Best Institute for IIT-JAM|NET/JRF|GATE

D.U. M.Sc. PHYSICS ENTRANCE - 2015 (Series - A)

Time : $\mathbf{3}$ Hours
M. Marks: 300

Instructions:

(i) This test booklet contains 75 Objective type questions.
(ii) Each question carries 4 marks. 1 mark will be deducted for each incorrect answer. Only one box should be marked and the marking of more than one box will be treated as wrong answer.

1. A free electron and a free proton of the same energy have their de Broglie wavelengths in the ratio
(a) $\lambda_{e} / \lambda_{p}=\left(m_{p} / m_{e}\right)^{1 / 2}$
(b) $\lambda_{e} / \lambda_{p}=\left(m_{e} / m_{p}\right)^{1 / 2}$
(c) $\lambda_{e} / \lambda_{p}=\left(m_{p} / m_{e}\right)$
(d) $\lambda_{e} / \lambda_{p}=\left(m_{e} / m_{p}\right)$
2. The wave function of the particle is given by a linear combination of two of its energy states ψ_{1} and ψ_{2} (with energy eigen values E_{1} and E_{2} respectively) as $\psi=\psi_{1} / a+\psi_{2} / b$. If a measurement of energy is made, the probability of finding particle energy to be E_{1} is
(a) $|b|^{2} /\left[|a|^{2}+|b|^{2}\right]$
(b) $|a|^{2} /\left[|a|^{2}+|b|^{2}\right]$
(c) $b /(a+b)$
(d) $a /(a+b)$
3. A particle of mass m is in a one-dimensional potential given by $V(x)=\infty$ for $x<0$ and $V(x)=k x^{2} / 2$ for $x>0$. The first excited state has an energy
(a) $(3 / 2) \hbar \sqrt{(k / m)}$
(b) $(7 / 2) \hbar \sqrt{(k / m)}$
(c) $(1 / 2) \hbar \sqrt{(k / m)}$
(d) $(5 / 2) \hbar \sqrt{(k / m)}$
4. The wave function for a particle is given by $\psi=A e^{-|x|}$, where A is a constant. This implies that the potential
(a) is differentiable everywhere
(b) is continuous everywhere but not differentiable at $x=0$
(c) has discontinuity at $x=0$
(d) has discontinuities at $x= \pm 1$ but differentiable every else
5. The electric field E and magnetic field B in frame 1 are parallel and related by $E=c B$. If the electric and magnetic fields in another frame are E^{\prime} and B^{\prime} respectively, the angle x between E^{\prime} and B^{\prime} is given by $\cos (x)$ equals,
(a) B / B^{\prime}
(b) $\mathrm{B}^{\prime} / \mathrm{B}$
(c) $\left(\mathrm{B} / \mathrm{B}^{\prime}\right)^{1 / 2}$
(d) $\left(\mathrm{B}^{\prime} / \mathrm{B}\right)^{1 / 2}$
6. A linearly polarized electromagnetic wave is incident on a quarter wave plate. The emerge wave will in general be
(a) linearly polarized
(b) elliptically polarized
(c) unpolarized
(d) mixture of linearly polarized and unpolarized wave
7. The magnitude of the Poynting vector gives the
(a) energy transported per unit area per unit time
(b) energy density of the electromagnetic wave
(c) angular momentum density of the electromagnetic wave
(d) angular momentum transported per unit area per unit time
8. An unpolarized ray of light in a medium with refractive index n_{1} is incident on a plane glass surface with refractive index $n_{2}\left(n_{2}>n_{1}\right)$. The intensity of the reflected light is minimum when the angle of incidence i is given by
(a) $\tan (i)=n_{1} / n_{2}$
(b) $\tan (i)=n_{2} / n_{1}$
(c) $\tan (i)=1 / n_{1} n_{2}$
(d) $\tan (i)=n_{1} n_{2}$
9. Assuming LS coupling, the lowest energy level for carbon $(Z=6)$ is
(a) ${ }^{1} \mathrm{~S}_{0}$
(b) ${ }^{3} \mathrm{P}_{0}$
(c) ${ }^{1} \mathrm{D}_{2}$
(d) ${ }^{1} \mathrm{~S}_{1}$
10. Rutherford bombarded 7.7 MeV α particles on ${ }^{14} \mathrm{~N}_{7}$ to initiate the nuclear reaction ${ }^{14} \mathrm{~N}(\alpha, \mathrm{p}){ }^{17} \mathrm{O}$. The height of Coulomb barrier faced by α particle is about (Given $r_{\mathrm{o}}=1.2 \mathrm{fm}$)
(a) 10.6 MeV
(b) 2.1 MeV
(c) 4.2 MeV
(d) 8.4 MeV
11. Based on liquid drop model, the most stable nucleus for isobars of $\mathrm{A}=75$ has proton number (Z) equal to (Given: $a_{c}=0.7 \mathrm{MeV}$ and $a_{s}=23.0 \mathrm{MeV}$)
(a) 28
(b) 33
(c) 35
(d) 37
12. The probability of electrons being captured by the nucleus is maximum for
(a) K shell electrons
(b) L shell electrons
(c) M shell electrons
(d) Electrons in outermost orbits, independent of which shell they come from
13. An electronic device exhibiting a negative resistance characteristic is the
(a) Zener diode
(b) UJT
(c) JFET
(d) BJT
14. Role of the resistance $\left(R_{E}\right)$ connected with the Emitter of an NPN transistor in the CE amplifier circuit is
(a) to fix the Q point at the center of the load line
(b) to increase the bandwidth of the amplifier
(c) to provide a path to the ac signal to ground
(d) to provide a negative feedback for dc bias stabilization
15. The n-channel JFET having pinch-off voltage of -5 V shows a transconductance of $1 \mathrm{~mA} / \mathrm{V}$ when the applied gate to source voltage $\left(\mathrm{V}_{\mathrm{GS}}\right)$ is -3 V . The maximum value of transconductance (in mA / V) for JFET will be
(a) 1.5
(b) 2.0
(c) 2.5
(d) 3.0
16. The ideal OP-AMP with input resistance R_{i}, output resistance R_{o} and gain A, has
(a) $R_{i}=\infty, A=\infty, R_{o}=0$
(b) $R_{i}=0, A=\infty, R_{o}=0$
(c) $R_{i}=\infty, A=\infty, R_{o}=\infty$
(d) $R_{i}=0, A=\infty, R_{o}=\infty$
17. The information in STACK in 8085 microprocessor follows
(a) FIFO
(b) LIFO
(c) FILO
(d) random access
18. The T-states required for the opcode fetch in 8085 microprocessor and the execution time required for opcode fetch if the clock frequency is 2 MHz are respectively.
(a) $4 T, 2 \mu s$
(b) $8 T, 4 \mu s$
(c) $2 T, 2 \mu \mathrm{~s}$
(d) $8 T, 2 \mu s$
19. Assume the accumulator content in 8085 microprocessor is 00 H and flag $\mathrm{Z}=1$. The content of accumulator (A) and Z flag after the execution of instruction MVI A, 05 H are
(a) $\mathrm{A}=05 \mathrm{H}, \mathrm{Z}=1$
(b) $\mathrm{A}=05 \mathrm{H}, \mathrm{Z}=0$
(c) $\mathrm{A}=00 \mathrm{H}, \mathrm{Z}=1$
(d) $\mathrm{A}=00 \mathrm{H}, \mathrm{Z}=0$
20. Which of the following is not an infinite loop?
(a) int i $=1$;
(b) for (;;);
while (1)
\{
i++;
\}
(c) int True $=0$, False;
(d) int $\mathrm{y}, \mathrm{x}=0$; while (True)
\{
False $=1$;
do
\{
\}
$y=x$;
\} while ($\mathrm{x}==0$);
21. For the equation $x^{3}-2 x-5=0$ the solution by Newton Rapshon Method is about (Given $x_{0}=2$)
(a) 2.09983
(b) 2.07065
(c) 2.09455
(d) 2.14122
22. The real root of the equation $\cos x-3 x+1=0$ corrected to four decimal places by the method of iteration is about
(a) 0.8071

www. careerendon0.6624 ur. in

(c) 0.7214
(d) 0.6071
23. It is known that the root of the function $f(x)$ lies between 0 and 1 . After 10 iterations of the bisection method, the approximate accuracy of the root will be
(a) correct up to 2 places of decimal
(b) correct up to 3 places of decimal
(c) correct up to 4 places of decimal
(d) correct up to 5 places of decimal
24. The order of truncation error in second-order Runge-Kutta method for finding the solution of ordinary differential equations is
(a) 1
(b) 2
(c) 3
(d) 4
25. During inelastic collision of two bodies, which of the following is conserved?
(a) total linear momentum only
(b) total kinetic energy only
(c) both linear momentum and kinetic energy
(d) neither linear momentum nor kinetic energy
26. An earth satellite is kept moving in its orbit by the centripetal force provided by
(a) the gravitational attraction of the earth on the satellite
(b) the rocket engine attached to the satellite
(c) the gravitational attraction of the sun on the satellite
(d) the radio waves sent by the ground station to the satellite
27. A sphere rolls on a horizontal plane without slipping. The percentage of kinetic energy which is rotational is about
(a) 58%
(b) 50%
(c) 18%
(d) 28%
28. A muon, whose life-time at rest is $2 \times 10^{-6} \mathrm{sec}$, is travelling through the laboratory at three-fifth of the speed of light. It will last in
(a) $2 \times 10^{-6} \mathrm{sec}$
(b) $2.5 \times 10^{-6} \mathrm{sec}$
(c) $3.5 \times 10^{-6} \mathrm{sec}$
(d) $3.0 \times 10^{-5} \mathrm{sec}$
29. In an AC circuit, the voltage V and current I are given by:

$$
\begin{aligned}
& V=100 \sin (100 t) \text { volts } \\
& I=100 \sin (100 t+\pi / 3) \mathrm{mA}
\end{aligned}
$$

The power dissipated in the circuit is
(a) $10^{4} \mathrm{~W}$
(b) 10 W
(c) 2.5 kW
(d) 2.5 W
30. When a test charge is brought in from infinity along the perpendicular bisector of an electric dipole, the work done is
(a) positive
(b) negative
(c) zero
(d) infinity
31. The ratio of magneto-motive force round the circuit to the magnetic flux is referred as
(a) reactance
(b) conductance
(c) resistivity
(d) reluctance
32. A conducting circular loop is placed in a uniform magnetic field $\mathrm{B}=0.04 \mathrm{~T}$ with its plane perpendicular to the field. Somehow the radius of the loop starts shrinking at a constant rate of $0.5 \mathrm{~mm} / \mathrm{sec}$. The induced emf in the loop at an instant, when the radius is 2 cm , will be
(a) $5.0 \mu \mathrm{~V}$
(b) $2.5 \mu \mathrm{~V}$
(c) $10.0 \mu \mathrm{~V}$
(d) $25.0 \mu \mathrm{~V}$
33. Consider a Boolean expression $F=(B+B C)(B+\bar{B} C)(B+D)$

The minimum number of NAND gates required to implement this ' F ' will be
(a) 0
(b) 2
(c) 3
(d) 4
34. The number of comparators in a 4-bit flash A to D converter is
(a) 4
(b) 5 arepren (c) 15
(d) 16
35. The functional difference between SR flip-flop and $\mathbf{J K}$ flip-flop is that
(a) JK flip-flop has a feedback path
(b) JK flip-flop can accept both inputs as 1
(c) JK flip-flop does not require an external clock pulse
(d) JK flip-flop is faster than SR flip-flop
36. The binary number corresponding to a decimal number 9.625 can be expressed as
(a) 1100.101
(b) 1001.110
(c) 1001.101
(d) 1100.011
37. The velocity of a traveling wave on a string under fixed tension
(a) does not change when frequency varies
(b) does not change when wavelength varies
(c) decrease with increase of frequency
(d) decrease with decrease in wavelength
38. Two springs of force constant K_{1} and K_{2} are arranged in a parallel arrangement and a mass ' m ' is suspended from it. The arrangement is equivalent to a single spring of constant K given by
(a) $K_{1}-K_{2}$
(b) $K_{1}+K_{2}$
(c) $K_{1} K_{2} /\left(K_{1}+K_{2}\right)$
(d) K_{1} / K_{2}
39. Two vibrating strings of lengths L and $3 L$ and radii $3 R$ and R, respectively, are stretched under the same tension. Both the strings vibrate in their fundamental modes, the one of length L with frequency v_{1} and the other with frequency v_{2}. If the two strings are made of same material then the ratio v_{1} / v_{2} is given by
(a) 1
(b) $3^{1 / 2}$
(c) 3
(d) 9
40. In a standing wave, the phase difference between any two points confined between adjacent node and antinode
(a) is always zero
(b) is between $\pi / 4$ and $\pi / 2$
(c) is between $\pi / 2$ and π
(d) changes periodically
41. If ' Z ' is the atomic number and ' A ' is the atomic weight of the element then according to Moseley's law, the frequency of the characteristic x-ray is proportional to
(a) Z^{2}
(b) A^{2}
(c) $Z^{3 / 2}$
(d) $\mathrm{A}^{1 / 2} \mathrm{Z}^{1 / 3}$
42. In M.K.S units, Bohr magneton is given by
(a) em/4h
(b) $\mathrm{eh} / 2 \pi \mathrm{~m}$
(c) eh/ $4 \pi \mathrm{~m}$
(d) $\mathrm{mb} / 2 \mathrm{e} \pi$
43. The typical wavelengths emitted by diatomic molecules in pure vibrational and pure rotational transitions are respectively in the region of
(a) infrared and visible
(b) visible and infrared
(c) infrared and microwave
(d) microwave and infrared
44. The value of Einstein's coefficient A_{21} for a two level atomic system is $4 \times 10^{2} \mathrm{sec}^{-1}$. The spontaneous life time is
(a) $5 \times 10^{-2} \mathrm{sec}$
(b) $2.5 \times 10^{-3} \mathrm{sec}$
(c) $5 \times 10^{-3} \mathrm{sec}$
(d) $2.5 \times 10^{3} \mathrm{sec}$
45. Two lenses of power +5 D and -2 D are in contact and are coaxially situated. The power of the combination is
(a) -3 D
(b) +3 D
(c) -7 D
(d) +7 D
46. When a liquid is introduced between the lens and the plate in the Newton Ring apparatus, the diameter of the $15^{\text {th }}$ ring changes from 2 cm to 1.8 cm . The refractive index of the liquid is
(a) 1.05
(b) 1.11
(c) 1.23
(d) 1.33
47. When the movable mirror of the Michelson interferometer is moved through a distance of 0.030 mm under the illumination of a wavelength $6000 \AA$, the number of displaced fringes is
(a) 0
(b) 10
(c) 100 U. In
(d) 600
48. A beam of light of wavelength 600 nm from a distant source falls on a single slit 1.00 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between the first dark fringe on either side of the central maximum is
(a) 0.6 mm
(b) 1.2 mm
(c) 1.8 mm
(d) 2.4 mm
49. The spectroscopic Lande g-factor for a state ${ }^{2} \mathrm{P}_{1 / 2}$ is
(a) 1
(b) $2 / 3$
(c) $3 / 2$
(d) 2
50. The Debye temperature of a metal is 450 K . Its Debye frequency in Hz is of the order of
(a) 10^{11}
(b) 10^{13}
(c) 10^{16}
(d) 10^{20}
51. In the Davission-Germer experiment, the hump is most prominent when the electron is accelerated by
(a) 24 V
(b) 34 V
(c) 54 V
(d) 64 V
52. The susceptibility of a diamagnetic material is about
(a) -10^{-5}
(b) 10^{-7}
(c) 10^{2}
(d) 10^{3}
53. If σ and E are the electrical conductivity and the applied field respectively, the heat developed across a conductor per unit volume per second is
(a) σE^{2}
(b) $\sigma^{2} E$
(c) σ / E
(d) E^{2} / σ
54. Transition temperature T_{c} and critical field H_{c} for a superconductor are related as
(a) $H_{c}=H_{0}\left[1-\frac{T}{T_{c}}\right]$
(b) $H_{c}=H_{0}\left[\frac{T}{T_{c}}-1\right]$
(c) $H_{c}=H_{0}\left[1-\left(\frac{T}{T_{c}}\right)^{2}\right]$
(d) $H_{c}=H_{0}\left[\left(\frac{T}{T_{c}}\right)^{2}-1\right]$
55. The vapour pressure (p), in mm of Hg , of solid ammonia is given by the relation:
$\ln \mathrm{p}=23.01-(3754 / \mathrm{T})$, where T is the absolute temperature. The vapour pressure, in mm of Hg , of liquid ammonia is given by the relation $\ln p=19.49-(3063 / \mathrm{T})$. The temperature of the triplet point is about
(a) 191.3 K
(b) 196.3 K
(c) 206.3 K
(d) 296.3 K
56. The 10 g of ice at $0^{\circ} \mathrm{C}$ is converted into water at the same temperature. Take latent heat of fusion as 80 $\mathrm{cal} / \mathrm{g}$. The change in entropy in $\mathrm{cal} / \mathrm{K}$ is about
(a) zero
(b) 0.34
(c) 2.93
(d) 3.92
57. A quantity of dry air at $27^{\circ} \mathrm{C}$ is compressed suddenly to one-third of its volume. Take γ to be 1.5 for dry air. Change in temperature of the gas is about
(a) 179 K
(b) 199 K
(c) 209 K
(d) 219 K
58. Assume that each copper atom contributes one free electron to the electron gas. The density of copper is $8.94 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and its atomic mass is 63.5 amu . The Fermi energy (in joule) in copper is of the order of
(a) 10^{-18}
(b) 10^{-13}
(c) 10^{13}
(d) 10^{18}
59. The entropy of the system in statistical mechanics is defined as (k is the Boltzmann constant and Ω is the number of microstates accessible to the system)
(a) $\mathrm{S}=k \ln \Omega$
(b) $\mathrm{S}=(k / 2) \ln \Omega$
(c) $\mathrm{S}=2 k \ln \Omega$
(d) $\mathrm{S}=k^{2} \ln \Omega$
60. If E_{1} is the energy of the lowest state of a one-dimensional potential box of length ' a ' and E_{2} is the energy of the lowest state when the length of the box is ' $a / 2$ ', then
(a) $E_{2}=2 E_{1}$
(b) $E_{2}=E_{1} / 2$
(c) $E_{2}=E_{1}$
(d) $E_{2}=4 E_{1}$
61. The white dwarf stars are stable due to
(a) electron degeneracy pressure
(b) gravitational attraction
(c) heat generated by fusion against gravitational collapse
(d) fission
62. Let $\vec{r}=\hat{x} r \cos \omega t+\hat{y} r \sin \omega t$. For constant r and ω, calculate $\vec{r} x \frac{d \vec{r}}{d t}$.
(a) $r^{2} \omega \hat{x}$
(b) $r^{2} \omega \hat{y}$
(c) $r^{2} \omega \hat{z}$
(d) $r^{2} \omega \cos (2 \omega t) \hat{z}$
63. The integral $\int_{-\infty}^{+\infty} x^{2 n} e^{-x^{2}} d x$ is equal to
(a) $\Gamma(n+1)$
(b) $\Gamma(n-1)$
(c) $\Gamma\left(n-\frac{1}{2}\right)$
(d) $\Gamma\left(n+\frac{1}{2}\right)$
64. Let $F(\omega)$ be the Fourier transform of $f(t)$ and $G(\omega)$ be the Fourier transform of $g(t)=f(t+a)$. The $G(\omega)$ and $F(\omega)$ are related with one another as
(a) $G(\omega)=e^{-i(a+t) \omega} F(\omega)$
(b) $G(\omega)=e^{-i a \omega} F(\omega)$
(c) $G(\omega)=e^{+i \omega t} F(\omega)$
(d) $G(\omega)=e^{+i \omega(t+a)} F(\omega)$
65. A finite amount of heat released at $t=0$ spreads uniformly in all directions from the origin in a medium initially at zero temperature everywhere. The spatial and temporal temperature distribution is given as $\frac{c}{\sqrt{t^{3}}} e^{-r^{2} /\left(4 a^{2} t\right)}$ where a and C are some constants. The time it takes for the temperature at distance ' r ' from the origin to attain its maximum value, is
(a) $\frac{r^{2}}{6 a^{2}}$
(b) $\frac{r^{2}}{4 a^{2}}$
(c) $\frac{3 r^{2}}{8 a^{2}}$
(d) $\frac{r^{2}}{a^{2}}$
66. The Euler-Lagrangian equation for a system is given as $\ddot{x}=-\gamma \dot{x}-\frac{k}{m}$. Which of the following Lagrangians will describe this system?
(a) $L=\frac{1}{2} \exp (\gamma t)\left(m \dot{x}^{2}-k x^{2}\right)$
(b) $L=\frac{1}{2} \exp (\gamma t)\left(m \dot{x}^{2}-k x^{2}\right)$
(c) $L=\frac{1}{2} \exp (-\gamma t)\left(m \dot{x}^{2}+k x^{2}\right)$
(d) $L=\frac{1}{2} \exp (-\gamma t)\left(m \dot{x}^{2}-k x^{2}\right)$
67. The imaginary part of an analytic function in Cartesian coordinate is $2 x y$. The real part is given by
(a) $x^{2}+y^{2}=a^{2}$
(b) $x^{2}-y^{2}=a^{2}$
(c) $-x^{2}+y^{2}=a^{2}$
(d) $-x^{2}-y^{2}=a^{2}$
68. The Laurent series of a function $f(z)$ about $z=2$ is given by
$f(z)=\frac{1}{2(z-2)^{3}}-\frac{1}{4(z-2)^{2}}+\frac{1}{8(z-2)}-\frac{1}{16}+\frac{z-2}{32}-\ldots$.
The order of the pole and the value of the residue are eavoulr. in
(a) Order $=3$ and Residue $=\frac{1}{2}$
(b) Order $=2$ and Residue $=-\frac{1}{4}$
(c) Order $=1$ and Residue $=\frac{1}{8}$
(d) Order $=3$ and Residue $=\frac{1}{8}$
69. The Bessel function $J_{1}(x)$ has its first zero at $x=3.8317$. The intensity of light of wavelength λ in the diffraction pattern from a circular aperture of size ' a ' at angle α is proportional to $\left\{J_{1}\left(\frac{2 \pi a}{\lambda} \sin \alpha\right)\right\}^{2}$. The angle α at which the intensity will fall to zero for a typical wavelength of $5.5 \times 10^{-7} \mathrm{~m}$ and $a=0.5 \mathrm{~cm}$, is about
(a) 14 sec
(b) 23 minutes
(c) 24 degrees
(d) 7 radians
70. Which of the following statements is true for a square matrix A ?
(a) If $\mathrm{A}^{2}=0$, it necessarily implies that $\mathrm{A}=0$
(b) If A is real and orthogonal, its eigenvalues will always be real
(c) If A is hermitian, its diagonal entries are always real
(d) If A is anti-hermitian (skew-hermitian), its diagonal entries are always zero
71. The magnitude of $\oint \vec{r} \times \overrightarrow{d r}$ over the perimeter of an ellipse described by $\vec{r}=\hat{x} a \cos \theta+\hat{y} b \sin \theta$, is
(a) $\pi a b / 2$
(b) $\pi a b$
(c) $2 \pi a b$
(d) $a b$
72. In which quadrants of the complex plane, is the function $f(z)=|x|-i|y|$ analytic?
(a) Only in the fourth quadrant
(b) Only in the first and third quadrants
(c) Only in the second and fourth quadrants
(d) In all the quadrants
73. The Laplace transforms $L\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t$ of $\cosh (k t)$ and $\sin \mathrm{h}(k t)$ are given as
(a) $L\{\cosh k t\}=\frac{k}{s^{2}+k^{2}}$ and $L\{\sinh k t\}=\frac{s}{s^{2}+k^{2}}$
(b) $L\{\cosh k t\}=\frac{s}{s^{2}+k^{2}}$ and $L\{\sinh k t\}=\frac{k}{s^{2}+k^{2}}$
(c) $L\{\cosh k t\}=\frac{k}{s^{2}-k^{2}}$ and $L\{\sinh k t\}=\frac{s}{s^{2}-k^{2}}$
(d) $L\{\cosh k t\}=\frac{s}{s^{2}-k^{2}}$ and $L\{\sinh k t\}=\frac{k}{s^{2}-k^{2}}$
74. A vector C_{i} and a tensor $C_{j k}$ are related as $C_{i}=\frac{1}{2} \epsilon_{i j k} C_{j k}$ where $\epsilon_{i j k}$ is the Levi-Civita symbol. The tensor $C_{j k}$ is given by
(a) $\left(\begin{array}{ccc}0 & C_{3} & C_{2} \\ C_{3} & 0 & C_{1} \\ C_{2} & C_{1} & 0\end{array}\right)$

(c) $\left(\begin{array}{ccc}0 & -C_{3} & C_{2} \\ C_{3} & 0 & C_{1} \\ -C_{2} & -C_{1} & 0\end{array}\right)$
(d) $\left(\begin{array}{ccc}0 & C_{3} & -C_{2} \\ -C_{3} & 0 & C_{1} \\ C_{2} & -C_{1} & 0\end{array}\right)$
75. Under a rotation by an angle θ about the x-axis, the vector that remains invariant is
(a) $2 \hat{x}-\hat{y}+\hat{z}$
(b) $3 \hat{z}$
(c) $5 \sqrt{2} \hat{x}$
(d) $\sqrt{3} \hat{y}$

