PAPER : IIT-JAM 2005

(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be sequences of real numbers such that $b_{n}=a_{2 n}$ and $c_{n}=a_{2 n+1}$. Then $\left\{a_{n}\right\}$ is convergent
(a) implies $\left\{b_{n}\right\}$ is convergent but $\left\{c_{n}\right\}$ need not be convergent
(b) implies $\left\{c_{n}\right\}$ is convergent but $\left\{b_{n}\right\}$ need not be convergent
(c) implies both $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are convergent
(d) if both $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are convergent
2. An integrating factor of $x \frac{d y}{d x}+(3 x+1) y=x e^{-2 x}$ is
(a) $x e^{3 x}$
(b) $3 x e^{x}$
(c) $x e^{x}$
(d) $x^{3} e^{x}$
3. The general solution of $x^{2} \frac{d^{2} y}{d x^{2}}-5 x \frac{d y}{d x}+9 y=0$ is
(a) $\left(c_{1}+c_{2} x\right) e^{3 x}$
(b) $\left(c_{1}+c_{2} \ln x\right) x^{3}$
(c) $\left(c_{1}+c_{2} x\right) x^{3}$
(d) $\left(c_{1}+c_{2} \ln x\right) e^{x^{3}}$
4. Let $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$. If $\phi(x, y, z)$ is a solution of the Laplace equation then the vector field $(\vec{\nabla} \phi+\vec{r})$ is
(a) neither solenoidal nor irrotational
(b) solenoidal but not irrotational
(c) both solenoidal and irrotational
(d) irrotational but not solenoidal
5. Let $\vec{F}=x \hat{i}+2 y \hat{j}+3 z \hat{k}, \mathrm{~S}$ be the surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and \hat{n} be the inward unit normal vector to S . Then $\iint_{S} \vec{F} . \hat{n} d S$ is equal to
(a) 4π
(b) -4π
(c) 8π
(d) -8π
6. Let A be a 3×3 matrix with eigen values $1,-1$ and 3 . Then
(a) $A^{2}+A$ is non-singular
(b) $A^{2}-A$ is non-singular
(c) $A^{2}+3 A$ is non-singular
(d) $A^{2}-3 A$ is non-singular
7. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation and I be the identify transformation of \mathbb{R}^{3}. If there is a scalar C and a non-zero vector $x \in \mathbb{R}^{3}$ such that $T(x)=C x$, then rank ($T-C I$)
(a) cannot be 0
(b) cannot be 1
(c) cannot be 2
(d) cannot be 3
8. In the group $\{1,2, \ldots16\}$ under the operation of multiplication modulo 17 , the order of the element 3 is
(a) 4
(b) 8
(c) 12
(d) 16
9. A ring R has maximal ideals
(a) if R is infinite
(b) if R is finite
(c) if R is finite with at least 2 elements
(d) only if R is finite
10. The integral $\int_{0}^{1}\left[\int_{0}^{1-z}\left(\int_{0}^{2} d x\right) d y\right] d z$ is equal to
(a) $\int_{0}^{1}\left[\int_{0}^{1-y}\left(\int_{0}^{2} d x\right) d z\right] d y$
(b) $\int_{0}^{1}\left[\int_{0}^{1-y}\left(\int_{0}^{1} d x\right) d z\right] d y$
(c) $\int_{0}^{2}\left[\int_{0}^{2}\left(\int_{0}^{1-z} d x\right) d z\right] d y$
(d) $\int_{0}^{2}\left[\int_{0}^{2}\left(\int_{0}^{1-y} d x\right) d z\right] d y$
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $g, h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable. Let $F(u, v)=\int_{v}^{u} f(t) d t$, where $u=g(x, y)$ and $v=h(x, y)$. Then $\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}=$
(a) $f(g(x, y))\left[\frac{\partial g}{\partial x}+\frac{\partial g}{\partial y}\right]-f(h(x, y))\left[\frac{\partial h}{\partial x}+\frac{\partial h}{\partial y}\right]$
(b) $f(h(x, y))\left[\frac{\partial g}{\partial x}+\frac{\partial g}{\partial y}\right]-f(g(x, y))\left[\frac{\partial h}{\partial x}-\frac{\partial h}{\partial y}\right]$
(c) $f(h(x, y))\left[\frac{\partial g}{\partial x}+\frac{\partial g}{\partial y}\right]+f(g(x, y))\left[\frac{\partial h}{\partial x}-\frac{\partial h}{\partial y}\right]$
(d) $f(g(x, y))\left[\frac{\partial g}{\partial x}-\frac{\partial g}{\partial y}\right]+f(g(x, y))\left[\frac{\partial h}{\partial x}-\frac{\partial h}{\partial y}\right][A / 0 \| R$
12. Let $y=f(x)$ be a smooth where such that $0<f(x)<K$ for all $x \in[a, b]$. Let
$\mathrm{L}=$ length of the curve between $x=a$ and $x=b$
$\mathrm{A}=$ area bounded by the curve, x-axis and the lines $x=a$ and $x=b$
$\mathrm{S}=$ area of the surface generates by revolving the curve about x-axis between $x=a$ and $x=b$ Then
(a) $2 \pi K L<S<2 \pi A$
(b) $S \leq 2 \pi A<2 \pi K L$
(c) $2 \pi A \leq S<2 \pi K L$
(d) $2 \pi A<2 \pi K L<S$
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(t)=t^{2}$ and let U be any non-empty open subset of \mathbb{R}. Then
(a) $f(U)$ is open
(b) $f^{-1}(U)$ is open
(c) $f(U)$ is closed
(d) $f^{-1}(U)$ is closed
14. Let $f:(-1,1) \rightarrow \mathbb{R}$ be such that $f^{(n)}(x)$ exists and $\left|f^{(n)}(x)\right| \leq 1$ for every $n \geq 1$ and for every $x \in(-1,1)$. Then f has a convergent power series expansion in a neighbourhood of
(a) every $x \in(-1,1)$
(b) every $x \in\left(\frac{-1}{2}, 0\right)$ only
(c) no $x \in(-1,1)$
(d) every $x \in\left(0, \frac{1}{2}\right)$ only
15. Let $a>1$ and and $f, g, h:[-a, a] \rightarrow \mathbb{R}$ be twice differentiable functions such that for some ' c ' with $0<c<1<a$,

$$
\begin{aligned}
& f(x)=0 \text { only for } x=-a, 0, a ; \\
& f^{\prime}(x)=0=g(x) \text { only } x=-1,0,1 ; \\
& g^{\prime}(x)=0=h(x) \text { only for } x=-c, c .
\end{aligned}
$$

The possible relations between f, g, h are
(a) $f=g^{\prime}$ and $h=f^{\prime}$
(b) $f^{\prime}=g$ and $g^{\prime}=h$
(c) $f=-g^{\prime}$ and $h^{\prime}=g$
(d) $f=-g^{\prime}$ and $h^{\prime}=f$
16. (a) Solve the initial value problem $\frac{d^{2} y}{d x^{2}}-y=x\left(\sin x+e^{x}\right), \quad y(0)=y^{\prime}(0)=1$
(b) Solve the differential equation $\left(2 y \sin x+3 y^{4} \sin x \cos x\right) d x-\left(4 y^{3} \cos ^{2} x+\cos x\right) d y=0$
17. Let G be a finite abelian group of order n with identity e. If for all $a \in G, a^{3}=e$, then, by induction on n, show that $n=3^{k}$ for some nonnegative integer k.
18. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. Show that there exist two points $c_{1}, c_{2} \in(a, b)$ such
(b) Let $f(x, y)=\left\{\begin{array}{cc}\left(x^{2}+y^{2}\right)\left[\ln \left(x^{2}+y^{2}\right)+1\right] & \text { for }(x, y) \neq(0,0) \\ \alpha & \text { for }(x, y)=(0,0)\end{array}\right.$

Find a suitable value of α such that f is continuous. For this value of α, is f differentiable at $(0,0)$? Justify your claim.
19. (a) Let S be the surface $x^{2}+y^{2}+z^{2}=1, z \geq 0$. Use Stoke's theorem to evaluate

$$
\begin{equation*}
\int_{C}[(2 x-y) d x-y d y-z d z] \tag{12}
\end{equation*}
$$

where C is the circle $x^{2}+y^{2}=1, z=0$, oriented anticlockwise.
(b) Show that the vector $\vec{F}=\left(2 x y-y^{4}+3\right) \hat{i}+\left(x^{2}-4 x y^{3}\right) \hat{j}$ is conservative. Find its potential and also the work done in moving a particle from $(1,0)$ to $(2,1)$ along some curve.
20. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $T(x, y, z)=(y+z, z, 0)$. Show that T is a linear transformation. If $v \in \mathbb{R}^{3}$ is such that $T^{2}(v) \neq 0$, then show that $B=\left\{v, T(v), T^{2}(v)\right\}$ forms a basis of \mathbb{R}^{3}. Compute the matrix of T with respect to B. Also find a $v \in \mathbb{R}^{3}$ such that $T^{2}(v) \neq 0$.
21. (a) For each $n \in N$, define $f_{n}:[-1,1] \rightarrow \mathbf{R}$ by

$$
f_{n}(x)= \begin{cases}4 n^{2} x & \text { for } x \in\left[0, \frac{1}{2 n}\right) \\ -4 n^{2}\left(x-\frac{1}{n}\right) & \text { for } x \in\left[\frac{1}{2 n}, \frac{1}{n}\right) \\ 0 & \text { for } x \in\left[\frac{1}{n}, 1\right]\end{cases}
$$

Compute $\int_{0}^{1} f_{n}(x) d x$ for each n. Analyze pointwise and uniform convergence of the sequence of functions $\left\{f_{n}\right\}$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with $|f(x)-f(y)| \geq|x-y|$ for every $x, y \in \mathbb{R}$. Is f one-one? Show that there cannot exist three points $a, b, c \in \mathbb{R}$ with $a<b<c$ such that $f(a)<f(c)<f(b)$.
22. Find the volume of the cylinder with base as the disk of unit radius in the $x y$-plane centred at $(1,1,0)$ and the top being the surface. $z=\left[(x-1)^{2}+(y-1)^{2}\right]^{3 / 2}$

