Section-A

Multiple Choice Questions (MCQ)

Q.1 – Q.10 carry ONE mark each.

1. The sequence $\{s_n\}$ of real numbers given by

$$s_n = \frac{\sin\frac{\pi}{2}}{1\cdot 2} + \frac{\sin\frac{\pi}{2^2}}{2\cdot 3} + \dots + \frac{\sin\frac{\pi}{2^n}}{n \cdot (n+1)}$$
 is
(a) a divergent sequence
(b) an oscillatory sequence
(c) not a Cauchy sequence
(d) a Cauchy sequence

- 2. Let *P* be the vector space (over \mathbb{R}) of all polynomials of degree ≤ 3 with real coefficients. Consider the linear transformation $T: P \rightarrow P$ defined by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_3 + a_2x + a_1x^2 + a_0x^3$. Then the matrix representation *M* of *T* with respect to the ordered basis $\{1, x, x^2, x^3\}$ satisfies
 - (a) $M^2 + I_4 = 0$ (b) $M^2 I_4 = 0$ (c) $M I_4 = 0$ (d) $M + I_4 = 0$

3. Let $f: [-1, 1] \to \mathbb{R}$ be a continuous function. Then the integral $\int_{0}^{\infty} x f(\sin x) dx$ is equivalent to

(a)
$$\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx$$
 (b) $\frac{\pi}{2} \int_{0}^{\pi} f(\cos x) dx$ (c) $\pi \int_{0}^{\pi} f(\cos x) dx$ (d) $\pi \int_{0}^{\pi} f(\sin x) dx$

- 4. Let σ be an element of the permutation group S_5 . Then the maximum possible order of σ is (a) 5 (b) 6 (c) 10 (d) 15
- 5. Let *f* be a strictly monotonic continuous real valued function defined on [a, b] such that f(a) < a and f(b) > b. Then which one of the following is TRUE ?
 - (a) There exists exactly one $c \in (a, b)$ such that f(c) = c
 - (b) There exists exactly two points $c_1, c_2 \in (a, b)$ such that $f(c_i) = c_i, i = 1, 2$
 - (c) There exists no $c \in (a, b)$ such that f(c) = c
 - (d) There exist infinitely many points $c \in (a, b)$ such that f(c) = c
- 6. The value of $\lim_{(x,y)\to(2,-2)} \frac{\sqrt{(x-y)}-2}{\sqrt{x}\sqrt{y}}$ is reerendeavour.in
 - (a) 0 (b) $\frac{1}{4}$ (c) $\frac{1}{3}$ (d) $\frac{1}{2}$

7. Let
$$\vec{r} = (x\hat{i} + y\hat{j} + z\hat{k})$$
 and $r = |\vec{r}|$. If $f(r) = \ln r$ and $g(r) = \frac{1}{r}$, $r \neq 0$ satisfy $2\nabla f + h(r)\nabla g = \vec{0}$, then $h(r)$ is

(a)
$$r$$
 (b) $\frac{1}{r}$ (c) $2r$ (d) $\frac{2}{r}$

8. The non-zero value of *n* for which the differential equation $(3xy^2 + n^2x^2y) dx + (nx^3 + 3x^2y) dy = 0$, $x \neq 0$, becomes exact is (a) -3 (b) -2 (c) 2 (d) 3

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

1

9.	One of the points which lies on the solution curve of the differential equation $(y - x) dx + (x + y) dy = 0$, with the given condition $y(0) = 1$ is				
	(a) $(1, -2)$	(b) $(2, -1)$	(c) (2, 1)	(d) (-1, 2)	
10.	Let <i>S</i> be a closed subs (a) closed but not com (c) compact	et of \mathbb{R} , <i>T</i> a compact suppact	bset of \mathbb{R} such that $S \cap$ (b) not closed (d) neither closed nor	$T \neq \phi$. Then $S \cap T$ is compact	
Q.11 -	- Q.30 carry TWO m	arks each.			
11.	Let <i>S</i> be the series $\sum_{k=1}^{\infty}$	$\frac{1}{(2k-1) 2^{(2k-1)}}$ and T b	be the series $\sum_{k=2}^{\infty} \left(\frac{3k-4}{3k+2} \right)^{\infty}$	$\left(\frac{4}{2}\right)^{\frac{(k+1)}{3}}$ of real numbers. Then which	
	 one of the following is (a) Both the series S a (c) S is divergent and S 	TRUE ? nd <i>T</i> are convergent <i>T</i> is convergent	(b) S is convergent an(d) Both the series S a	d T is divergent and T are divergent	
12.	Let $\{a_n\}$ be a sequence	of positive real numbers	satisfying $\frac{4}{a_{n+1}} = \frac{3}{a_n} + \frac{3}{a_n}$	$\frac{a_n^3}{81}$, $n \ge 1$, $a_1 = 1$. Then all the terms of	
	the sequence lie in				
	(a) $\left[\frac{1}{2}, \frac{3}{2}\right]$	(b) [0,1]	(c) [1, 2]	(d) [1, 3]	
13.	The largest eigenvalue	of the matrix $\begin{bmatrix} 1 & 4 \\ 4 & 16 \\ 16 & 1 \end{bmatrix}$	16 1 is 4		
	(a) 16	(b) 21	(c) 48	(d) 64	
14.	The value of the integra	al $\frac{(2n)!}{2^{2n}(n!)} \int_{-1}^{1} (1-x^2)^n dx$	$x, n \in \mathbb{N}$ is		
	(a) $\frac{2}{(2n+1)!}$	(b) $\frac{2n}{(2n+1)!}$	(c) $\frac{2(n!)}{2n+1}$	(d) $\frac{(n+1)!}{2n+1}$	
15.	If the triple integral over	er the region bounded by	y the planes $2x + y + z$	= 4, $x = 0$, $y = 0$, $z = 0$ is given by	
	$\int_{0}^{2} \int_{0}^{\lambda(x) \mu(x, y)} dz dy dx \text{, then the function } \mathcal{R}(x) \in \mu(x, y) \text{ is deavour. in}$				
	(a) $x + y$	(b) $x - y$	(c) <i>x</i>	(d) y	
16.	The surfaces area of th	e portion of the plane y	+2z = 2 within the cyl	inder $x^2 + y^2 = 3$ is	
	(a) $\frac{3\sqrt{5}}{2}\pi$	(b) $\frac{5\sqrt{5}}{2}\pi$	(c) $\frac{7\sqrt{5}}{2}\pi$	(d) $\frac{9\sqrt{5}}{2}\pi$	
17.	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be de	efined by $f(x, y) = \begin{cases} \frac{1}{x} \\ \frac{1}{x} \end{cases}$	$\frac{xy^2}{y^2} \text{if} x + y \neq 0.$ 0 if x + y = 0	Then the value of $\left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y \partial x}\right)$ at	
	the point (0, 0) is (a) 0	(b) 1	(c) 2	(d) 4	

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

18.	The function $f(x, y) = 3x^2y + 4y^3 - 3x^2 - 12y^2 + 1$ has a saddle point at				
	(a) (0,0)	(b) (0, 2)	(c) (1, 1)	(d) (-2, 1)	

Consider the vector field $\vec{F} = r^{\beta}(y\hat{i} - x\hat{j})$, where $\beta \in \mathbb{R}$, $\vec{r} = x\hat{i} + y\hat{j}$ and $r = |\vec{r}|$. If the absolute value of 19. the line integral $\oint_C \vec{F} \cdot d\vec{r}$ along the closed curve $C: x^2 + y^2 = a^2$ (oriented counter clockwise) is 2π , then β is (a) -2(b) -1 (c) 1 (d) 2

Let S be the surface of the cone $z = \sqrt{x^2 + y^2}$ bounded by the planes z = 0 and z = 3. Further, let C be the 20. closed curve forming the boundary of the surfaces S. A vector field \vec{F} is such that $\nabla \times \vec{F} = -x\hat{i} - y\hat{j}$. The absolute value of the integral $\oint_C \vec{F} \cdot d\vec{r}$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, is (a) 0 (b) 9π (c) 15π (d) 18π

Let y(x) be the solution of the differential equation $\frac{d}{dx}\left(x\frac{dy}{dx}\right) = x$; y(1) = 0, $\frac{dy}{dx}\Big|_{x=1} = 0$. Then y(2) is 21.

(a) $\frac{3}{4} + \frac{1}{2} \ln 2$ (b) $\frac{3}{4} - \frac{1}{2} \ln 2$ (c) $\frac{3}{4} + \ln 2$ (d) $\frac{3}{4} - \ln 2$

The general solution of the differential equation with constant co-efficients $\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$, approaches 22.

- zero as $x \to \infty$, if (a) *b* is negative and *c* is positive (b) *b* is positive and *c* is negative
- (c) both b and c are positive (d) both b and c are negative
- Let $S \subset \mathbb{R}$ and ∂S denote the set of points x in \mathbb{R} such that every neighbourhood of x contains some points of 23. S as well as some points of complement of S. Further, let \overline{S} denote the closure of S. Then which one of the following is FALSE?
 - (a) $\partial \mathbb{Q} = \mathbb{R}$
 - (a) $\partial \mathbb{Q} = \mathbb{R}$ (b) $\partial (\mathbb{R} \setminus T) = \partial T, T \subset \mathbb{R}$ CAREER ENDEAVOUR
 - (c) $\partial(T \cup V) = \partial T \cup \partial V_V V_V \mathcal{R}$ (d) $\partial T = \overline{T} \cap (\overline{\mathbb{R} \setminus T}), T \subset \mathbb{R}$

The sum of the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + n - 2}$ is 24.

(a) $\frac{1}{3} ln 2 - \frac{5}{18}$ (b) $\frac{1}{3} ln 2 - \frac{5}{6}$ (c) $\frac{2}{3} ln 2 - \frac{5}{18}$ (d) $\frac{2}{3} ln 2 - \frac{5}{6}$

Let $f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-1|}$ for all $x \in [-1, 1]$. Then which one of the following is TRUE? 25.

- (a) Maximum value of f(x) is $\frac{3}{2}$ (b) Minimum value of f(x) is $\frac{1}{3}$ (c) Maximum of f(x) occurs at $x = \frac{1}{2}$ (d) Minimum of f(x) occurs at x = 1
 - North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

 $\langle \boldsymbol{\zeta} \rangle$

26.	The matrix $M = \begin{bmatrix} \cos \alpha & \sin \alpha \\ i \sin \alpha & i \cos \alpha \end{bmatrix}$ is a unitary matrix when α is						
	(a) $(2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$ (b) $(3n+1)\frac{\pi}{3}, n \in \mathbb{Z}$	(c) $(4n+1)\frac{\pi}{4}, n \in \mathbb{Z}$ (d) $(5n+1)\frac{\pi}{5}, n \in \mathbb{Z}$					
27.	Let $M = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & \alpha \\ 2 & -\alpha & 0 \end{bmatrix}$, $\alpha \in \mathbb{R} \setminus \{0\}$ and b a	non-zero vector such that $Mx = b$ for some $x \in \mathbb{R}^3$. Then the					
	value of $x^T b$ is (a) $-\alpha$ (b) α	(c) 0 (d) 1					
28.	The number of group homomorphism from the(a) 7(b) 3	e cyclic group \mathbb{Z}_4 to the cyclic group \mathbb{Z}_7 is (c) 2 (d) 1					
29.	In the permutation group S_n $(n \ge 5)$, if H is the of the following is TRUE ?	e smallest subgroup containing all the 3-cycles, then which one (b) Index of U in S_{1} is 2					
	(a) Order of <i>H</i> is 2	(b) Index of H in S_n is 2					
	(c) <i>H</i> is abelian	(d) $H = S_n$					
30.	Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \begin{cases} x(1+x) \\ 0 \end{cases}$	$x^{\alpha} \sin(\ell n x^2)$ if $x \neq 0$. if $x = 0$. Then, at $x = 0$, the function f is					
	(a) continuous and differentiable when $\alpha = 0$						
	(b) continuous and differentiable when $\alpha > 0$						
	(c) continuous and differentiable when $-1 < \alpha < 0$						
	(d) continuous and differentiable when $\alpha < -1$						
	Section-B Multiple Select Questions (MSQ)						
Q.31 -	- Q.40 carry TWO marks each.						
31.	31. Let $\{s_n\}$ be a sequence of positive real numbers satisfying $2 s_{n+1} = s_n^2 + \frac{3}{4}$, $n \ge 1$. If α and β are the roots of						
	the equation $x^2 - 2x + \frac{3}{4} = 0$ and $\alpha < s_1 < \beta$, then which of the following statement(s) is/are TRUE?						
	(a) $\{s_n\}$ is monotonically decreasing	(b) $\{s_n\}$ is monotonically increasing					
	(c) $\lim_{n \to \infty} s_n = \alpha$	(d) $\lim_{n \to \infty} s_n = \beta$					
32.	The value(s) of the integral $\int_{-\pi}^{\pi} x \cos nx dx$, $n \ge 1$ is(are)						
	(a) 0 when n is even	(b) 0 when n is odd					
	(c) $-\frac{4}{n^2}$ when <i>n</i> is even	(d) $-\frac{4}{n^2}$ when <i>n</i> is odd					
33.	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by						
	North Delhi : 33-35, Mall Road, G.T.B. Naga	r (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255					

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

34.

35.

36.

37.

38.

22016

$$f(x, y) = \begin{cases} \frac{xy}{|x|} & \text{if } x \neq 0 \\ 0 & \text{elsewhere} \end{cases}$$
Then at the point (0, 0), which of the following statement(s) is(are) TRUE ?
(a) *f* is not continuous (b) *f* is continuous
(c) *f* is differentiable (d) Both first order partial derivatives of *f* exist
Consider the vector field $\vec{F} = x\hat{i} + y\hat{j}$ on an open connected set $S \subset \mathbb{R}^2$. Then which of the following statement(s) is(are) TRUE ?
(a) Divergence of \vec{F} is zero on *S*
(b) The line integral of \vec{F} is independent of path in *S*
(c) \vec{F} can be expressed as a gradient of a scalar function on *S*
(d) The line integral of \vec{F} is zero around any piecewise smooth closed path in *S*
Consider the differential equation $\sin 2x \frac{dy}{dx} = 2y + 2\cos x$, $y\left(\frac{\pi}{4}\right) = 1 - \sqrt{2}$. Then which of the following statement(s) is(are) TRUE ?
(a) The solution is unbounded when $x \to 0$ (b) The solution is unbounded when $x \to \frac{\pi}{2}$
(c) The solution is bounded when $x \to 0$ (d) The solution is bounded when $x \to \frac{\pi}{2}$
Which of the following statement(s) is(are) TRUE ?
(a) There exists a connected set in \mathbb{R} which is not compact
(b) Arbitrary union of closed intervals in \mathbb{R} ead not be compact
(c) Arbitrary union of closed intervals in \mathbb{R} ead not be compact
(c) Arbitrary union of closed intervals in \mathbb{R} is always closed
(d) Every bounded infinite subset V of \mathbb{R} has a limit point in V itself
Let $P(x) = \left(\frac{5}{13}\right)^x + \left(\frac{12}{13}\right)^x - 1$ for all $x \in \mathbb{R}$. Then which of the following statement(s) is(are) TRUE ?
(a) The equation $P(x) = 0$ has exactly two solutions in \mathbb{R}
(b) $P(x)$ is strictly increasing for all $x \in \mathbb{R}$
Let G be a finite group and O(G) denotes horder. Then which of the following statement(s) is(are) TRUE ?
(a) G is abelian if $O(G)$ denotes $= pq$ where p and q are distinct primes
(b) *G* is abelian if the quotient group $GZ(0)$ is cyclic, where $Z(G)$ is the center of G
(c) G is abelian if the quoted by $GZ(0)$ is explic, where $Z(G)$ is the center of G

(d) G is abelian if $O(G) = p^3$, where p is prime

Consider the set $V = \begin{cases} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid \alpha x + \beta y + z = \gamma, \ \alpha, \beta, \gamma \in \mathbb{R} \end{cases}$. For which of the following choice(s) the 39.

set *V* becomes a two dimensional subspace of \mathbb{R}^3 over \mathbb{R} ?

- (b) $\alpha = 0$, $\beta = 1$, $\gamma = 1$ (a) $\alpha = 0$, $\beta = 1$, $\gamma = 0$
- (c) $\alpha = 1$, $\beta = 0$, $\gamma = 0$ (d) $\alpha = 1$, $\beta = 1$, $\gamma = 0$

40.	Let $S = \left\{ \frac{1}{3^n} + \frac{1}{7^m} \right\}$	$n, m \in \mathbb{N} \bigg\}$. Then which 0	which of the following statement(s) is(are) TRUE?		
	(a) S is closed	(b) S is not open	(c) S is connected	(d) 0 is a limit point of S	

Section-C

Numerical Answer Type (NAT)

Q.41 – Q.50 carry ONE mark each.

- 41. Let $\{s_n\}$ be a sequence of real numbers given by $s_n = 2^{(-1)^n} \left(1 \frac{1}{n}\right) \sin \frac{n\pi}{2}$, $n \in \mathbb{N}$. Then the least upper bound of the sequence $\{s_n\}$ is _____.
- 42. Let $\{s_k\}$ be a sequence of real numbers, where $s_k = k^{\alpha/k}$, $k \ge 1$, $\alpha = 0$. Then $\lim_{n \to \infty} (s_1 \ s_2 \ \dots \ s_n)^{1/n}$ is _____.

43. Let
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$$
 be a non-zero vector and $A = \frac{xx^T}{x^T x}$. Then the dimension of the vector space $\{y \in \mathbb{R}^3 \mid Ay = 0\}$ over \mathbb{R} is_____.

- 44. Let f be a real valued function defined by $f(x, y) = 2 \ln \left(x^2 y^2 e^{y/x}\right), x > 0, y > 0$, is_____.
- 45. Let $\vec{F} = \sqrt{x} \hat{i} + (x + y^3) \hat{j}$ be a vector field for all (x, y) with $x \ge 0$ and $\vec{r} = x\hat{i} + y\hat{j}$. Then the value of the line integral $\int_C \vec{F} \cdot d\vec{r}$ from (0, 0) to (1, 1) along the path $C : x = t^2$, $y = t^3$, $0 \le t \le 1$ is_____.
- 46. If $f:(-1,\infty) \to \mathbb{R}$ defined by $f(x) = \frac{x}{1+x}$ is expressed as $f(x) = \frac{2}{3} + \frac{1}{9}(x-2) + \frac{c(x-2)^2}{(1+\xi)^3}$, where ξ lies between 2 and x, then the value of c is _____.
- 47. Let $y_1(x)$, $y_2(x)$ and $y_3(x)$ be linearly independent solutions of the differential equation $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0.$

If the Wronskian $W(y_1, y_2, y_3)$ is of the form $k e^{bx}$ for some constant k, then the value of b is_____.

48. The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-4)^n}{n(n+1)} (x+2)^{2n}$ is _____.

49. Let
$$f:(0,\infty) \to \mathbb{R}$$
 be a continuous function such that $\int_{0}^{x} f(t) dt = -2 + \frac{x^2}{2} + 4x \sin 2x + 2 \cos 2x$. Then

the value of
$$\frac{1}{\pi} f\left(\frac{\pi}{4}\right)$$
 is_____

50. Let G be a cyclic group of order 12. Then the number of non-isomorphic subgroups of G is_____

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

6

Q.51 – Q.60 carry TWO marks each.

- 51. The value of $\lim_{n \to \infty} \left(8n \frac{1}{n} \right)^{\frac{(-1)^n}{n^2}}$ is equal to_____.
- 52. Let *R* be the region enclosed by $x^2 + 4y^2 \ge 1$ and $x^2 + y^2 \le 1$. Then the value of $\iint_{R} |xy| dx dy$ is_____.

53. Let
$$M = \begin{bmatrix} \alpha & 1 & 1 \\ 1 & \beta & 1 \\ 1 & 1 & \gamma \end{bmatrix}$$
, $\alpha\beta\gamma = 1$, $\alpha, \beta, \gamma \in \mathbb{R}$ and $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$. Then $Mx = 0$ has infinitely many solutions

if trace (*M*) is_____.

- 54. Let *C* be the boundary of the region enclosed by $y = x^2$, y = x + 2 and x = 0. Then the value of the line integral $\oint_C (xy y^2) dx x^3 dy$, where *C* is traversed in the counter clockwise direction, is _____.
- 55. Let *S* be the closed surface forming the boundary of the region *V* bounded by $x^2 + y^2 = 3$, z = 0, z = 6. A vector field \vec{F} is defined over *V* with $\nabla \cdot \vec{F} = 2y + z + 1$. Then the value of $\frac{1}{\pi} \iint_{S} \vec{F} \cdot \hat{n} \, dS$, where \hat{n} is the unit outward drawn normal to the surface *S*, is_____.
- 56. Let y(x) be the solution of the differential equation $\frac{d^2 y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$, y(0) = 1, $\frac{dy}{dx}\Big|_{x=0} = -1$. Then y(x) attains its maximum value at x =_____.

58. Let *H* denote the group of all 2×2 invertible matrices over \mathbb{Z}_5 under usual matrix multiplication. Then the order of the matrix $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ in *H* is ______. 59. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 5 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 3 & 1 \end{bmatrix}$, *N*(*A*) the null space of *A* and *R*(*B*) the range space of *B*. Then the

dimension of $N(A) \cap R(B)$ over \mathbb{R} is_____

60. The maximum value of $f(x, y) = x^2 + 2y^2$ subject to the constraint $y - x^2 + 1 = 0$ is _____.

*** END OF THE QUESTION PAPER ***

