Section-A
 Multiple Choice Questions (MCQ)

Q. 1 - Q. 10 carry ONE mark each.

1. The sequence $\left\{s_{n}\right\}$ of real numbers given by

$$
s_{n}=\frac{\sin \frac{\pi}{2}}{1 \cdot 2}+\frac{\sin \frac{\pi}{2^{2}}}{2 \cdot 3}+\cdots+\frac{\sin \frac{\pi}{2^{n}}}{n \cdot(n+1)} \text { is }
$$

(a) a divergent sequence
(b) an oscillatory sequence
(c) not a Cauchy sequence
(d) a Cauchy sequence
2. Let P be the vector space (over \mathbb{R}) of all polynomials of degree ≤ 3 with real coefficients. Consider the linear transformation $T: P \rightarrow P$ defined by $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{3}+a_{2} x+a_{1} x^{2}+a_{0} x^{3}$. Then the matrix representation M of T with respect to the ordered basis $\left\{1, x, x^{2}, x^{3}\right\}$ satisfies
(a) $M^{2}+I_{4}=0$
(b) $M^{2}-I_{4}=0$
(c) $M-I_{4}=0$
(d) $M+I_{4}=0$
3. Let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function. Then the integral $\int_{0}^{\pi} x f(\sin x) d x$ is equivalent to
(a) $\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x$
(b) $\frac{\pi}{2} \int_{0}^{\pi} f(\cos x) d x$
(c) $\pi \int_{0}^{\pi} f(\cos x) d x$
(d) $\pi \int_{0}^{\pi} f(\sin x) d x$
4. Let σ be an element of the permutation group S_{5}. Then the maximum possible order of σ is
(a) 5
(b) 6
(c) 10
(d) 15
5. Let f be a strictlymonotonic continuous real valued function defined on $[a, b]$ such that $f(a)<a$ and $f(b)>b$. Then which one of the following is TRUE?
(a) There exists exactly one $c \in(a, b)$ such that $f(c)=c$
(b) There exists exactly two points $c_{1}, c_{2} \in(a, b)$ such that $f\left(c_{i}\right)=c_{i}, i=1,2$
(c) There exists no $c \in(a, b)$ such that $f(c)=c$
(d) There exist infinitely many points $c \in(a, b)$ such that $f(c)=c$
6. The value of $\lim _{(x, y) \rightarrow(2,-2)} \frac{\sqrt{(x-y)}-2}{\sqrt{x-y / 4} \text { car }}$ ireprendeavour. in
(a) 0
(b) $\frac{1}{4}$
(c) $\frac{1}{3}$
(d) $\frac{1}{2}$
7. Let $\vec{r}=(x \hat{i}+y \hat{j}+z \hat{k})$ and $r=|\vec{r}|$. If $f(r)=\ell n r$ and $g(r)=\frac{1}{r}, r \neq 0$ satisfy $2 \nabla f+h(r) \nabla g=\overrightarrow{0}$, then $h(r)$ is
(a) r
(b) $\frac{1}{r}$
(c) $2 r$
(d) $\frac{2}{r}$
8. The non-zero value of n for which the differential equation $\left(3 x y^{2}+n^{2} x^{2} y\right) d x+\left(n x^{3}+3 x^{2} y\right) d y=0, x \neq 0$, becomes exact is
(a) -3
(b) -2
(c) 2
(d) 3
9. One of the points which lies on the solution curve of the differential equation $(y-x) d x+(x+y) d y=0$, with the given condition $y(0)=1$, is
(a) $(1,-2)$
(b) $(2,-1)$
(c) $(2,1)$
(d) $(-1,2)$
10. Let S be a closed subset of \mathbb{R}, T a compact subset of \mathbb{R} such that $S \cap T \neq \phi$. Then $S \cap T$ is
(a) closed but not compact
(b) not closed
(c) compact
(d) neither closed nor compact

Q. 11 - Q. 30 carry TWO marks each.

11. Let S be the series $\sum_{k=1}^{\infty} \frac{1}{(2 k-1) 2^{(2 k-1)}}$ and T be the series $\sum_{k=2}^{\infty}\left(\frac{3 k-4}{3 k+2}\right)^{\frac{(k+1)}{3}}$ of real numbers. Then which one of the following is TRUE ?
(a) Both the series S and T are convergent
(b) S is convergent and T is divergent
(c) S is divergent and T is convergent
(d) Both the series S and T are divergent
12. Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers satisfying $\frac{4}{a_{n+1}}=\frac{3}{a_{n}}+\frac{a_{n}^{3}}{81}, n \geq 1, a_{1}=1$. Then all the terms of the sequence lie in
(a) $\left[\frac{1}{2}, \frac{3}{2}\right]$
(b) $[0,1]$
(c) $[1,2]$
(d) $[1,3]$
13. The largest eigenvalue of the matrix $\left[\begin{array}{ccc}1 & 4 & 16 \\ 4 & 16 & 1 \\ 16 & 1 & 4\end{array}\right]$ is
(a) 16
(b) 21
(c) 48
(d) 64
14. The value of the integral $\frac{(2 n)!}{2^{2 n}(n!)} \int_{-1}^{1}\left(1-x^{2}\right)^{n} d x, n \in \mathbb{N}$ is
(a) $\frac{2}{(2 n+1)!}$
(b) $\frac{2 n}{(2 n+1)!}$
(c) $\frac{2(n!)}{2 n+1}$
(d) $\frac{(n+1)!}{2 n+1}$
15. If the triple integral over the region bounded by the planes $2 x+y+z=4, x=0, y=0, z=0$ is given by $\int_{0}^{2} \int_{0}^{\lambda(x)} \int_{0}^{\mu(x, y)} d z d y d x$, then the function $\lambda(x) \ominus \mu x$, (y) isdeavourin
(a) $x+y$
(b) $x-y$
(c) x
(d) y
16. The surfaces area of the portion of the plane $y+2 z=2$ within the cylinder $x^{2}+y^{2}=3$ is
(a) $\frac{3 \sqrt{5}}{2} \pi$
(b) $\frac{5 \sqrt{5}}{2} \pi$
(c) $\frac{7 \sqrt{5}}{2} \pi$
(d) $\frac{9 \sqrt{5}}{2} \pi$
17. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cll}\frac{x y^{2}}{x+y} & \text { if } & x+y \neq 0 \\ 0 & \text { if } & x+y=0\end{array}\right.$. Then the value of $\left(\frac{\partial^{2} f}{\partial x \partial y}+\frac{\partial^{2} f}{\partial y \partial x}\right)$ at the point $(0,0)$ is
(a) 0
(b) 1
(c) 2
(d) 4
18. The function $f(x, y)=3 x^{2} y+4 y^{3}-3 x^{2}-12 y^{2}+1$ has a saddle point at
(a) $(0,0)$
(b) $(0,2)$
(c) $(1,1)$
(d) $(-2,1)$
19. Consider the vector field $\vec{F}=r^{\beta}(y \hat{i}-x \hat{j})$, where $\beta \in \mathbb{R}, \vec{r}=x \hat{i}+y \hat{j}$ and $r=|\vec{r}|$. If the absolute value of the line integral $\oint_{C} \vec{F} \cdot d \vec{r}$ along the closed curve $C: x^{2}+y^{2}=a^{2}$ (oriented counter clockwise) is 2π, then β is
(a) -2
(b) -1
(c) 1
(d) 2
20. Let S be the surface of the cone $z=\sqrt{x^{2}+y^{2}}$ bounded by the planes $z=0$ and $z=3$. Further, let C be the closed curve forming the boundary of the surfaces S. A vector field \vec{F} is such that $\nabla \times \vec{F}=-x \hat{i}-y \hat{j}$. The absolute value of the integral $\oint_{C} \vec{F} \cdot d \vec{r}$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$, is
(a) 0
(b) 9π
(c) 15π
(d) 18π
21. Let $y(x)$ be the solution of the differential equation $\frac{d}{d x}\left(x \frac{d y}{d x}\right)=x ; y(1)=0,\left.\frac{d y}{d x}\right|_{x=1}=0$. Then $y(2)$ is
(a) $\frac{3}{4}+\frac{1}{2} \ln 2$
(b) $\frac{3}{4}-\frac{1}{2} \ln 2$
(c) $\frac{3}{4}+\ln 2$
(d) $\frac{3}{4}-\ln 2$
22. The general solution of the differential equation with constant co-efficients $\frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$, approaches zero as $x \rightarrow \infty$, if
(a) b is negative and c is positive
(b) b is positive and c is negative
(c) both b and c are positive
(d) both b and c are negative
23. Let $S \subset \mathbb{R}$ and ∂S denote the set of points x in \mathbb{R} such that every neighbourhood of x contains some points of S as well as some points of complement of S. Further, let \bar{S} denote the closure of S. Then which one of the following is FALSE?
(a) $\partial \mathbb{Q}=\mathbb{R}$
(b) $\partial(\mathbb{R} \backslash T)=\partial T, T \subset \mathbb{R}$
(c) $\partial(T \cup V)=\partial T \cup \partial V, T W G \mathbb{R}, T R^{V} \underbrace{\phi}$ endeavour.in
(d) $\partial T=\bar{T} \cap(\overline{\mathbb{R} \backslash T}), T \subset \mathbb{R}$
24. The sum of the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}+n-2}$ is
(a) $\frac{1}{3} \ln 2-\frac{5}{18}$
(b) $\frac{1}{3} \ln 2-\frac{5}{6}$
(c) $\frac{2}{3} \ln 2-\frac{5}{18}$
(d) $\frac{2}{3} \ln 2-\frac{5}{6}$
25. Let $f(x)=\frac{1}{1+|x|}+\frac{1}{1+|x-1|}$ for all $x \in[-1,1]$. Then which one of the following is TRUE ?
(a) Maximum value of $f(x)$ is $\frac{3}{2}$
(b) Minimum value of $f(x)$ is $\frac{1}{3}$
(c) Maximum of $f(x)$ occurs at $x=\frac{1}{2}$
(d) Minimum of $f(x)$ occurs at $x=1$
26. The matrix $M=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ i \sin \alpha & i \cos \alpha\end{array}\right]$ is a unitary matrix when α is
(a) $(2 n+1) \frac{\pi}{2}, n \in \mathbb{Z}$
(b) $(3 n+1) \frac{\pi}{3}, n \in \mathbb{Z}$
(c) $(4 n+1) \frac{\pi}{4}, n \in \mathbb{Z}$
(d) $(5 n+1) \frac{\pi}{5}, n \in \mathbb{Z}$
27. Let $M=\left[\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & \alpha \\ 2 & -\alpha & 0\end{array}\right], \alpha \in \mathbb{R} \backslash\{0\}$ and b a non-zero vector such that $M x=b$ for some $x \in \mathbb{R}^{3}$. Then the value of $x^{T} b$ is
(a) $-\alpha$
(b) α
(c) 0
(d) 1
28. The number of group homomorphism from the cyclic group \mathbb{Z}_{4} to the cyclic group \mathbb{Z}_{7} is
(a) 7
(b) 3
(c) 2
(d) 1
29. In the permutation group $S_{n}(n \geq 5)$, if H is the smallest subgroup containing all the 3-cycles, then which one of the following is TRUE?
(a) Order of H is 2
(b) Index of H in S_{n} is 2
(c) H is abelian
(d) $H=S_{n}$
30. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=\left\{\begin{array}{lll}x\left(1+x^{\alpha} \sin \left(\ln x^{2}\right)\right. & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$. Then, at $x=0$, the function f is
(a) continuous and differentiable when $\alpha=0$
(b) continuous and differentiable when $\alpha>0$
(c) continuous and differentiable when $-1<\alpha<0$
(d) continuous and differentiable when $\alpha<-1$

Section-B

Multiple Select Questions (MSQ)

Q. 31 - Q. 40 carry TWO marks each.

WWW. careerendeavour. in

31. Let $\left\{s_{n}\right\}$ be a sequence of positive real numbers satisfying $2 s_{n+1}=s_{n}^{2}+\frac{3}{4}, n \geq 1$. If α and β are the roots of the equation $x^{2}-2 x+\frac{3}{4}=0$ and $\alpha<s_{1}<\beta$, then which of the following statement(s) is/are TRUE?
(a) $\left\{s_{n}\right\}$ is monotonically decreasing
(b) $\left\{s_{n}\right\}$ is monotonically increasing
(c) $\lim _{n \rightarrow \infty} s_{n}=\alpha$
(d) $\lim _{n \rightarrow \infty} s_{n}=\beta$
32. The value(s) of the integral $\int_{-\pi}^{\pi}|x| \cos n x d x, n \geq 1$ is(are)
(a) 0 when n is even
(b) 0 when n is odd
(c) $-\frac{4}{n^{2}}$ when n is even
(d) $-\frac{4}{n^{2}}$ when n is odd
33. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by
$f(x, y)=\left\{\begin{array}{lll}\frac{x y}{|x|} & \text { if } & x \neq 0 \\ 0 & \text { elsewhere }\end{array}\right.$
Then at the point $(0,0)$, which of the following statement(s) is(are) TRUE ?
(a) f is not continuous
(b) f is continuous
(c) f is differentiable
(d) Both first order partial derivatives of f exist
34. Consider the vector field $\vec{F}=x \hat{i}+y \hat{j}$ on an open connected set $S \subset \mathbb{R}^{2}$. Then which of the following statement(s) is(are) TRUE?
(a) Divergence of \vec{F} is zero on S
(b) The line integral of \vec{F} is independent of path in S
(c) \vec{F} can be expressed as a gradient of a scalar function on S
(d) The line integral of \vec{F} is zero around any piecewise smooth closed path in S
35. Consider the differential equation $\sin 2 x \frac{d y}{d x}=2 y+2 \cos x, y\left(\frac{\pi}{4}\right)=1-\sqrt{2}$. Then which of the following statement(s) is(are) TRUE?
(a) The solution is unbounded when $x \rightarrow 0$
(b) The solution is unbounded when $x \rightarrow \frac{\pi}{2}$
(c) The solution is bounded when $x \rightarrow 0$
(d) The solution is bounded when $x \rightarrow \frac{\pi}{2}$
36. Which of the following statement(s) is(are) TRUE ?
(a) There exists a connected set in \mathbb{R} which is not compact
(b) Arbitrary union of closed intervals in \mathbb{R} need not be compact
(c) Arbitrary union of closed intervals in \mathbb{R} is always closed
(d) Every bounded infinite subset V of \mathbb{R} has a limit point in V itself
37. Let $P(x)=\left(\frac{5}{13}\right)^{x}+\left(\frac{12}{13}\right)^{x}-1$ for all $x \in \mathbb{R}$. Then which of the following statement(s) is(are) TRUE ?
(a) The equation $P(x)=0$ has exactly one solution in \mathbb{R}
(b) $P(x)$ is strictly increasing for all $x \in \mathbb{R}$
(c) The equation $P(x)=0$ has exactly two solutions in \mathbb{R}
(d) $P(x)$ is strictly decreasing for all $x \in \mathbb{R}$
38. Let G be a finite group and $\mathrm{O}(\mathrm{G})$ denetes itsorder. Then which of the following statement(s) is(are) TRUE ?
(a) G is abelian if $\mathrm{O}(\mathrm{G})$ denotes $=p q$ where p and q are distinct primes
(b) G is abelian if every non identity element of G is of order 2
(c) G is abelian if the quotient group $\mathrm{G} / \mathrm{Z}(\mathrm{O})$ is cyclic, where $\mathrm{Z}(\mathrm{G})$ is the center of G
(d) G is abelian if $\mathrm{O}(\mathrm{G})=p^{3}$, where p is prime
39. Consider the set $V=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, \alpha x+\beta y+z=\gamma, \alpha, \beta, \gamma \in \mathbb{R}\right\}$. For which of the following choice(s) the set V becomes a two dimensional subspace of \mathbb{R}^{3} over \mathbb{R} ?
(a) $\alpha=0, \beta=1, \gamma=0$
(b) $\alpha=0, \beta=1, \gamma=1$
(c) $\alpha=1, \beta=0, \gamma=0$
(d) $\alpha=1, \beta=1, \gamma=0$
40. Let $S=\left\{\left.\frac{1}{3^{n}}+\frac{1}{7^{m}} \right\rvert\, n, m \in \mathbb{N}\right\}$. Then which of the following statement(s) is(are) TRUE ?
(a) S is closed
(b) S is not open
(c) S is connected
(d) 0 is a limit point of S

Section-C

Numerical Answer Type (NAT)

Q. 41 - Q. 50 carry ONE mark each.

41. Let $\left\{s_{n}\right\}$ be a sequence of real numbers given by $s_{n}=2^{(-1)^{n}}\left(1-\frac{1}{n}\right) \sin \frac{n \pi}{2}, n \in \mathbb{N}$. Then the least upper bound of the sequence $\left\{s_{n}\right\}$ is \qquad .
42. Let $\left\{s_{k}\right\}$ be a sequence of real numbers, where $s_{k}=k^{\alpha / k}, k \geq 1, \alpha=0$. Then $\lim _{n \rightarrow \infty}\left(s_{1} s_{2} \ldots s_{n}\right)^{1 / n}$ is_ \qquad .
43. Let $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}$ be a non-zero vector and $A=\frac{x x^{T}}{x^{T} x}$. Then the dimension of the vector space $\left\{y \in \mathbb{R}^{3} \mid A y=0\right\}$ over \mathbb{R} is \qquad
44. Let f be a real valued function defined by $f(x, y)=2 \ln \left(x^{2} y^{2} e^{y / x}\right), x>0, y>0$, is \qquad .
45. Let $\vec{F}=\sqrt{x} \hat{i}+\left(x+y^{3}\right) \hat{j}$ be a vector field for all (x, y) with $x \geq 0$ and $\vec{r}=x \hat{i}+y \hat{j}$. Then the value of the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ from $(0,0)$ to $(1,1)$ along the path $C: x=t^{2}, y=t^{3}, 0 \leq t \leq 1$ is \qquad .
46. If $f:(-1, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{x}{1+x}$ is expressed as $f(x)=\frac{2}{3}+\frac{1}{9}(x-2)+\frac{c(x-2)^{2}}{(1+\xi)^{3}}$, where ξ lies between 2 and x, then the value of c is \qquad
47. Let $y_{1}(x), y_{2}(x)$ and $y_{3}(x)$ be linearly independent solutions of the differential equation $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=0$. If the Wronskian $W\left(y_{1}, y_{2}, y_{3}\right)$ is of the form $k e^{b x}$ for some constant k, then the value of b is \qquad .
48. The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-4)^{n}}{n(n+1)}(x+2)^{2 n}$ is \qquad .
49. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that $\int_{0}^{x} f(t) d t=-2+\frac{x^{2}}{2}+4 x \sin 2 x+2 \cos 2 x$. Then the value of $\frac{1}{\pi} f\left(\frac{\pi}{4}\right)$ is \qquad .
50. Let G be a cyclic group of order 12. Then the number of non-isomorphic subgroups of G is
Q. 51 - Q. 60 carry TWO marks each.
51. The value of $\lim _{n \rightarrow \infty}\left(8 n-\frac{1}{n}\right)^{\frac{(-1)^{n}}{n^{2}}}$ is equal to \qquad .
52. Let R be the region enclosed by $x^{2}+4 y^{2} \geq 1$ and $x^{2}+y^{2} \leq 1$. Then the value of $\iint_{R}|x y| d x d y$ is \qquad .
53. Let $M=\left[\begin{array}{ccc}\alpha & 1 & 1 \\ 1 & \beta & 1 \\ 1 & 1 & \gamma\end{array}\right], \alpha \beta \gamma=1, \alpha, \beta, \gamma \in \mathbb{R}$ and $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}$. Then $M x=0$ has infinitely many solutions if trace (M) is \qquad .
54. Let C be the boundary of the region enclosed by $y=x^{2}, y=x+2$ and $x=0$. Then the value of the line integral $\oint_{C}\left(x y-y^{2}\right) d x-x^{3} d y$, where C is traversed in the counter clockwise direction, is \qquad -
55. Let S be the closed surface forming the boundary of the region V bounded by $x^{2}+y^{2}=3, z=0, z=6$. A vector field \vec{F} is defined over V with $\nabla \cdot \vec{F}=2 y+z+1$. Then the value of $\frac{1}{\pi} \iint_{S} \vec{F} \cdot \hat{n} d S$, where \hat{n} is the unit outward drawn normal to the surface S, is
56. Let $y(x)$ be the solution of the differential equation $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=0, y(0)=1,\left.\frac{d y}{d x}\right|_{x=0}=-1$. Then $y(x)$ attains its maximum value at $x=$ \qquad .
57. The value of the double integral $\int_{0}^{\pi} \int_{0}^{x} \frac{\sin y}{\pi-y} d y d x$ is \qquad .
58. Let H denote the group of all 2×2 invertible matrices over \mathbb{Z}_{5} under usual matrix multiplication. Then the order of the matrix $\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ in H is
59. Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ -1 & 5 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 2 \\ -1 & 0 \\ 3 & 1\end{array}\right], N(A)$ the null space of A and $R(B)$ the range space of B. Then the dimension of $N(A) \cap R(B)$ over \mathbb{R} is \qquad .
60. The maximum value of $f(x, y)=x^{2}+2 y^{2}$ subject to the constraint $y-x^{2}+1=0$ is \qquad .

*** END OF THE QUESTION PAPER ***

