PAPER : IIT-JAM 2005 MATHEMATICS-MA

(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1.	Let $\{a_n\}, \{b_n\}$ and $\{c_n\}$ be sequences of real numbers such that $b_n = a_{2n}$ and $c_n = a_{2n+1}$. Then $\{a_n\}$ is convergent			
	(a) implies $\{b_n\}$ is convergent but $\{c_n\}$ need not be convergent			
	(b) implies $\{c_n\}$ is convergent but $\{b_n\}$ need not be convergent			
	(c) implies both $\{b_n\}$ and $\{c_n\}$ are convergent			
	(d) if both $\{b_n\}$ and $\{c_n\}$ are convergent			
2.	An integrating factor of $x \frac{dy}{dx} + (3x+1)y = xe^{-2x}$ is			
	(a) xe^{3x} (b) $3xe^{x}$ (c)	xe^x (d)) $x^3 e^x$	
3.	The general solution of $x^2 \frac{d^2 y}{dx^2} - 5x \frac{dy}{dx} + 9y = 0$ is			
	(a) $(c_1 + c_2 x)e^{3x}$ (b) $(c_1 + c_2 \ln x)x^3$ (c)	$(c_1 + c_2 x) x^3$ (d)) $(c_1 + c_2 \ln x)e^{x^3}$	
4.	Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$. If $\phi(x, y, z)$ is a solution of the Laplace equation then the vector field			
	$(\vec{\nabla}\phi + \vec{r})$ is CADCCD CNDCAVOLID			
	(a) neither solenoidal nor irrotational(b) solenoidal but not irrotational(c) both solenoidal and irrotational(d) irrotational but not solenoidal			
5.	Let $\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$, S be the surface of the	Let $\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$, S be the surface of the sphere $x^2 + y^2 + z^2 = 1$ and \hat{n} be the inward unit		
	normal vector to S. Then $\iint \vec{F} \cdot \hat{n} dS$ is equal to			
	(a) 4π (b) -4π (c)) _8 <i>π</i>	
6.	Let A be a 3×3 matrix with eigen values 1, -1 and 3. Then			
	(a) $A^2 + A$ is non-singular (b)	a) $A^2 + A$ is non-singular (b) $A^2 - A$ is non-singular		
	(c) $A^2 + 3A$ is non-singular (d) $A^2 - 3A$		ular	
7.	Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation and <i>I</i> be the identify transformation of \mathbb{R}^3 . If there is a scalar <i>C</i> and a non-zero vector $x \in \mathbb{R}^3$ such that $T(x) = Cx$, then rank $(T - CI)$			
8.	(a) cannot be 0 (b) cannot be 1 (c) cannot be 2 (d) cannot be 3 In the group {1, 2,16} under the operation of multiplication modulo 17, the order of the element 3 is			
	(a) 4 (b) 8 (c)	12 (d) 16	

- 9. A ring *R* has maximal ideals
 - (a) if *R* is infinite (b) if *R* is finite
 - (c) if R is finite with at least 2 elements (d) only if R is finite
- 10. The integral $\int_{0}^{1} \left[\int_{0}^{1-z} \left(\int_{0}^{2} dx \right) dy \right] dz$ is equal to (a) $\int_{0}^{1} \left[\int_{0}^{1-y} \left(\int_{0}^{2} dx \right) dz \right] dy$ (b) $\int_{0}^{1} \left[\int_{0}^{1-y} \left(\int_{0}^{1} dx \right) dz \right] dy$ (c) $\int_{0}^{2} \left[\int_{0}^{2} \left(\int_{0}^{1-z} dx \right) dz \right] dy$ (d) $\int_{0}^{2} \left[\int_{0}^{2} \left(\int_{0}^{1-y} dx \right) dz \right] dy$

11. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and $g, h : \mathbb{R}^2 \to \mathbb{R}$ be differentiable. Let $F(u, v) = \int_{u}^{u} f(t) dt$, where

$$u = g(x, y) \text{ and } v = h(x, y) \cdot \text{Then } \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} =$$
(a) $f(g(x, y)) \left[\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} \right] - f(h(x, y)) \left[\frac{\partial h}{\partial x} + \frac{\partial h}{\partial y} \right]$
(b) $f(h(x, y)) \left[\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} \right] - f(g(x, y)) \left[\frac{\partial h}{\partial x} - \frac{\partial h}{\partial y} \right]$
(c) $f(h(x, y)) \left[\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} \right] + f(g(x, y)) \left[\frac{\partial h}{\partial x} - \frac{\partial h}{\partial y} \right]$
(d) $f(g(x, y)) \left[\frac{\partial g}{\partial x} - \frac{\partial g}{\partial y} \right] + f(g(x, y)) \left[\frac{\partial h}{\partial x} - \frac{\partial h}{\partial y} \right]$

Let y = f(x) be a smooth where such that 0 < f(x) < K for all x ∈ [a,b]. Let
L = length of the curve between x = a and x = b
A = area bounded by the curve, x-axis and the lines x = a and x = b
S = area of the surface generates by revolving the curve about x-axis between x = a and x = b
Then

- (a) $2\pi KL < S < 2\pi A$ (b) $S \le 2\pi A < 2\pi KL$
- (c) $2\pi A \le S < 2\pi KL$ (d) $2\pi A < 2\pi KL < S$

13. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(t) = t^2$ and let U be any non-empty open subset of \mathbb{R} . Then (a) f(U) is open (b) $f^{-1}(U)$ is open (c) f(U) is closed (d) $f^{-1}(U)$ is closed

3

Let $f:(-1,1) \to \mathbb{R}$ be such that $f^{(n)}(x)$ exists and $|f^{(n)}(x)| \le 1$ for every $n \ge 1$ and for every 14. $x \in (-1, 1)$. Then f has a convergent power series expansion in a neighbourhood of (b) every $x \in \left(\frac{-1}{2}, 0\right)$ only (a) every $x \in (-1, 1)$

(c) no
$$x \in (-1, 1)$$
 (d) every $x \in (0, \frac{1}{2})$ only

Let a > 1 and and $f, g, h: [-a, a] \to \mathbb{R}$ be twice differentiable functions such that for some 'c' 15. with 0 < c < 1 < a.

$$f(x) = 0 \text{ only for } x = -a, 0, a;$$

$$f'(x) = 0 = g(x) \text{ only } x = -1, 0, 1;$$

$$g'(x) = 0 = h(x) \text{ only for } x = -c, c.$$

The possible relations between f, g, h are

- (b) f' = g and g' = h(a) f = g' and h = f'(c) f = -g' and h' = g(d) f = -g' and h' = f
- (a) Solve the initial value problem $\frac{d^2 y}{dx^2} y = x(\sin x + e^x)$, y(0) = y'(0) = 116. (12)

(b) Solve the differential equation $(2y\sin x + 3y^4\sin x\cos x)dx - (4y^3\cos^2 x + \cos x)dy = 0$ (9)

- Let G be a finite abelian group of order n with identity e. If for all $a \in G$, $a^3 = e$, then, by induction 17. on *n*, show that $n = 3^k$ for some nonnegative integer *k*. (21)
- (a) Let $f:[a,b] \to \mathbb{R}$ be a differentiable function. Show that there exist two points $c_1, c_2 \in (a,b)$ 18. that $2f(c_1) f'(c_1) = f'(c_2) [f(a) + f(b)].$ such

(b) Let
$$f(x, y) = \begin{cases} (x^2 + y^2) \left[ln(x^2 + y^2) + 1 \right] \text{ for } (x, y) \neq (0, 0) \\ \alpha & \text{ for } (x, y) = (0, 0) \end{cases}$$

Find a suitable value of α such that f is continuous. For this value of α , is f differentiable at (0, 0)? Justify your claim. (12)

(a) Let S be the surface $x^2 + y^2 + z^2 = 1$, $z \ge 0$. Use Stoke's theorem to evaluate 19.

$$\int_C \left[\left(2x - y \right) dx - y dy - z dz \right]$$

where C is the circle $x^2 + y^2 = 1$, z = 0, oriented anticlockwise. (12)

(**b**) Show that the vector $\vec{F} = (2xy - y^4 + 3)\hat{i} + (x^2 - 4xy^3)\hat{j}$ is conservative. Find its potential and also the work done in moving a particle from (1, 0) to (2, 1) along some curve. (9)

- **20.** Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by T(x, y, z) = (y + z, z, 0). Show that *T* is a linear transformation. If $v \in \mathbb{R}^3$ is such that $T^2(v) \neq 0$, then show that $B = \{v, T(v), T^2(v)\}$ forms a basis of \mathbb{R}^3 . Compute the matrix of *T* with respect to *B*. Also find a $v \in \mathbb{R}^3$ such that $T^2(v) \neq 0$. (21)
- **21.** (a) For each $n \in N$, define $f_n : [-1,1] \to \mathbf{R}$ by

$$f_n(x) = \begin{cases} 4n^2 x & \text{for } x \in \left[0, \frac{1}{2n}\right] \\ -4n^2 \left(x - \frac{1}{n}\right) & \text{for } x \in \left[\frac{1}{2n}, \frac{1}{n}\right] \\ 0 & \text{for } x \in \left[\frac{1}{n}, 1\right] \end{cases}$$

Compute $\int_{0}^{1} f_n(x) dx$ for each n. Analyze pointwise and uniform convergence of the sequence of functions $\{f_n\}$. (12)

(b) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function with $|f(x) - f(y)| \ge |x - y|$ for every $x, y \in \mathbb{R}$. Is f one-one? Show that there cannot exist three points $a, b, c \in \mathbb{R}$ with a < b < c such that f(a) < f(c) < f(b). (9)

22. Find the volume of the cylinder with base as the disk of unit radius in the xy-plane centred at (1, 1, 0) and the top being the surface. $z = [(x-1)^2 + (y-1)^2]^{3/2}$ (12)

