PAPER : IIT-JAM 2007 MATHEMATICS-MA

(CODE-B)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1. Let A(t) denote the area bounded by the curve $y = e^{-|x|}$, the x-axis and the straight lines x = -tand x = t, then $\lim_{t \to 0} A(t)$ is equal to

(a) 2 (b) 1 (c)
$$\frac{1}{2}$$
 (d) 0

2. If k is constant such that $xy + k = e^{(x-1)^2/2}$ satisfies the differential equation

$$x\frac{dy}{dx} = (x^2 - x - 1)y + (x - 1)$$
, then k is equal to
(a) 1 (b) 0 (c) -1 (d) -2

3. Which of the following functions is uniformly continuous on the domain as stated ?

(a)
$$f(x) = x^2, x \in \mathbb{R}$$

(b) $f(x) = \frac{1}{x}, x \in [1, \infty)$
(c) $f(x) = \tan x, x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
(d) $f(x) = [x], x \in [0, 1]$

([x] is the greatest integer less than or equal to x)

4. Let *R* be the ring of polynomials over \mathbb{Z}_2 and let *I* be the ideal of *R* generated by the polynomial $x^3 + x + 1$. Then the number of elements in the quotient ring *R/I* is

$$W = \left\{ \begin{bmatrix} x & y \\ 0 & t \end{bmatrix}; x + 2y + t = 0, y + t = 0 \right\} \text{ of the vector space of all real } 2 \times 2 \text{ matrices.}$$

(a) $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ (b) $\left\{ \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right\}$
(c) $\left\{ \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \right\}$ (d) $\left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right\}$

6. Let G be an Abelian group of order 10. Let $S = \{g \in G : g^{-1} = g\}$. Then the number of nonidentity elements in S is (a) 5 (b) 2 (c) 1 (d) 0

7. Let (a_n) be an increasing sequence of positive real numbers such that the series $\sum_{k=1}^{\infty} a_k$ is divergent.

Let
$$S_n = \sum_{k=1}^n a_k$$
 for $n = 1, 2, ...$ and $t_n = \sum_{k=2}^n \frac{a_k}{S_{k-1}S_k}$ for $n = 2, 3, ...$ Then $\lim_{n \to \infty} t_n$ is equal to

(a)
$$\frac{1}{a_1}$$
 (b) 0 (c) $\frac{1}{(a_1 + a_2)}$ (d) $a_1 + a_2$

8. For every function $f:[0,1] \to \mathbb{R}$ which is twice differentiable and satisfies $f'(x) \ge 1$ for all $x \in [0,1]$, we must have

- (a) $f''(x) \ge 0$ for all $x \in [0, 1]$ (b) $f(x) \ge x$ for all $x \in [0, 1]$ (c) $f(x_2) - x_2 \le f(x_1) - x_1$ for all $x_1, x_2 \in [0, 1]$ with $x_2 \ge x_1$ (d) $f(x_2) - x_2 \ge f(x_1) - x_1$ for all $x_1, x_2 \in [0, 1]$ with $x_2 \ge x_1$
- 9. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x, y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Which of the following statements holds regarding the continuity and the existence of partial derivatives of f at (0, 0)?

- (a) Both partial derivatives of f exist at (0, 0) and f is continuous at (0, 0)
- (b) Both partial derivatives of f exist at (0, 0) and f is NOT continuous at (0, 0)
- (c) One partial derivative of f does NOT exist at (0, 0) and f is continuous at (0, 0)
- (d) One partial derivative of f does NOT exist at (0, 0) and f is NOT continuous at (0, 0)
- 10. Suppose (c_n) is a sequence of real numbers such that $\lim_{n\to\infty} |c_n|^{\frac{1}{n}}$ exists and is non-zero. If the radius

of convergence of the power series $\sum_{n=0}^{\infty} c_n x^n$ is equal to *r*, then the radius of convergence of the power

series
$$\sum_{n=1}^{\infty} n^2 c_n x^n$$
 is
(a) less than r (b) greater than r (c) equal to r (d) equal to 0
The rank of the matrix $\begin{bmatrix} 1 & 4 & 8 \\ 2 & 10 & 22 \\ 0 & 4 & 12 \end{bmatrix}$ is
(a) 3 (b) 2 (c) 1 (d) 0

2

11.

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. If $\int_{0}^{x} f(2t) dt = \frac{x}{\pi} \sin(\pi x)$ for all $x \in \mathbb{R}$, then f'(2) is 12. equal to (c) 1 (a) -1 (b) 0 (d) 2Let $\vec{u} = (ae^x \sin y - 4x)\hat{i} + (2y + e^x \cos y)\hat{j} + az\hat{k}$, where *a* is constant. If the line integral $\oint \vec{u}.d\vec{r}$ 13. over every closed curve C is zero, then a is equal to (a) - 2(b) - 1(d) 1 (c) 0One of the integrating factor of the differential equation $(y^2 - 3xy)dx + (x^2 - xy)dy = 0$ is 14. (b) $1/(x^2 y)$ (c) $1/(xy^2)$ (d) 1/(xy)(a) $1/(x^2y^2)$ Let C denote the boundary of the semi-circular disk $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, y \ge 0\}$ and let 15. $\varphi(x, y) = x^2 + y$ for $(x, y) \in D$. If \hat{n} is the outward unit normal to C, then the integral $\int (\nabla \varphi) \hat{n} ds$, evaluated counter-clockwise over C, is equal to (d) $\pi + 2$ (a) 0(b) $\pi - 2$ (c) π (a) Let $M = \begin{bmatrix} 1+i & 2i & i+3 \\ 0 & 1-i & 3i \\ 0 & 0 & i \end{bmatrix}$. Determine the eigen-values of the matrix $B = M^2 - 2M + I$. (9) 16. (b) Let N be a square matrix of order 2. If the determinant of N is equal to 9 and the sum of the diagonal entries of N is equal to 10, then determine the eigenvalues of N. (6)(a) Using the variation of parameters, solve the differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2$, given that x and $\frac{1}{x}$ are two solutions of the corresponding homogeneous equations. (9) 17.

(b) Find the real number $\boldsymbol{\alpha}$ such that the differential equation

$$\frac{d^2 y}{dx^2} + 2(\alpha - 1)(\alpha - 3)\frac{dy}{dx} + (\alpha - 2)y = 0$$
 has a solution $y(x) = a\cos(\beta x) + b\sin(\beta x)$ for some non-
zero real numbers a, b, β . (6)

18. (a) Let a, b, c be non-zero real numbers such that $(a-b)^2 = 4ac$. Solve the differential equation.

$$a(x+\sqrt{2})^2 \frac{d^2 y}{dx^2} + b(x+\sqrt{2})\frac{dy}{dx} + cy = 0.$$
(9)

(**b**) Solve the differential equation $dx + (e^{y \sin y} - x)(y \cos y + \sin y)dy = 0$. (6)

19. Let $f(x, y) = x(x - 2y^2)$ for $(x, y) \in \mathbb{R}^2$. Show that *f* has a local minimum at (0, 0) on every straight line through (0, 0). Is (0, 0) a critical point of *f*? Find the discriminant of *f* at (0, 0). Does *f* have a local minimum at (0, 0)? Justify your answers. (15)

20. (a) Find the finite volume enclosed by the paraboloids $z = 2 - x^2 - y^2$ and $z = x^2 + y^2$. (9)

(b) Let $f:[0,3] \to \mathbb{R}$ be a continuous function with $\int_{0}^{3} f(x) dx = 3$.

Evaluate
$$\int_{0}^{3} \left[xf(x) + \int_{0}^{x} f(t)dt \right] dx.$$
 (6)

21. (a) Let *S* be the surface $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + 2z = 2, z \ge 0\}$, and let \hat{n} be the outward unit normal to *S*. If $\vec{F} = y\hat{i} + xz\hat{j} + (x^2 + y^2)\hat{k}$, then evaluate the integral $\iint_{S} \vec{F} \cdot \hat{n}dS$. (9)

(b) Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$. If a scalar field φ and a vector field \vec{u} satisfy $\vec{\nabla}\varphi = \vec{\nabla} \times \vec{u} + f(r)\vec{r}$, where f is an arbitrary differentiable function, then show that $\nabla^2 \varphi = rf'(r) + 3f(r)$. (6)

22. (a) Let *D* be the region bounded by the concentric spheres $S_1: x^2 + y^2 + z^2 = a^2$ and $S_2: x^2 + y^2 + z^2 = b^2$, where a < b. Let \hat{n} be the unit normal to S_1 directed away from the origin. If $\nabla^2 \phi = 0$ in *D* and $\phi = 0$ on S_2 , then show that $\iiint_D |\nabla \phi|^2 dV + \iint_{S_1} \phi(\nabla \phi) \cdot \hat{n} dS = 0$. (9)

(b) Let *C* be the curve in \mathbb{R}^3 given by $x^2 + y^2 = a^2$, z = 0 traced counter-clockwise, and let $\vec{F} = x^2 y^3 \hat{i} + \hat{j} + z \hat{k}$. Using Stoke's theorem, evaluate $\int_C \vec{F} \cdot d\vec{r}$. (6)

23. Let V be the subspace of ℝ⁴ spanned by vector (1, 0, 1, 2), (2, 1, 3, 4) and (3, 1, 4, 6). Let T: V → ℝ² be a linear transformation given by T(x, y, z,t) = (x - y, z - t) for all (x, y, z, t) ∈ V. Find a basis for Null space of T and also a basis for range space of T.
(15)

24. (a) Compute the double integral $I = \iint_{D} (x+2y)dx dy$, where *D* is the region in the *xy*-plane bounded by the straight lines y = x+3, y = x-3, y = -2x+4 and y = -2x-2. (9)

(**b**) Evaluate
$$\int_{0}^{\pi/2} \left[\int_{\pi/2}^{\pi} \frac{\sin x}{x} dx \right] dy + \int_{\pi/2}^{\pi} \left[\int_{y}^{\pi} \frac{\sin x}{x} dx \right] dy.$$
(6)

25. (a) Does the series
$$\sum_{k=1}^{\infty} \frac{(-1)^k k + x^k}{k^2}$$
 converge uniformly for $x \in [-1, 1]$? Justify. (9)

- (b) Suppose (f_n) is a sequence of real-valued functions defined on ℝ and f is a real-valued function defined on ℝ such that |f_n(x) f(x)| ≤ |a_n| for all n ∈ ℕ and a_n → 0 as n →∞. Must the sequence (f_n) be uniformly convergent on ℝ? Justify.
- 26. (a) Suppose f is a real valued thrice differentiable function defined on \mathbb{R} such that f'''(x) > 0 for all $x \in \mathbb{R}$. Using Taylor's formula, show that

$$f(x_2) - f(x_1) > (x_2 - x_1) f'\left(\frac{x_1 + x_2}{2}\right) \text{ for all } x_1, x_2 \text{ in } \mathbb{R} \text{ with } x_2 > x_1.$$
(9)

(**b**) Let (a_n) and (b_n) be sequences of real numbers such that $a_n \le a_{n+1} \le b_{n+1} \le b_n$ for all $n \in \mathbb{N}$. Must there exists a real number x such that $a_n \le x \le b_n$ for all $n \in \mathbb{N}$? Justify your answer. (6)

27. Let G be the group of all 2×2 matrices with real entries with respect to matrix multiplication. Let

 G_1 be the smallest subgroup of G containing $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, and G_2 be the smallest

subgroup of *G* containing $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Determine all elements of *G*₁ and find their orders. Determine all elements of *G*₂ and find their orders. Does there exist a one-to-one homomorphism from *G*₁ onto *G*₂? Justify. (15)

- 28. (a) Let p be a prime number and let \mathbb{Z} be the ring of integers. If an ideal J of \mathbb{Z} contains the set $p\mathbb{Z}$ properly, then show that $J = \mathbb{Z}$. (Here $p\mathbb{Z} = \{px : x \in \mathbb{Z}\}$). (9)
 - (b) Consider the ring $R = \{a + ib : a, b \in \mathbb{Z}\}$ with usual addition and multiplication. Find all invertible elements of R. (6)
- 29. (a) Suppose *E* is a non-empty subset of \mathbb{R} which is bounded above, and let $\alpha = \sup E$. If *E* is closed, then show that $\alpha \in E$. If *E* is open, then show that $\alpha \notin E$. (9)

(**b**) Find all limit points of the set
$$E = \left\{ n + \frac{1}{2m} : n, m \in \mathbb{N} \right\}.$$
 (6)

**** END *****