Y = \bigcup_{O} O$$

14. The major product formed in the reaction of butanenitrile with phenylmagnesium bromide followed by acidification is

$$(A) \qquad (B) \qquad (C) \qquad (D) \qquad (B) \qquad Ph$$

15. An organic compound on reaction with 2, 4-dinitrophenylhydrazine (2, 4-DNP) gives a yellow precipitate. It also gives silver mirror on reaction with ammonical AgNO<sub>3</sub>. It gives an alcohol and sodium salt of a carboxylic acid on reaction with concentrated NaOH. It yields benzene-1, 2-dicarboxylic acid on heating with alkaline KMnO<sub>4</sub>. The structure of the compound among the following is

16. The major products X and Y in the following reaction sequence are

(C) 
$$X = \bigvee_{O} \bigvee_$$



|     |                                                                                                                                                                                                                                                                                                                |                                                                                                |                                      | Delhi-09 Ph: 011-65462244 65662255                                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------|
|     | [Given: atomic mass of Cu is 63.6; $F = 96500 \text{ C mol}^{-1}$ ]<br>(A) 0.88 (B) 1.18 (C) 0.29 (D) 0.59                                                                                                                                                                                                     |                                                                                                |                                      |                                                                                      |
|     | $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$<br>The mass of copper (in grams) dissolved on passing 0.5A current for 1 hour is                                                                                                                                                                                      |                                                                                                |                                      |                                                                                      |
|     | $AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$ $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$                                                                                                                                                                                                                      |                                                                                                |                                      |                                                                                      |
| 26. | An electrochemical cell consists of two half-cell reactions $A = CI(s) + s^{-1} + A(s) + CI^{-1}(ss)$                                                                                                                                                                                                          |                                                                                                |                                      |                                                                                      |
| 26  | (A) 4.9                                                                                                                                                                                                                                                                                                        | (B) 4.6                                                                                        | (C) 4.3                              | (D) 2.3                                                                              |
|     | The pH of the resulting solution is [Given: pK <sub>a</sub> of acetic acid is 4.75]                                                                                                                                                                                                                            |                                                                                                |                                      |                                                                                      |
| 25. | At 298K, 0.1 mol of ammonium acetate and 0.14 mol of acetic acid are dissolved in 1 L of water.                                                                                                                                                                                                                |                                                                                                |                                      |                                                                                      |
|     | (A) 0                                                                                                                                                                                                                                                                                                          | (B) +∞                                                                                         | (C) −∞                               | (D) $\frac{1}{\sqrt{a}}$                                                             |
| 24. | The maximum of a function $Ae^{-ax^2}(A > 0; a > 0)$ is at $x =$                                                                                                                                                                                                                                               |                                                                                                |                                      |                                                                                      |
|     | (A) $BF_3 > NH_3 > NF_3 > PH_3$ (B) $PH_3 > BF_3 > NF_3 > NH_3$ (C) $BF_3 > PH_3 > NH_3 > NF_3 > NF_3 > PH_3$                                                                                                                                                                                                  |                                                                                                |                                      |                                                                                      |
| 23. | The correct order of bond angles in BF <sub>3</sub> , NH <sub>3</sub> , NF <sub>3</sub> and PH <sub>3</sub> is                                                                                                                                                                                                 |                                                                                                |                                      |                                                                                      |
| 22. | The final products (A) B(OH) <sub>3</sub> and C                                                                                                                                                                                                                                                                | in the reaction of BF <sub>3</sub> with DF <sub>2</sub> (B) H <sub>3</sub> BO <sub>3</sub> and | h water are $HBF_4$ (C) $B_2O_3$ and | $1 \text{ HBF}_4$ (D) $B_2H_6$ and HF                                                |
|     | <ul> <li>(A) d-d transition of Cr<sup>3+</sup> ion in Cr<sub>2</sub>O<sub>3</sub> lattice</li> <li>(B) d-d transition of Cr<sup>3+</sup> ion in Al<sub>2</sub>O<sub>3</sub> lattice.</li> <li>(C) ligand to metal charge transfer transition</li> <li>(D) metal to metal charge transfer transition</li> </ul> |                                                                                                |                                      |                                                                                      |
| 21. | The red color of ruby is due to                                                                                                                                                                                                                                                                                |                                                                                                |                                      |                                                                                      |
|     | (A) $NO^{+} > NO > [NiCp(NO)] > [Cr(Cp)_{2}(NO)_{4}]$<br>(B) $[Cr(Cp)_{2}(NO)_{4}] > [NiCp(NO)] > NO^{+} > NO$<br>(C) $NO^{+} > [Cr(Cp)_{2}(NO)_{4}] > NO > [NiCp(NO)]$<br>(D) $[NiCp(NO)] > NO > [Cr(Cp)_{2}(NO)_{4}] > NO^{+}$                                                                               |                                                                                                |                                      |                                                                                      |
| 20. | The correct order of $v_{NO}\left(cm^{-1}\right)$ in the following compounds is                                                                                                                                                                                                                                |                                                                                                |                                      |                                                                                      |
|     | (A) 6                                                                                                                                                                                                                                                                                                          | (B) 5                                                                                          | (C) 4                                | (D) 3                                                                                |
| 19. | The value of 'x' in $\left[ \text{Cu}(\text{CO})_{x} \right]^{+}$ such that it obeys the 18 electron rule is                                                                                                                                                                                                   |                                                                                                |                                      |                                                                                      |
|     | <ul><li>(A) paramagnetic, paramagnetic</li><li>(C) paramagnetic, diamagnetic</li></ul>                                                                                                                                                                                                                         |                                                                                                | • • •                                | <ul><li>(B) diamagnetic, diamagnetic</li><li>(D) diamagnetic, paramagnetic</li></ul> |
| 18. | The complexes $\left[ Pt(CN)_4 \right]^{2^-}$ and $\left[ NiCl_4 \right]^{2^-}$ , respectively, are                                                                                                                                                                                                            |                                                                                                |                                      |                                                                                      |
|     | <ul> <li>(A) All Cu-O bond lengths are equal</li> <li>(B) One Cu-O bond length is shorter than the remaining five</li> <li>(C) Three Cu-O bond lengths are shorter than the remaining three</li> <li>(D) Four Cu-O bond lengths are shorter than the remaining two</li> </ul>                                  |                                                                                                |                                      |                                                                                      |
| 17. | The TRUE statement about $[Cu(H_2O)_6]^{2+}$ is                                                                                                                                                                                                                                                                |                                                                                                |                                      |                                                                                      |

- For a zero order reaction, the half-life depends on the initial concentration  $[C_0]$  of the reactant as 27.
  - (A)  $[C_0]$

- (B)  $[C_0]^0$
- (C)  $[C_0]^{-1}$
- (D)  $[C_n]^{1/2}$
- 28. The effective nuclear charge of helium atom is 1.7. The first ionization energy of helium atom in eV is
  - (A) 13.6

- (B) 23.1
- (C) 39.3
- (D) 27.2
- 29. The relationship between the van der Waals 'b' coefficient of N<sub>2</sub> and O<sub>2</sub> is
  - (A)  $b(N_2) = b(O_2) = 0$

(B)  $b(N_2) = b(O_2) \neq 0$ 

(C)  $b(N_2) > b(O_2)$ 

- (D)  $b(N_2) < b(O_2)$
- From the kinetic theory of gases, the ratio of most probable speed  $(C_{mp})$  to root mean square speed 30.  $(C_{rms})$  is
  - (A)  $\sqrt{3}$

- (B)  $\sqrt{2} / \sqrt{3}$
- (C)  $\sqrt{3}/\sqrt{2}$  (D)  $3/\sqrt{2}$

## **Section-B**

## **Multiple Select Questions (MSQ)**

# Q.31 - Q.40 carry TWO marks each.

The correct statement(s) about the following species is(are) 31.



- (A) I and II are resonance structures
- (B) II and III are resonance structures
- (C) II and III are diastereomers
- (D) III is a tautomer of I
- 32. Consider the following reaction:

(D)-glucose  $\xrightarrow{\text{Ph-NH-NH}_2}$  (X)

Among the following, the compound(s) whose osazone derivatives(s) will have the same melting point as that of X is(are)









CHO

33. The appropriate reagents required for carrying out the following transformation are

- (A) (i) PCC, CH<sub>2</sub>Cl<sub>2</sub>; (ii) Ph<sub>3</sub>P=CHCO<sub>2</sub>Et; (iii) aq. NaOH, heat, then acidify
- (B) (i) CrO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, aq. acetone (ii) Ac<sub>2</sub>O, NaOAc
- (C) (i) MnO<sub>2</sub>; (ii) CH<sub>2</sub>(CO<sub>2</sub>H)<sub>2</sub>, piperidine, pyridine
- (D) (i) PCC; CH<sub>2</sub>Cl<sub>2</sub>; (ii) BrCH<sub>2</sub>CO<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>, Zn (iii) H<sub>3</sub>O<sup>+</sup>, heat
- 34. The appropriate reagents required for carrying out the following transformation are



- (A) (i) succinic anhydride, AlCl<sub>3</sub>; (ii) Zn/Hg, HCl; (iii) polyphosphoric acid
- (B) (i) maleic anhydride, AlCl<sub>3</sub>; (ii) H<sub>2</sub>N-NH<sub>2</sub>, KOH; (iii) H<sub>2</sub>SO<sub>4</sub>
- (C) (i) succinic anhydride, FeCl<sub>3</sub>; (ii) LiAlH<sub>4</sub>; (iii) H<sub>2</sub>SO<sub>4</sub>
- (D) (i) phthalic anhyride, F<sub>3</sub>B.OEt<sub>2</sub>; (ii) HS(CH<sub>2</sub>)<sub>2</sub>SH, H<sup>+</sup>; (iii) Raney Ni; (iv) polyphosphoric acid
- The protein(s) that belong to the class of blue copper proteins is(are) 35.
  - (A) ceruloplasmin
- (B) superoxide dismutase (C) hemocyanin
- (D) azurin
- The ion(s) that exhibit only charge transfer bands in the absorption spectra (UV-visible region) is/are 36.
  - (A)  $\left[ \operatorname{Cr} \left( \operatorname{C}_{2} \operatorname{O}_{4} \right)_{3} \right]^{3-}$  (B)  $\left[ \operatorname{Cr} \operatorname{O}_{4} \right]^{2-}$
- (C)  $\left[ \text{Re O}_4 \right]^-$  (D)  $\left[ \text{NiO}_2 \right]^{2-}$
- 37. The type(s) of interaction(s) that hold layers of graphite together is(are)
  - (A)  $\pi \pi$  stacking
- (B) van der Waals
- (C) hydrogen bonding (D) Coulombic

- TRUE statement(s) about Langmuir isotherm is(are) 38.
  - (A) valid for monolayer coverage
  - (B) all adsorption sites are equivalent
  - (C) there is dynamic equilibrium between free gas and adsorbed gas
  - (D) adsorption probability is independent of occupancy at the neighboring sites
- 39. The 3p<sub>2</sub> orbital has
  - (A) one radial node
- (B) two radial nodes
- (C) one angular node (D) two angular nodes
- 40. The diatomic molecule(s) that has (have) two  $\pi$ -type bonds is(are)
  - (A) B<sub>2</sub>

(B) C<sub>2</sub>

- (C) N<sub>2</sub>
- (D) O<sub>2</sub>

### **Section-C**

### **Numerical Answer Type (NAT)**

## Q.41 - Q.50 carry ONE mark each.

41. Among the following, the number of molecules that are aromatic is



- 42. The number of all possible isomers for the molecular formula  $C_6H_{14}$  is \_\_\_\_\_\_
- 43. Hydrolysis of 15.45g of benzonitrile produced 10.98 g of benzoic acid. The percentage yield of acid formed is \_\_\_\_\_
- 44. Acetic acid content in commercial vinegar was analyzed by titrating against 1.5 M NaOH solution. A 20 mL vinegar sample required 18 mL of titrant to give endpoint. The concentration of acetic acid in the vinegar (in mol L<sup>-1</sup>) is \_\_\_\_\_\_
- 45. The bond order of Be<sub>2</sub> molecule is \_\_\_\_\_
- 46. The number of P-H bonds in hypophosphorus acid is \_\_\_\_\_\_
- 47. The isotope <sup>217</sup><sub>84</sub> Po undergoes one alpha and one beta particle emission sequentially to form an isotope "X". The number of neutrons in "X" is \_\_\_\_\_\_
- 48. In a diffraction experiment with X-rays of wavelength 1.54Å, a diffraction line corresponding to  $2\theta = 20.8^{\circ}$  is observed. The inter-planar separation in Å is \_\_\_\_\_
- 49. The potential energy of interaction between two ions in an ionic compound is given by  $U = 1389.4 \left[ \frac{Z_1 Z_2}{r/\mathring{A}} \right] kJ \text{ mol}^{-1}. \text{ Assuming that CaCl}_2 \text{ is linear molecule of length 5.6Å, the potential energy}$  for CaCl<sub>2</sub> molecule in kJ mol<sup>-1</sup> is \_\_\_\_\_\_
- 50. The enthalpy of formation for  $CH_4(g)$ , C(g) and H(g) are -75, 717 and 218 kJ mol<sup>-1</sup>, respectively. The enthalpy of the C-H bond in kJ mol<sup>-1</sup> is .\_\_\_\_\_

## Q.51 - Q.60 carry TWO marks each.

- 51. Specific rotation of the (R)-enantiomer of a chiral compound is 48°. The specific rotation of a sample of this compound which contains 25% of (S)-enantiomer is \_\_\_\_\_\_
- 52. Among the following, the number of compounds, which can participates as 'diene' component in a Diels-Alder reaction is \_\_\_\_\_



53. Among the following, the number of molecules that possess C<sub>2</sub> axis of symmetry is \_\_\_\_\_\_



- 54. Effective nuclear charge for 3d electron in vanadium (atomic number = 23) according to Slater's rule is
- 55. The total number of isomers possible for the molecule  $\left[ \text{Co}(\text{NH}_3)_4 \text{Cl}(\text{NO}_2) \right]^+$  is \_\_\_\_\_\_
- 56. The bond angle in PBr<sub>3</sub> is 101°. The percent 's' character of the central atom is \_\_\_\_\_
- Cu(s)+4H<sup>+</sup>(aq)+2NO<sub>3</sub> (aq) → 2NO<sub>2</sub>(g)+Cu<sup>2+</sup>(aq)+2H<sub>2</sub>O(ℓ)
   In the above reaction at 1 atm and 298K, if 6.36 g of copper is used. Assuming ideal gas behaviour, the volume of NO<sub>2</sub> produced in liters is \_\_\_\_\_\_
   [Given: atomic mass of Cu is 63.6; R = 0.0821 L atm K<sup>-1</sup> mol<sup>-1</sup>]
- 58. The  $\Delta H^0$  for the reaction  $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$  at 400K in kJ mol<sup>-1</sup> is \_\_\_\_\_\_ Given at 298K:

$$\begin{array}{ccccc} \Delta H_{\rm f}^0 & C_{\rm p}^0 \\ & kJ \; mol^{-1} & J \; mol^{-1}K^{-1} \\ O_2 & 0 & 29.4 \\ CO & -110 & 29.1 \\ CO_2 & -394 & 37.1 \end{array}$$

CY-2016 9

59. The rate constants for a reaction at 300 and 350 K are 8 and 160 L mol $^{-1}$  s $^{-1}$ , respectively. The activation energy of the reaction in kJ mol $^{-1}$  is \_\_\_\_\_\_ [Given:  $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$ ].

60. A 10 L flask containing 10.8 g of  $N_2O_5$  is heated to 373K, which leads to its decomposition according to the equation  $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ . If the final pressure in the flask is 0.5 atm, then the partial pressure of  $O_2(g)$  in atm is \_\_\_\_\_\_ [Given: R = 0.0821 L atm  $K^{-1}$  mol<sup>-1</sup>]

# \*\*\* END OF THE QUESTION PAPER \*\*\*



