IIT-JAM-2015 (MATHEMATICS)

SECTION - A : MCQ

1. Suppose N is a normal subgroup of a group G . Which one of the following is true?
(A) If G is an infinite group then G / N is an infinite group
(B) If G is a non-abelian group then G / N is a non abelian group
(C) If G is a cyclic group then G / N is an abelian group
(D) If G is an abelian group then G / N is a cyclic group
(1) A
(2) B
(3) C
(4) D
2. The volume of the portion of the solid cylinder $x^{2}+y^{2} \leq 2$ bounded above by the surface $z=x^{2}+y^{2}$ and bounded below by the $x y$-plane is
(A) π
(B) 2π
(C) 3π
(D) 4π
(1) A
(2) B
(3) C
(4) D
3. Let S be a nonempty subset of \mathbb{R}. If S is a finite union of disjoint bounded intervals, then which one of the following is true?
(A) If S is not compact, then sup $\mathrm{S} \notin \mathrm{S} \inf \mathrm{S} \notin \mathrm{S}$
(B) Even if $\sup S \in S$ and $\inf S \in S$, S need not be compact
(C) If $\sup S \in S$ and $\inf S \in S$, then S is compact
(D) Even if S is compact, it is not necessary that sup $S \in S$ and $\inf S \in S$
(1) A
(2) B
(3) C
(4) D
4. Let $\left\{x_{n}\right\}$ be a convergent sequence of real numbers. If $x_{1}>\pi+\sqrt{2}$ and $x_{n+1}=\pi+\sqrt{x_{n}-\pi}$ for $n \geq 1$, then which one of the following is the limit of this sequence?
(A) $\pi+1$
(B) $\pi+\sqrt{2}$
(C) π
(D) $\pi+\sqrt{\pi}$
(1) A
(2) B
(3) C
(4) D
5. Let a, b, c, d be distinct non-zero real numbers with $a+b=c+d$. Then an eigenvalue of the matrix $\left[\begin{array}{ccc}a & b & 1 \\ c & d & 1 \\ 1 & -1 & 0\end{array}\right]$ is
(A) $a+c$
(B) $a+b$
(C) $a-b$
(D) $b-d$
(1) A
(2) B
(3) C
(4) D
6. Let A be a nonempty subset of \mathbb{R}. Let $I(A)$ denote the set of interior points of A. Then $I(A)$ can be
(A) empty
(B) singleton
(C) a finite set containing more than one element
(D) countable but not finite
(1) A
(2) B
(3) C
(4) D
7. Let $y(x)=u(x) \sin x+v(x) \cos x$ be a solution of the different equation $y^{\prime \prime}+y=\sec x$. Then $u(x)$ is
(A) $\ln |\cos x|+c$
(B) $-x+c$
(C) $x+c$
(D) $\ln |\sec x|+c$
(1) A
(2) B
(3) C
(4) D
8. An integrating factor of the differential equation $\frac{d y}{d x}=\frac{2 x y^{2}+y}{x-2 y^{3}}$ is
(A) $\frac{1}{y}$
(B) $\frac{1}{y^{2}}$
(C) y
(D) y^{2}
(1) A
(2) B
(3) C
(4) D
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function with $f(0)=0$. If for all $x \in \mathbb{R}, 1<f^{\prime}(x)<2$, then which one of the following statements is true on $(0, \infty)$?
(A) f is unbounded
(B) f is increasing and bounded
(C) f has at least one zero
(D) f is periodic
(1) A
(2) B
(3) C
(4) D
10. If an integral curve of the differential equation $(y-x) \frac{d y}{d x}=1$ passes through $(0,0)$ and $(\alpha, 1)$, then α is equal to
(A) $2-e^{-1}$
(B) $1-e^{-1}$
(C) e^{-1}
(D) $1+e$
(1) A
(2) B
(3) C
(4) D
11. Let S be the bounded surface of the cylinder $x^{2}+y^{2}=1$ cut by the planes $z=0$ and $z=1+x$. Then the value of the surface integral $\iint_{S} 3 z^{2} d \sigma$ is equal to
(A) $\int_{0}^{2 \pi}(1+\cos \theta)^{3} d \theta$
(B) $\int_{0}^{2 \pi} \sin \theta \cos \theta(1+\cos \theta)^{2} d \theta$
(C) $\int_{0}^{2 \pi}(1+2 \cos \theta)^{3} d \theta$
(D) $\int_{0}^{2 \pi} \sin \theta \cos \theta(1+2 \cos \theta)^{2} d \theta$
(1) A
(2) B
(3) C
(4) D
12. Let $\mathrm{P}_{2}(\mathbb{R})$ be the vector space of polynomials in x of degree at most 2 with real coefficients. Let $\mathrm{M}_{2}(\mathbb{R})$ be the vector space of 2×2 real matrices. If a linear transformation $T: P_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ is defined as $T(f)=\left[\begin{array}{cc}f(0)-f(2) & 0 \\ 0 & f(1)\end{array}\right]$ then
(A) T is one-one but not onto
(B) T is onto but not one-one
(C) Range $(T)=\operatorname{span}\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right]\right\}$
(D) $\operatorname{Null}(T)=\operatorname{span}\left\{x^{2}-2 x, 1-x\right\}$
(1) A
(2) B
(3) C
(4) D
13. Let $S=\bigcap_{n=1}^{\infty}\left(\left[0, \frac{1}{2 \pi+1}\right] \cup\left[\frac{1}{2 n}, 1\right]\right)$. Which one of the following statements is FALSE?
(A) There exist sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ in $[0,1]$ such that $S=[0,1] \backslash \bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)$
(B) $[0,1] \backslash \mathrm{S}$ is an open set
(C) If A is an infinite subset of S , then A has a limit point
(D) There exists an infinite subset of S having no limit points
(1) A
(2) B
(3) C
(4) D
14. The limit $\lim _{x \rightarrow 0+} \frac{1}{\sin ^{2} x} \int_{\frac{x}{2}}^{x} \sin ^{-1} t d t$ is equal to
(A) 0
(B) $\frac{1}{8}$
(C) $\frac{1}{4}$
(D) $\frac{3}{8}$
(1) A
(2) B
(3) C
(4) D
15. Let S_{3} be the group of permutations of three distinct symbols. The direct sum $S_{3} \oplus S_{3}$ has an element of order
(A) 4
(B) 6
(C) 9
(D) 18
(1) A
(2) B
(3) C
(4) D
16. Let $\mathrm{B}_{1}=\{(1,2),(2,-1)\}$ and $\mathrm{B}_{2}=\{(1,0),(0,1)\}$ be ordered bases of \mathbb{R}^{2}. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that $[T]_{B_{1}, B_{2}}$, the matrix of T with respect to B_{1} and B_{2}, is $\left[\begin{array}{cc}4 & 3 \\ 2 & -4\end{array}\right]$, then $T(5,5)$ is equal to
(A) $(-9,8)$
(B) $(9,8)$
(C) $(-15,-2)$
(D) $(15,2)$
(1) A
(2) B
(3) C
(4) D
17. Let G be a nonabelian group. Let $\alpha \in G$ have order 4 and let $\beta \in G$ have order 3 . Then the order of the element $\alpha \beta$ in G.
(A) is 6
(B) is 12
(C) is of the form $12 k$ for $k \geq 2$
(D) need not be finite
(1) A
(2) B
(3) C
(4) D
18. Let $A=\left[\begin{array}{cc}0 & 1-i \\ -1-i & i\end{array}\right]$ and $B=A^{T} \bar{A}$. Then
(A) an eigenvalue of B is purely imaginary
(B) an eigenvalue of A is zero
(C) all eigenvalues of B are real
(D) A has a non-zero real eigenvalue
(1) A
(2) B
(3) C
(4) D
19. Suppose that the dependent variables z and w are functions of the independent variables x and y, defined by the equations $f(x, y, z, w)=0$ and $g(x, y, z, w)=0$, where $f_{z} g_{w}-f_{w} g_{z}=1$. Which one of the following is correct?
(A) $z_{x}=f_{w} g_{x}-f_{x} g_{w}$
(B) $z_{x}=f_{x} g_{w}-f_{w} g_{x}$
(C) $z_{x}=f_{z} g_{x}-f_{x} g_{z}$
(D) $z_{x}=f_{z} g_{w}-f_{z} g_{x}$
(1) A
(2) B
(3) C
(4) D
20. The orthogonal trajectories of the family of curves $y=c_{1} x^{3}$ are
(A) $2 x^{2}+3 y^{2}=c_{2}$
(B) $3 x^{2}+y^{2}=c_{2}$
(C) $3 x^{2}+2 y^{2}=c_{2}$
(D) $x^{2}+3 y^{2}=c_{2}$
(1) A
(2) B
(3) C
(4) D
21. Which one of the following statements is true for the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n)!}{n^{2 n}}$?
(A) The series converges conditionally but not absolutely
(B) The series converges absolutely
(C) The sequence of partial sums of the series is bounded but not convergent
(D) The sequence of partial sums of the series is unbounded
(1) A
(2) B
(3) C
(4) D
22. Let G and H be nonempty subsets of \mathbb{R}, where G is connected and $G \cup H$ is not connected. Which one of the following statements is true for all such G and H ?
(A) If $G \cap H=\varnothing$, then H is connected
(B) If $G \cap H=\varnothing$, then H is not connected
(C) If $G \cap H \neq \varnothing$, then H is connected
(D) If $G \cap H \neq \varnothing$, then H is not connected
(1) A
(2) B
(3) C
(4) D
23. For $m, n \in \mathbb{N}$, define $f_{m, n}(x)=\left\{\begin{array}{cc}x^{m} \sin \left(\frac{1}{x^{n}}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$.

Then at $x=0, f_{m, n}$ is
(A) differentiable for each pair m, n with $m>n$
(B) differentiable for each pair m, n with $m<n$
(C) not differentiable for each pair m, n with $m>n$
(D) not differentiable for each pair m, n with $m<n$
(1) A
(2) B
(3) C
(4) D
24. For what real values of x and y, does the integral $\int_{x}^{y}\left(6-t-t^{2}\right) d t$ attain its maximum?
(A) $x=-3, y=2$
(B) $x=2, y=3$
(C) $x=-2, y=2$
(D) $x=-3, y=4$
(1) A
(2) B
(3) C
(4) D
25. Let $f:\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0\right\} \rightarrow \mathbb{R}$ be given by
$f(x, y)=x^{\frac{1}{3}} y^{\frac{-4}{3}} \tan ^{-1}\left(\frac{y}{x}\right)+\frac{1}{\sqrt{x^{2}+y^{2}}}$
Then the value of $g(x, y)=\frac{x f_{x}(x, y)+y f_{y}(x, y)}{f(x, y)}$
(A) changes with x but not with y
(B) changes with y but not with x
(C) changes with x and also with y
(D) neither changes with x nor with y
(1) A
(2) B
(3) C
(4) D
26. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing continuous function. If $\left\{a_{n}\right\}$ is a sequence in $[0,1]$, then the sequence $\left\{f\left(a_{n}\right)\right\}$ is
(A) increasing
(B) bounded
(C) convergent
(D) not necessarily bounded
(1) A
(2) B
(3) C
(4) D
27. The area of the planar region bounded by the curves $x=6 y^{2}-2$ and $x=2 y^{2}$ is
(A) $\frac{\sqrt{2}}{3}$
(B) $\frac{2 \sqrt{2}}{3}$
(C) $\frac{4 \sqrt{2}}{3}$
(D) $\sqrt{2}$
(1) A
(2) B
(3) C
(4) D
28. If $y(t)$ is a solution of the differential equation $y^{\prime \prime}+4 y=2 e^{t}$, then $\lim _{t \rightarrow \infty} e^{-t} y(t)$ is equal to
(A) $\frac{2}{3}$
(B) $\frac{2}{5}$
(C) $\frac{2}{7}$
(D) $\frac{2}{9}$
(1) A
(2) B
(3) C
(4) D
29. The sequence $\left\{\cos \left(\frac{1}{2} \tan ^{-1}\left(-\frac{n}{2}\right)^{n}\right)\right\}$ is
(A) monotone and convergent
(B) monotone but not convergent
(C) convergent but not monotone
(D) neither monotone nor convergent
(1) A
(2) B
(3) C
(4) D
30. For $n \geq 2$, let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f_{n}(x)=x^{n} \sin x$. Then at $x=0, f_{n}$ has a
(A) local maximum if n is even
(B) local maximum if n is odd
(C) local minimum if n is even
(D) local minimum if n is odd
(1) A
(2) B
(3) C
(4) D

SECTION - B : MSQ

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cc}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$

At $(0,0)$,
(A) f is not continuous
(B) f is continuous, and both f_{x} and f_{y} exist
(C) f is differentiable
(D) f_{x} and f_{y} exist but f is not differentiable
(1) A
(2) B
(3) C
(4) D
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\int_{-5}^{x}(t-1)^{3} d t$. In which of the following interval(s), f takes the value 1 ?
(A) $[-6,0]$
(B) $[-2,4]$
(C) $[2,8]$
(D) $[6,12]$
(1) A
(2) B
(3) C
(4) D
3. Let $f, g:[0,1] \rightarrow[0,1]$ be functions. Let $R(f)$ and $R(g)$ be the ranges of f and g, respectively. Which of the following statements is (are) true?
(A) If $f(x) \leq g(x)$ for all $x \in[0,1]$, then $\sup R(f) \leq \inf R(g)$
(B) If $f(x) \leq g(x)$ for some $x \in[0,1]$, then $\inf R(f) \leq \sup R(g)$
(C) If $f(x) \leq g(y)$ for some $x, y \in[0,1]$, then inf $R(f) \leq \sup R(g)$
(D) If $f(x) \leq g(y)$ for all $x, y \in[0,1]$, then $\sup R(f) \leq \inf R(g)$
(1) A
(2) B
(3) C
(4) D
4. Let $f:(-1,1) \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2} e^{1 /\left(1-x^{2}\right)}$. Then
(A) f is decreasing in $(-1,0)$
(B) f is increasing in $(0,1)$
(C) $f(x)=1$ has two solutions in $(-1,1)$
(D) $f(x)=1$ has no solutions in $(-1,1)$
(1) A
(2) B
(3) C
(4) D
5. Which of the following conditions implies (imply) the convergence of a sequence $\left\{x_{n}\right\}$ of real numbers?
(A) Given $\varepsilon>0$ there exists an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0},\left|x_{n+1}-x_{n}\right|<\varepsilon$
(B) Given $\varepsilon>0$ there exists an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}, \frac{1}{(n+1)^{2}}\left|x_{n+1}-x_{n}\right|<\varepsilon$
(C) Given $\varepsilon>0$ there exists an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0},(n+1)^{2}\left|x_{n+1}-x_{n}\right|<\varepsilon$
(D) Given $\varepsilon>0$ there exists an $n_{0} \in \mathbb{N}$ such that for all m, n with $m>n \geq n_{0},\left|x_{m}-x_{n}\right|<\varepsilon$
(1) A
(2) B
(3) C
(4) D
6. Which of the following statements is (are) true on the interval $\left(0, \frac{\pi}{2}\right)$?
(A) $\cos x<\cos (\sin x)$
(B) $\tan x<x$
(C) $\sqrt{1+x}<1+\frac{x}{2}-\frac{x^{2}}{8}$
(D) $\frac{1-x^{2}}{2}<\ln (2+x)$
(1) A
(2) B
(3) C
(4) D
7. Which of the following statements is (are) true?
(A) $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ is isomorphic to \mathbb{Z}_{6}
(B) $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ is isomorphic to \mathbb{Z}_{9}
(C) $\mathbb{Z}_{4} \oplus \mathbb{Z}_{6}$ is isomorphic to \mathbb{Z}_{24}
(D) $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5}$ is isomorphic to \mathbb{Z}_{30}
(1) A
(2) B
(3) C
(4) D
8. The initial value problem $y^{\prime}=\sqrt{y}, y(0)=\alpha, \alpha \geq 0$ has
(A) at least two solutions if $\alpha=0$
(B) no solution if $\alpha>0$
(C) at least one solution if $\alpha>0$
(D) a unique solution if $\alpha=0$
(1) A
(2) B
(3) C
(4) D
9. Let \vec{F} be a vector field given by $\vec{F}(x, y, z)=-y \hat{i}+2 x y \hat{j}+z^{3} \hat{k}$, for $(x, y, z) \in \mathbb{R}^{3}$. If c is the curve of intersection of the surfaces $x^{2}+y^{2}=1$ and $y+z=2$, then which of the following is (are) equal to $\left|\int_{C} \vec{F} \cdot d \vec{r}\right| ?$
(A) $\int_{0}^{2 \pi} \int_{0}^{1}(1+2 r \sin \theta) r d r d \theta$
(B) $\int_{0}^{2 \pi}\left(\frac{1}{2}+\frac{2}{3} \sin \theta\right) d \theta$
(C) $\int_{0}^{2 \pi} \int_{0}^{1}(1+2 r \sin \theta) d r d \theta$
(D) $\int_{0}^{2 \pi}(1+\sin \theta) d \theta$
(1) A
(2) B
(3) C
(4) D
10. Let V be the set of 2×2 matrices $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ with complex entries such that $a_{11}+a_{22}=0$. Let W be the set of matrices in V with $a_{12}+\overline{a_{21}}=0$. Then, under usual matrix addition and scalar multiplication, which of the following is (are) true?
(A) V is a vector space over \mathbb{C}
(B) W is a vector space over \mathbb{C}
(C) V is a vector space over \mathbb{R}
(D) W is a vector space over \mathbb{R}
(1) A
(2) B
(3) C
(4) D

SECTION - C : NAT

1. If the set $\left\{\left[\begin{array}{cc}x & -x \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ x & x\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right]\right\}$ is linearly dependent in the vector space of all 2×2 matrices with real entries, then x is equal to \qquad
2. If $5^{2015} \equiv n(\bmod 11)$ and $n \in\{0,1,2,3,4,5,6,7,8,9,10\}$, then n is equal to \qquad
3. If the power series $\sum_{n=0}^{\infty} \frac{n!}{n^{n}} x^{2 n}$ converges for $|x|<c$ and diverges for $|x|>c$, then the value of c, correct upto three decimal places, is \qquad
4. The number of distinct normal subgroups of S_{3} is \qquad
5. Let C be the straight line segment from $P(0, \pi)$ to $Q\left(4, \frac{\pi}{2}\right)$, in the $x y$-plane. Then the value of $\int_{C} e^{x}(\cos y d x-\sin y d y)$ is \qquad
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cl}\left(1+\frac{x}{y}\right)^{2}, & y \neq 0 \\ 0, & y=0\end{array}\right.$

If the directional derivative of f at $(0,0)$ exists along the direction $\cos \alpha \hat{i}+\sin \alpha \hat{j}$, where $\sin \alpha \neq 0$, then the value of $\cot \alpha$ is \qquad
7. Let $f:(0,1) \rightarrow \mathbb{R}$ be a continuously differentiable function such that f^{\prime} has finitely mainly zeros in $(0,1)$ and f^{\prime} changes sign at exactly two of these points. Then for any $y \in \mathbb{R}$, the maximum number of solutions to $f(x)=y$ in $(0,1)$ is \qquad
8. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $f(x, y, z)=\sin x+2 e^{\frac{y}{2}}+z^{2}$. The maximum rate of change of f at $\left(\frac{\pi}{4}, 0,1\right)$, correct upto three decimal places, is \qquad
9. Let S be the portion of the surface $z=\sqrt{16-x^{2}}$ bounded by the planes $x=0, x=2, y=0$, and $y=3$. The surface area of S , correct upto three decimal places, is \qquad
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{ll}x^{6}-1, & x \in \mathbb{Q} \\ 1-x^{6}, & x \notin \mathbb{Q}\end{array}\right.$. The number of points at which f is continuous, is \qquad
11. The coefficient of $\left(x-\frac{\pi}{4}\right)^{3}$ in the Taylor series expansion of the function $f(x)=3 \sin x \cos \left(x+\frac{\pi}{4}\right)$, $x \in \mathbb{R}$ about the point $\frac{\pi}{4}$, correct upto three decimal places, is \qquad
12. Let \mathbb{R} be the planar region bounded by the lines $x=0, y=0$ and the curve $x^{2}+y^{2}=4$, in the first quadrant. Let C be the boundary of \mathbb{R}, oriented counter-clockwise. Then the value of $\oint_{C} x(1-y) d x+\left(x^{2}-y^{2}\right) d y$ is \qquad
13. Let P and Q be two real matrices of size 4×6 and 5×4, respectively. If $\operatorname{rank}(\mathrm{Q})=4$ and $\operatorname{rank}(\mathrm{QP})=$ 2 , then $\operatorname{rank}(\mathrm{P})$ is equal to \qquad
14. Let ℓ be the length of the portion of the curve $x=x(y)$ between the lines $y=1$ and $y=3$, where $x(y)$ satisfies

$$
\frac{d x}{d y}=\frac{\sqrt{1+y^{2}+y^{4}}}{y}, x(1)=0
$$

The value of ℓ, correct upto three decimal places, is \qquad
15. If $\int_{0}^{x}\left(e^{-t^{2}}+\cos t\right) d t$ has the power series expansion $\sum_{n=1}^{\infty} a_{n} x^{n}$, then a_{5}, correct upto three decimal places, is equal to \qquad
16. Let $M_{2}(\mathbb{R})$ be the vector space of 2×2 real matrices. Let V be a subspace of $M_{2}(\mathbb{R})$ defined by

$$
V=\left\{A \in M_{2}(\mathbb{R}): A\left[\begin{array}{ll}
0 & 2 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
3 & 1
\end{array}\right] A\right\}
$$

Then the dimension of V is \qquad
17. Suppose G is a cyclic group and $\sigma, \tau \in G$ are such that order $(\sigma)=12$ and $\operatorname{order}(\tau)=21$. Then the order of the smallest group containing σ and τ is \qquad
18. The limit $\lim _{x \rightarrow 0+} \frac{9}{x}\left(\frac{1}{\tan ^{-1} x}-\frac{1}{x}\right)$ is equal to \qquad
19. The limit $\lim _{n \rightarrow \infty} \sum_{k=2}^{n} \frac{1}{k^{3}-k}$ is equal to \qquad
20. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cc}\frac{y}{\sin y}, & y \neq 0 \\ 1, & y=0\end{array}\right.$

Then the integral $\frac{1}{\pi^{2}} \int_{x=0}^{1} \int_{y=\sin ^{-1} x}^{\frac{\pi}{2}} f(x, y) d y d x$ correct upto three decimal places, is \qquad

