CAREER ENDEAVOUR
 CAREER ENDEAVOUR
 Best Institute for NET-JRF, GATE \& IIT-JAM Exams
 PHYSICS (PH)
 Joint Entrance Screening Test (JEST-2016)

Part-A: 3-Mark Questions

1. The wavefunction of a hydrogen atom is given by the following superposition of energy eigen-functions $\psi_{n / m}(\vec{r})$ (n, l, m are the usual quantum numbers);

$$
\psi(\vec{r})=\frac{\sqrt{2}}{\sqrt{7}} \psi_{100}(\vec{r})-\frac{3}{\sqrt{14}} \psi_{210}(\vec{r})+\frac{1}{\sqrt{14}} \psi_{322}(\vec{r})
$$

The ratio of expectation value of the energy to the ground state energy and the expectation value of L^{2} are, respectively:
(a) $\frac{229}{504}$ and $\frac{12 \hbar^{2}}{7}$
(b) $\frac{101}{504}$ and $\frac{12 \hbar^{2}}{7}$
(c) $\frac{101}{504}$ and \hbar^{2}
(d) $\frac{229}{504}$ and \hbar^{2}
2. An ideal gas with adiabatic exponent γ undergoes a process in which its pressure P is related to its volume V by the relation $P=P_{0}-\alpha V$, where P_{0} and α are positive constants. The volume starts from being very close to zero and increases monotonically to P_{0} / α. At what value of the volume during the process does the gas have maximum entropy?
(a) $\frac{P_{0}}{\alpha(1+\gamma)}$
(b) $\frac{\gamma P_{0}}{\alpha(1-\gamma)}$
(c) $\frac{\gamma P_{0}}{\alpha(1+\gamma)}$
(d) $\frac{P_{0}}{\alpha(1-\gamma)}$
3. The H_{2} molecule has a reduced mass $M=8.35 \times 10^{-28} \mathrm{~kg}$ and an equilibrium internuclear distance $R=0.742$ $\times 10^{-10} \mathrm{~m}$. The rotational energy in terms of the rotational quantum number J is:
(a) $E_{\text {rot }}(J)=7 J(J-1) \mathrm{meV}$
(b) $E_{\text {rot }}(J)=\frac{5}{2} J(J+1) \mathrm{meV}$
(c) $E_{\text {rot }}(J)=7 J(J+1) \mathrm{meV}$
(d) $E_{\text {rot }}(J)=\frac{5}{2} J(J-1) \mathrm{meV}$
4. The Hamiltonian of a quantum particle of mass m confined to a ring of unit radius is:
www.careerendeazour.com

$$
H=\frac{\hbar^{2}}{2 m}\left(-i \frac{\partial}{\partial \theta}-\alpha\right)^{2},
$$

where θ is the angular coordinate, α is a constant. The energy eigenvalues and eigenfunctions of the particle are (n is an integer):
(a) $\psi_{n}(\theta)=\frac{e^{i n \theta}}{\sqrt{2 \pi}}$ and $E_{n}=\frac{\hbar^{2}}{2 m}(n-\alpha)^{2}$
(b) $\psi_{n}(\theta)=\frac{\sin (n \theta)}{\sqrt{2 \pi}}$ and $E_{n}=\frac{\hbar^{2}}{2 m}(n-\alpha)^{2}$
(c) $\psi_{n}(\theta)=\frac{\cos (n \theta)}{\sqrt{2 \pi}}$ and $E_{n}=\frac{\hbar^{2}}{2 m}(n-\alpha)^{2}$
(d) $\psi_{n}(\theta)=\frac{e^{i n \theta}}{\sqrt{2 \pi}}$ and $E_{n}=\frac{\hbar^{2}}{2 m}(n+\alpha)^{2}$
5. Consider a quantum particle of mass m in one dimension in an infinite potential well, i.e., $V(x)=0$ for $-a / 2<x<a / 2$, and $V(x)=\infty$ for $|x| \geq a / 2$. A small perturbation, $V^{\prime}(x)=2 \in|x| / a$, is added. The change in the ground state energy to $O(\varepsilon)$ is:
(a) $\frac{\varepsilon}{2 \pi^{2}}\left(\pi^{2}-4\right)$
(b) $\frac{\varepsilon}{2 \pi^{2}}\left(\pi^{2}+4\right)$
(c) $\frac{\varepsilon \pi^{2}}{2}\left(\pi^{2}+4\right)$
(d) $\frac{\varepsilon \pi^{2}}{2}\left(\pi^{2}-4\right)$
6. A spin-1 particle is in a state $|\psi\rangle$ described by the column matrix $(1 / \sqrt{10})\{2, \sqrt{2}, 2 i\}$ in the S_{z} basis. What is the probability that a measurement of operator S_{z} will yield the result \hbar for the state $S_{x}|\psi\rangle$?
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) $\frac{1}{6}$
7. The energy of a particle is given by $E=|p|+|q|$, where p and q are the generalized momentum and coordinate, respectively. All the states with $E \leq E_{0}$ are equally probable and states with $E>E_{0}$ are inaccessible. The probability density of finding the particle at coordinate q, with $q>0$ is:
(a) $\frac{\left(E_{0}+q\right)}{E_{0}^{2}}$
(b) $\frac{q}{E_{0}^{2}}$
(c) $\frac{\left(E_{0}-q\right)}{E_{0}^{2}}$
(d) $\frac{1}{E_{0}}$
8. A hoop of radius a rotates with constant angular velocity ω about the vertical axis as shown in the figure. A bead of mass m can slide on the hoop without friction. If $g<\omega^{2} a$, at what angle θ apart from 0 and π is the bead stationary $\left(\right.$ i.e., $\left.\frac{d \theta}{d t}=\frac{d^{2} \theta}{d t^{2}}=0\right)$?

(a) $\tan \theta=\pi g / \omega^{2} a$
(b) $\sin \theta=g / \omega^{2} a$
(c) $\cos \theta=g / \omega^{2} a$
(d) $\tan \theta=g / \pi \omega^{2} a$
9. A gas of N molecules of mass m is confined in a cube of volume $V=L^{3}$ at temperature T. The box is in a uniform gravitational field $-g \hat{z}$. Assume that the potential energy of a molecule is $U=m g z$, where $z \in[0, L]$ is the vertical coordinate inside the box. The pressure $P(z)$ at height z is :
$\begin{array}{ll}\text { (a) } P(z)=\frac{N}{V} \frac{m g L}{2} \frac{\exp \left(\frac{W m g(z-L \neq 2)}{k_{B} T}\right)}{\sinh \left(\frac{m g L}{2 k_{B} T}\right)} & \text { (b) } P(z)=\frac{N}{V} \frac{m g L}{2} \frac{\exp \left(-\frac{m g(z-L / 2)}{k_{B} T}\right)}{\cosh \left(\frac{m g L}{2 k_{B} T}\right)}\end{array}$
(c) $P(z)=\frac{k_{B} T N}{V}$
(d) $P(z)=\frac{N}{V} m g z$
10. A point charge q of mass m is released from rest at a distance d from an infinite grounded conducting plane (ignore gravity). How long does it takes for the charge to hit the plane?
(a) $\frac{\sqrt{2 \pi^{3} \varepsilon_{0} m d^{3}}}{q}$
(b) $\frac{\sqrt{2 \pi^{3} \varepsilon_{0} m d}}{q}$
(c) $\frac{\sqrt{\pi^{3} \varepsilon_{0} m d^{3}}}{q}$
(d) $\frac{\sqrt{\pi^{3} \varepsilon_{0} m d}}{q}$
11. The strength of magnetic field at the center of a regular hexagon with sides of length a carrying a steady current I is :
(a) $\frac{\mu_{0} I}{\sqrt{3} \pi a}$
(b) $\frac{\sqrt{6} \mu_{0} I}{\pi a}$
(c) $\frac{3 \mu_{0} I}{\pi a}$
(d) $\frac{\sqrt{3} \mu_{0} I}{\pi a}$
12. The maximum relativistic kinetic energy of β particles from a radioactive nucleus is equal to the rest mass energy of the particle. A magnetic field is applied perpendicular to the beam of β particles, which bends it to a circle of radius R. The field is given by:
(a) $3 m_{0} c / e R$
(b) $\sqrt{2} m_{0} c / e R$
(c) $\sqrt{3} m_{0} c / e R$
(d) $\sqrt{3} m_{0} c / 2 e R$
13. Light takes approximately 8 minutes to travel from the Sun to the Earth. Suppose in the frame of the Sun an event occurs at $t=0$ at the Sun and another event occurs on Earth at $t=1$ minute. The velocity of the inertial frame in which both these events are simultaneous is:
(a) $c / 8$ with the velocity vector pointing from Earth to Sun
(b) $c / 8$ with the velocity vector pointing from Sun to Earth
(c) The events can never be simultaneous - no such frame exists
(d) $c \sqrt{1-\left(\frac{1}{8}\right)^{2}}$ with velocity vector pointing from Sun to Earth
14. The central force which results in the orbit $r=a(1+\cos \theta)$ for a particle is proportional to :
(a) r
(b) r^{2}
(c) r^{-2}
(d) none of these
15. A spin- $\frac{1}{2}$ particle in a uniform external magnetic field has energy eigenstates $|1\rangle$ and $|2\rangle$. The system is prepared in ket-state $(|1\rangle+|2\rangle) / \sqrt{2}$ at time $t=0$. It evolves to the state described by the ket $(|1\rangle-|2\rangle) / \sqrt{2}$ in time T. The minimum energy difference between two levels is:
(a) $\frac{h}{6 T}$
(b) $\frac{h}{4 T}$
(c) $\frac{h}{2 T}$
(d) $\frac{h}{T}$
16. It is found that when the resistance R indicated in the figure below is changed from $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$, the current flowing through the resistance R^{\prime} does not change. What is the value of the resistor R^{\prime} ?

17. The sum of the infinite series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$ is
(a) 2π
(b) π
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$
18. A spherical shell of radius R carries a constant surface charge density σ and is rotating about one of its diameters with an angular velocity ω. The magnitude of the magnetic moment of the shell is:
(a) $4 \pi \sigma \omega R^{4}$
(b) $4 \pi \sigma \omega R^{4} / 3$
(c) $4 \pi \sigma \omega R^{4} / 15$
(d) $4 \pi \sigma \omega R^{4} / 9$
19. Given a matrix $M=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, which of the following represents $\cos (\pi M / 6)$?
(a) $\frac{1}{2}\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$
(b) $\frac{\sqrt{3}}{4}\left(\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right)$
(c) $\frac{\sqrt{3}}{4}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(d) $\frac{1}{2}\left(\begin{array}{cc}1 & \sqrt{3} \\ \sqrt{3} & 1\end{array}\right)$
20. Consider N non-interacting electrons $\left(N \sim N_{A}\right)$ in a box of sides L_{x}, L_{y}, L_{z}. Assume that the dispersion relation is $\varepsilon(k)=C k^{4}$, where C is a constant, the ratio of the ground state energy per particle to the Fermi energy is :
(a) $\frac{3}{7}$
(b) $\frac{7}{3}$
(c) $\frac{3}{5}$
(d) $\frac{5}{7}$
21. A transistor in common base configuration has ratio of collector current to emitter current β and ratio of collector to base current α. Which of the following is true?
(a) $\beta=\frac{\alpha}{(\alpha+1)}$
(b) $\beta=\frac{(\alpha+1)}{\alpha}$
(c) $\beta=\frac{\alpha}{(\alpha-1)}$
(d) $\beta=\frac{(\alpha-1)}{\alpha}$
22. You receive on average 5 emails per day during a 365 days year. The number of days on average on which you do not receive any emails in that year are:
(a) more than 5
(b) more than 2
(c) 1
(d) none of these
23. If $Y_{x y}=\frac{1}{\sqrt{2}}\left(Y_{2,2}-Y_{2,-2}\right)$, where $Y_{l, m}$ are spherical harmonics, then which of the following is true ?
(a) $Y_{x y}$ is an eigenfunction of both L^{2} and L_{z}
(b) $Y_{x y}$ is an eigenfunction of L^{2} but not L_{z}
(c) $Y_{x y}$ is an eigenfunction of L_{z} but not L^{2}
(d) $Y_{x y}$ is not an eigenfunction of either L^{2} or L_{z}
24. A two dimensional box in a uniform magnetic field B contains $N / 2$ localised spin- $\frac{1}{2}$ particles with magnetic moment μ, and $N / 2$ free spinless particles which do not interact with each other. The average energy of the system at a temperature T is :
(a) $3 N k T-\frac{1}{2} N \mu B \sinh \left(\mu B / k_{B} T\right)$
(b) $N k T-\frac{1}{2} N \mu B \tanh \left(\mu B / k_{B} T\right)$
(c) $\frac{1}{2} N k T-\frac{1}{2} N \mu B \tanh \left(\mu B / k_{B} T\right)$
(d) $\frac{3}{2} N k T+\frac{1}{2} N \mu B \cosh \left(\mu B / k_{B} T\right)$
25. The value of the integral $\int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+1\right)} d x$ is reerendeavour.com
(a) $\frac{\pi^{2}}{4}$
(b) $\frac{\pi^{2}}{2}$
(c) π^{2}
(d) 0

Part-B: 1-Mark Questions

26. An ideal gas has a specific heat ratio $C_{P} / C_{V}=2$. Starting at a temperature T_{1} the gas under goes an isothermal compression to increase its density by a factor of two. After this an adiabatic compression increases its pressure by a factor of two. The temperature of the gas at the end of the second process would be:
(a) $\frac{T_{1}}{2}$
(b) $\sqrt{2} T_{1}$
(c) $2 T_{1}$
(d) $\frac{T_{1}}{\sqrt{2}}$
27. The electric field $\vec{E}=E_{0} \sin (\omega t-k z) \hat{x}+2 E_{0} \sin (\omega t-k z+\pi / 2) \hat{y}$ represents:
(a) a linearly polarized wave
(b) a right hand circularly polarized wave
(c) a left hand circularly polarized wave
(d) an elliptically polarized wave
28. If \vec{k} is the wavefactor of incident light $(|\vec{k}|=2 \pi / \lambda, \lambda$ is the wavelength of light) and \vec{G} is a reciprocal lattice vector, then the Bragg's law can be written as:
(a) $\vec{k}+\vec{G}=0$
(b) $2 \vec{k} \cdot \vec{G}+G^{2}=0$
(c) $2 \vec{k} \cdot \vec{G}+k^{2}=0$
(d) $\vec{k} \cdot \vec{G}=0$
29. The number of different Bravais lattices possible in two dimension is:
(a) 2
(B) 3
(c) 5
(d) 6
30. An electron confined within a thin layer of semiconductor may be treated as a free particle inside an infinitely deep one-dimensional potential well. If the difference in energies between the first and the second energy levels is δE, then the thickness of the layer is:
(a) $\sqrt{\frac{3 \hbar^{2} \pi^{2}}{2 m \delta E}}$
(b) $\sqrt{\frac{2 \hbar^{2} \pi^{2}}{3 m \delta E}}$
(c) $\sqrt{\frac{\hbar^{2} \pi^{2}}{2 m \delta E}}$
(d) $\sqrt{\frac{\hbar^{2} \pi^{2}}{m \delta E}}$
31. The adjoint of a differential operator $\frac{d}{d x}$ acting on a wavefunction $\psi(x)$ for a quantum mechanical system is:
(a) $\frac{d}{d x}$
(b) $-i \hbar \frac{d}{d x}$
(c) $-\frac{d}{d x}$
(d) $i \hbar \frac{d}{d x}$
32. In the ground state of hydrogen atom, the most probable distance of the electron from the nucleus, in units of Bohr radius a_{0} is:
(a) $\frac{1}{2}$
(b) 1
(c) 2
(d) $\frac{3}{2}$
33. Circular fringes are obtained with a Michelson interferometer using 600 nm laser light. What minimum displacement of one mirror will make the central fringe from bright to dark ?
(a) 600 nm
(b) 300 nm
(c) 150 nm
(d) $120 \AA$
34. Given the condition $\nabla^{2} \Phi=0$, the solution of the equation $\nabla^{2} \Psi=k \vec{\nabla} \Phi \cdot \vec{\nabla} \Phi$ is given by:
(a) $\Psi=k \Phi^{2} / 2$
(b) $\Psi=k \Phi^{2}$
(c) $\Psi=k \Phi \ln \Phi$
(d) $\Psi=k \Phi \ell n \Phi / 2$
35. The output intensity I of radiation from a single mode of resonant cavity obeys

where Q is the quality factor of the cavity and ω_{0} is the resonant frequency. The form of the frequency spectrum of the output is:
(a) Deltafunction
(b) Gaussian
(c) Lorentzian
(d) Exponential
36. For operators P and Q, the commutator $\left[P, Q^{-1}\right]$ is:
(a) $Q^{-1}[P, Q] Q^{-1}$
(b) $-Q^{-1}[P, Q] Q^{-1}$
(c) $Q^{-1}[P, Q] Q$
(d) $-Q^{-1}[P, Q] Q^{-1}$
37. For a quantum mechanical harmonic oscillator with energies, $E_{n}=(n+1 / 2) \hbar \omega$, where $n=0,1,2, \ldots$, the partition functionis:
(a) $\frac{e^{\hbar \omega / k_{B} T}}{e^{\hbar \omega / k_{B} T}-1}$
(b) $e^{\hbar \omega / 2 k_{B} T}-1$
(c) $e^{\hbar \omega / 2 k_{B} T}+1$
(d) $\frac{e^{\hbar \omega / 2 k_{B} T}}{e^{\hbar \omega / k_{B} T}-1}$
38. A semicircular piece of paper is folded to make a cone with the center of the semicircle as the apex. The half angle of the resulting cone would be:
(a) 90°
(b) 60°
(c) 45°
(d) 30°
39. A spin- $\frac{1}{2}$ particle is in a state $(|\uparrow\rangle+|\downarrow\rangle) / \sqrt{2}$, where $|\uparrow\rangle$ and $|\downarrow\rangle$ are the eigenstates of S_{z} operator. The exceptation value of the spin angular momentum measured along x-direction is:
(a) \hbar
(b) $-\hbar$
(c) 0
(d) $\frac{\hbar}{2}$
40. The half-life of a radioactive nuclear source is 9 days. The fraction of nuclei which are left undecayed after 3 days is:
(a) $\frac{7}{8}$
(b) $\frac{1}{3}$
(c) $\frac{5}{6}$
(d) $\frac{1}{2^{1 / 3}}$
41. If the Rydberg constant of an atom of finite nuclear mass is αR_{∞}, where R_{∞} is the Rydberg constant corresponding to an infinite nuclear mass, the ratio of the electronic to nuclear mass of the atom is:
(a) $\frac{(1-\alpha)}{\alpha}$
(b) $\frac{(\alpha-1)}{\alpha}$
(c) $(1-\alpha)$
(d) $\frac{1}{\alpha}$
42. A gas contains particles of type A with fraction 0.8 , and particles of type B with fraction 0.2 . The probability that among 3 randomly chosen particles at least one is of type A is:
(a) 0.8
(b) 0.25
(c) 0.33
(d) 0.992
43. A cylindrical shell of mass m has an outer radius b and an inner radius a. The moment of inertia of the shell about the axis of the cylinder is:
(a) $\frac{1}{2} m\left(b^{2}-a^{2}\right)$
(b) $\frac{1}{2} m\left(b^{2}+a^{2}\right)$
(c) $m\left(b^{2}+a^{2}\right)$
(d) $m\left(b^{2}-a^{2}\right)$
44. If the direction with respect to a right-handed cartesian coordinate system of the ket vector $|z,+\rangle$ is $(0,0,1)$, then the direction of the ket vector obtained by application of rotations:
$\exp \left(-i \sigma_{z} \pi / 2\right) \exp \left(i \sigma_{y} \pi / 4\right)$, on the ket $|z,+\rangle$ is (σ_{y}, σ_{z} are the Pauli matrices):
(a) $(0,1,0)$
(b) $(1,0,0)$
(c) $(1,1,0) / \sqrt{2}$
(d) $(1,1,1) / \sqrt{3}$
45. Suppose $y z$-plane forms the boundary between two linear dielectric media I and $I I$ with dielectric constant $\varepsilon_{I}=3$ and $\varepsilon_{I I}=4$, respectively. If the electric field in region. I at the interface is given by $\vec{E}_{1}=4 \hat{x}+3 \hat{y}+5 \hat{z}$, then the electric field $\vec{E}_{I I}$ at the interface in region II is:
(a) $4 \hat{x}+3 \hat{y}+5 \hat{z}$
(b) $4 \hat{x}+0.75 \hat{y}-1.25 \hat{z}$
(c) $-3 \hat{x}+3 \hat{y}+5 \hat{z}$
(d) $3 \hat{x}+3 \hat{y}+5 \hat{z}$
46. How much force does light from a 1.8 W laser exert when it is totally absorbed by an object?
(a) $6.0 \times 10^{-9} \mathrm{~N}$
(b) $0.6 \times 10^{-9} \mathrm{~N}$
(c) $6.0 \times 10^{-8} \mathrm{~N}$
(d) $4.8 \times 10^{-9} \mathrm{~N}$
47. Self inductance per unit length of a long solenoid of radius R with n turns per unit length is:
(a) $\mu_{0} \pi R^{2} n^{2}$
(b) $2 \mu_{0} \pi R^{2} n$
(c) $2 \mu_{0} \pi R^{2} n^{2}$
(d) $\mu_{0} \pi R^{2} n$
48. In Millikan's oil-drop experiment an oil drop of radius r, mass m and charge $q=6 \pi \eta r\left(v_{1}+v_{2}\right) / E$ is moving upwards with a terminal velocity v_{2} due to an applied electric field of magnitude E, where η is the coefficients of viscosity. The acceleration due to gravity is given by :
(a) $g=6 \pi \eta r v_{1} / m$
(b) $g=3 \pi \eta r v_{1} / m$
(c) $g=6 \pi \eta r v_{2} / m$
(d) $g=3 \pi \eta r v_{2} / m$
49. For the coupled system shown in the figure, the normal coordinates are $x_{1}+x_{2}$ and $x_{1}-x_{2}$, corresponding to the normal frequencies ω_{0} and $\sqrt{3} \omega_{0}$, respectively.

At $t=0$, the displacements are $x_{1}=A, x_{2}=0$, and the velocities are $v_{1}=v_{2}=0$. The displacement of the second particle at time t is given by:
(a) $x_{2}(t)=\frac{A}{2}\left(\cos \left(\omega_{0} t\right)+\cos \left(\sqrt{3} \omega_{0} t\right)\right)$
(b) $x_{2}(t)=\frac{A}{2}\left(\cos \left(\omega_{0} t\right)-\cos \left(\sqrt{3} \omega_{0} t\right)\right)$
(c) $x_{2}(t)=\frac{A}{2}\left(\sin \left(\omega_{0} t\right)-\sin \left(\sqrt{3} \omega_{0} t\right)\right)$
(d) $x_{2}(t)=\frac{A}{2}\left(\sin \left(\omega_{0} t\right)-\frac{1}{\sqrt{3}} \sin \left(\sqrt{3} \omega_{0} t\right)\right)$
50. The mean value of random variable x with probability density $p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\left(x^{2}+\mu x\right) /\left(2 \sigma^{2}\right)\right]$, is:
(a) 0
(b) $\frac{\mu}{2}$
(c) $-\frac{\mu}{2}$
(d) σ

CAREER ENDEAVOUR

www.careerendeavour.com

