PAPER : IIT-JAM 2007

MATHEMATICS-MA

(CODE-B)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1. Let $\mathrm{A}(\mathrm{t})$ denote the area bounded by the curve $y=e^{-|x|}$, the x-axis and the straight lines $x=-t$ and $x=t$, then $\lim _{t \rightarrow \infty} A(t)$ is equal to
(a) 2
(b) 1
(c) $\frac{1}{2}$
(d) 0
2. If k is constant such that $x y+k=e^{(x-1)^{2} / 2}$ satisfies the differential equation $x \frac{d y}{d x}=\left(x^{2}-x-1\right) y+(x-1)$, then k is equal to
(a) 1
(b) 0
(c) -1
(d) -2
3. Which of the following functions is uniformly continuous on the domain as stated ?
(a) $f(x)=x^{2}, x \in \mathbb{R}$
(b) $f(x)=\frac{1}{x}, x \in[1, \infty)$
(c) $f(x)=\tan x, x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
(d) $f(x)=[x], x \in[0,1]$
($[x]$ is the greatest integer less than or equal to x)
4. Let R be the ring of polynomials over \mathbb{Z}_{2} and let I be the ideal of R generated by the polynomial $x^{3}+x+1$. Then the number of elements in the quotient ring R / I is
(a) 2
(b) 4
(c) 8
(d) 16
5. Which of the following sets is the basis for the subspace $W=\left\{\left[\begin{array}{ll}x & y \\ 0 & t\end{array}\right] ; x+2 y+t=0, y+t=0\right\}$ of the vector space of all real 2×2 matrices.
(a) $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\right\}$
6. Let G be an Abelian group of order 10. Let $S=\left\{g \in G: g^{-1}=g\right\}$. Then the number of nonidentity elements in S is
(a) 5
(b) 2
(c) 1
(d) 0
7. Let $\left(a_{n}\right)$ be an increasing sequence of positive real numbers such that the series $\sum_{k=1}^{\infty} a_{k}$ is divergent. Let $S_{n}=\sum_{k=1}^{n} a_{k}$ for $n=1,2, \ldots$ and $t_{n}=\sum_{k=2}^{n} \frac{a_{k}}{S_{k-1} S_{k}}$ for $\mathrm{n}=2,3, \ldots$. Then $\lim _{n \rightarrow \infty} t_{n}$ is equal to
(a) $\frac{1}{a_{1}}$
(b) 0
(c) $\frac{1}{\left(a_{1}+a_{2}\right)}$
(d) $a_{1}+a_{2}$
8. For every function $f:[0,1] \rightarrow \mathbb{R}$ which is twice differentiable and satisfies $f^{\prime}(x) \geq 1$ for all $x \in[0,1]$, we must have
(a) f " $(x) \geq 0$ for all $x \in[0,1]$
(b) $f(x) \geq x$ for all $x \in[0,1]$
(c) $f\left(x_{2}\right)-x_{2} \leq f\left(x_{1}\right)-x_{1}$ for all $x_{1}, x_{2} \in[0,1]$ with $x_{2} \geq x_{1}$
(d) $f\left(x_{2}\right)-x_{2} \geq f\left(x_{1}\right)-x_{1}$ for all $x_{1}, x_{2} \in[0,1]$ with $x_{2} \geq x_{1}$
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Which of the following statements holds regarding the continuity and the existence of partial derivatives of f at $(0,0)$?
(a) Both partial derivatives of f exist at $(0,0)$ and f is continuous at $(0,0)$
(b) Both partial derivatives of f exist at $(0,0)$ and f is NOT continuous at $(0,0)$
(c) One partial derivative of f does NOT exist at $(0,0)$ and f is continuous at $(0,0)$
(d) One partial derivative of f does NOT exist at $(0,0)$ and f is NOT continuous at $(0,0)$
10. Suppose $\left(c_{n}\right)$ is a sequence of real numbers such that $\lim _{n \rightarrow \infty}\left|c_{n}\right|^{1 / n}$ exists and is non-zero. If the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is equal to r, then the radius of convergence of the power series $\sum_{n=1}^{\infty} n^{2} c_{n} x^{n}$ is
(a) less than r
(b) greater than r
(c) equal to r
(d) equal to 0
11. The rank of the matrix $\left[\begin{array}{ccc}1 & 4 & 8 \\ 2 & 10 & 22 \\ 0 & 4 & 12\end{array}\right]$ is
(a) 3
(b) 2
(c) 1
(d) 0
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. If $\int_{0}^{x} f(2 t) d t=\frac{x}{\pi} \sin (\pi x)$ for all $x \in \mathbb{R}$, then $f^{\prime}(2)$ is equal to
(a) -1
(b) 0
(c) 1
(d) 2
13. Let $\vec{u}=\left(a e^{x} \sin y-4 x\right) \hat{i}+\left(2 y+e^{x} \cos y\right) \hat{j}+a z \hat{k}$, where a is constant. If the line integral $\oint_{C} \vec{u} \cdot d \vec{r}$ over every closed curve C is zero, then a is equal to
(a) -2
(b) -1
(c) 0
(d) 1
14. One of the integrating factor of the differential equation $\left(y^{2}-3 x y\right) d x+\left(x^{2}-x y\right) d y=0$ is
(a) $1 /\left(x^{2} y^{2}\right)$
(b) $1 /\left(x^{2} y\right)$
(c) $1 /\left(x y^{2}\right)$
(d) $1 /(x y)$
15. Let C denote the boundary of the semi-circular disk $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1, y \geq 0\right\}$ and let $\varphi(x, y)=x^{2}+y$ for $(x, y) \in D$. If \hat{n} is the outward unit normal to C, then the integral $\int_{C}(\vec{\nabla} \varphi) \cdot \hat{n} d s$, evaluated counter-clockwise over C, is equal to
(a) 0
(b) $\pi-2$
(c) π
(d) $\pi+2$
16. (a) Let $M=\left[\begin{array}{ccc}1+i & 2 i & i+3 \\ 0 & 1-i & 3 i \\ 0 & 0 & i\end{array}\right]$. Determine the eigen-values of the matrix $B=M^{2}-2 M+I$. (9)
(b) Let N be a square matrix of order 2. If the determinant of N is equal to 9 and the sum of the diagonal entries of N is equal to 10 , then determine the eigenvalues of N.
17. (a) Using the variation of parameters, solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{2}$, given that x and $\frac{1}{x}$ are two solutions of the corresponding homogeneous equations.
(b) Find the real number α such that the differential equation $\frac{d^{2} y}{d x^{2}}+2(\alpha-1)(\alpha-3) \frac{d y}{d x}+(\alpha-2) y=0$ has a solution $y(x)=a \cos (\beta x)+b \sin (\beta x)$ for some nonzero real numbers a, b, β.
18. (a) Let a, b, c be non-zero real numbers such that $(a-b)^{2}=4 a c$. Solve the differential equation.

$$
\begin{equation*}
a(x+\sqrt{2})^{2} \frac{d^{2} y}{d x^{2}}+b(x+\sqrt{2}) \frac{d y}{d x}+c y=0 . \tag{9}
\end{equation*}
$$

(b) Solve the differential equation $d x+\left(e^{y \sin y}-x\right)(y \cos y+\sin y) d y=0$.
19. Let $f(x, y)=x\left(x-2 y^{2}\right)$ for $(x, y) \in \mathbb{R}^{2}$. Show that f has a local minimum at $(0,0)$ on every straight line through $(0,0)$. Is $(0,0)$ a critical point of f ? Find the discriminant of f at $(0,0)$. Does f have a local minimum at $(0,0)$? Justify your answers.
20. (a) Find the finite volume enclosed by the paraboloids $z=2-x^{2}-y^{2}$ and $z=x^{2}+y^{2}$.
(b) Let $f:[0,3] \rightarrow \mathbb{R}$ be a continuous function with $\int_{0}^{3} f(x) d x=3$.

Evaluate $\int_{0}^{3}\left[x f(x)+\int_{0}^{x} f(t) d t\right] d x$.
21. (a) Let S be the surface $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+2 z=2, z \geq 0\right\}$, and let \hat{n} be the outward unit normal to S. If $\vec{F}=y \hat{i}+x z \hat{j}+\left(x^{2}+y^{2}\right) \hat{k}$, then evaluate the integral $\iint_{S} \vec{F} . \hat{n} d S$.
(b) Let $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$. If a scalar field φ and a vector field \vec{u} satisfy $\vec{\nabla} \varphi=\vec{\nabla} \times \vec{u}+f(r) \vec{r}$, where f is an arbitrary differentiable function, then show that $\nabla^{2} \varphi=r f^{\prime}(r)+3 f(r)$.
22. (a) Let D be the region bounded by the concentric spheres $S_{1}: x^{2}+y^{2}+z^{2}=a^{2}$ and $S_{2}: x^{2}+y^{2}+z^{2}=b^{2}$, where $a<b$. Let \hat{n} be the unit normal to S_{1} directed away from the origin.

If $\nabla^{2} \phi=0$ in D and $\phi=0$ on S_{2}, then show that $\iiint_{D}|\vec{\nabla} \phi|^{2} d V+\iint_{S_{1}} \phi(\vec{\nabla} \phi) \cdot \hat{n} d S=0$.
(b) Let C be the curve in \mathbb{R}^{3} given by $x^{2}+y^{2}=a^{2}, z=0$ traced counter-clockwise, and let

$$
\begin{equation*}
\vec{F}=x^{2} y^{3} \hat{i}+\hat{j}+z \hat{k} \text {. Using Stoke's theorem, evaluate } \int_{C} \vec{F} \cdot d \vec{r} \tag{6}
\end{equation*}
$$

23. Let V be the subspace of \mathbb{R}^{4} spanned by vector $(1,0,1,2),(2,1,3,4)$ and $(3,1,4,6)$. Let $T: V \rightarrow \mathbb{R}^{2}$ be a linear transformation given by $T(x, y, z, t)=(x-y, z-t)$ for all $(x, y, z, t) \in V$. Find a basis for Null space of T and also a basis for range space of T.
24. (a) Compute the double integral $I=\iint_{D}(x+2 y) d x d y$, where D is the region in the $x y$-plane bounded by the straight lines $y=x+3, y=x-3, y=-2 x+4$ and $y=-2 x-2$.
(b) Evaluate $\int_{0}^{\pi / 2}\left[\int_{\pi / 2}^{\pi} \frac{\sin x}{x} d x\right] d y+\int_{\pi / 2}^{\pi}\left[\int_{y}^{\pi} \frac{\sin x}{x} d x\right] d y$.
25. (a) Does the series $\sum_{k=1}^{\infty} \frac{(-1)^{k} k+x^{k}}{k^{2}}$ converge uniformly for $x \in[-1,1]$? Justify.
(b) Suppose $\left(f_{n}\right)$ is a sequence of real-valued functions defined on \mathbb{R} and f is a real-valued function defined on \mathbb{R} such that $\left|f_{n}(x)-f(x)\right| \leq\left|a_{n}\right|$ for all $n \in \mathbb{N}$ and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Must the sequence $\left(f_{n}\right)$ be uniformly convergent on \mathbb{R} ? Justify.
26. (a) Suppose f is a real valued thrice differentiable function defined on \mathbb{R} such that $f^{\prime \prime \prime}(x)>0$ for all $x \in \mathbb{R}$. Using Taylor's formula, show that $f\left(x_{2}\right)-f\left(x_{1}\right)>\left(x_{2}-x_{1}\right) f^{\prime}\left(\frac{x_{1}+x_{2}}{2}\right)$ for all x_{1}, x_{2} in \mathbb{R} with $x_{2}>x_{1}$.
(b) Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of real numbers such that $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all $n \in \mathbb{N}$. Must there exists a real number x such that $a_{n} \leq x \leq b_{n}$ for all $n \in \mathbb{N}$? Justify your answer.
27. Let G be the group of all 2×2 matrices with real entries with respect to matrix multiplication. Let G_{1} be the smallest subgroup of G containing $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$, and G_{2} be the smallest subgroup of G containing $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. Determine all elements of G_{1} and find their orders. Determine all elements of G_{2} and find their orders. Does there exist a one-to-one homomorphism from G_{1} onto G_{2} ? Justify.
28. (a) Let p be a prime number and let \mathbb{Z} be the ring of integers. If an ideal J of \mathbb{Z} contains the set $p \mathbb{Z}$ properly, then show that $J=\mathbb{Z}$. (Here $p \mathbb{Z}=\{p x: x \in \mathbb{Z}\}$).
(b) Consider the ring $R=\{a+i b: a, b \in \mathbb{Z}\}$ with usual addition and multiplication. Find all invertible elements of R.
29. (a) Suppose E is a non-empty subset of \mathbb{R} which is bounded above, and let $\alpha=\sup E$. If E is closed, then show that $\alpha \in E$. If E is open, then show that $\alpha \notin E$.
(b) Find all limit points of the set $E=\left\{n+\frac{1}{2 m}: n, m \in \mathbb{N}\right\}$.
