PAPER : IIT-JAM 2008 MATHEMATICS-MA

(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

- 1. The least positive integer *n*, such that $\begin{cases} \cos \pi/4 & \sin \pi/4 \\ -\sin \pi/4 & \cos \pi/4 \end{cases}^n$ is the identity matrix of order 2, is (a) 4 (b) 8 (c) 12 (d) 16
- 2. Let $S = \{T : \mathbb{R}^3 \to \mathbb{R}^3; T \text{ is a linear transformation with } T(1,0,1) = (1,2,3) \text{ and} T(1,2,3) = (1,0,1).$ Then S is
 - (a) a singleton set
 - (b) a finite set containing more than one element
 - (c) a countable infinite set
 - (d) an uncountable set

3. Let
$$s_n = \int_0^1 \frac{n x^{n-1}}{(1+x)} dx$$
 for $n \ge 1$. Then as $n \to \infty$, the sequence $\{s_n\}$ tends to
(a) 0 (b) $1/2$ (c) 1 (d) $+\infty$

4. The work done by the force $\vec{F} = 4y\hat{i} - 3xy\hat{j} + z^2\hat{k}$ in moving a particle over the circular path $x^2 + y^2 = 1, z = 0$ from (1,0,0) to (0,1,0) is (a) $\pi + 1$ (b) $\pi - 1$ (c) $-\pi + 1$ (d) $-\pi - 1$

5. The set of all boundary points of \mathbb{Q} in \mathbb{R} is (a) \mathbb{R} (b) $\mathbb{R} \setminus \mathbb{Q}$ (c) \mathbb{Q} (d) ϕ

6. Let
$$V = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{1}{4} \le x^2 + y^2 + z^2 \le 1 \right\}$$
 and $\vec{F} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{(x^2 + y^2 + z^2)^2}$ for $(x, y, z) \in V$. Let \hat{n}

denote the outward unit normal vector to the boundary of V and S denote the part $\left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = \frac{1}{4} \right\}$ of the boundary of V. Then $\iint_S \vec{F} \cdot \hat{n} dS$ is equal to (a) -8π (b) -4π (c) 4π (d) 8π The set $U = \left\{ x \in \mathbb{R} \mid \sin x = \frac{1}{2} \right\}$ is

7. The set
$$U = \left\{ x \in \mathbb{R} \mid \sin x = \frac{1}{2} \right\}$$
 is
(a) open
(c) both open and closed
(d) neither open nor closed

Let $f(x) = \int_{a}^{b} (x^2 - t^2)g(t)dt$, where g is a real valued continuous function on \mathbb{R} . Then f'(x) is 8. equal to

(a) 0 (b)
$$x^{3}g(x)$$
 (c) $\int_{0}^{x} g(t)dt$ (d) $2x\int_{0}^{x} g(t)dt$

Let $y_1(x)$ and $y_2(x)$ be linearly independent solutions of the differential equation 9. y'' + P(x)y' + Q(x)y = 0 where P(x) and Q(x) are continuous function on internal I. Then $y_3(x) = ay_1(x) + by_2(x)$ and $y_4(x) = cy_1(x) + dy_2(x)$ are linearly independent solutions of the given differential equation if

(d) $ac \neq bd$ (c) $ad \neq bc$ (a) ad = bc(b) ac = bd

The set $R = \{f \mid f \text{ is a function from } \mathbb{Z} \text{ to } \mathbb{R}\}$ under the binary operations + and . defined as 10. (f+g)(n) = f(n) + g(n) and $(f \cdot g)(n) = f(n)g(n)$ for all $n \in \mathbb{Z}$ forms a ring. Let $S_1 = \{ f \in R \mid f(-n) = f(n) \text{ for all } n \in \mathbb{Z} \}$ and $S_2 = \{ f \in R \mid f(0) = 0 \}$. Then (a) S_1 and S_2 are both ideals in R (b) S_1 is an ideal in R while S_2 is not (c) S_2 is an ideal in R while S_1 is not (d) neither S_1 nor S_2 is an ideal in R

Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1, 2, 3) = (1, 2, 3), T(1, 5, 0) = (2, 10, 0) and 11. T(-1, 2, -1) = (-3, 6, -3). The dimension of the vector space spanned by all the eigenvectors of T is (a) 0(b) 1 (c) 2(d) 3

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers defined as $a_1 = 1$ and for $n \ge 1$, $a_{n+1} = a_n + (-1)^n 2^{-n}$, $2a_{n+1} = a_n$ 12. $b_n = \frac{2a_{n+1} - a_n}{\alpha}$. Then

- (a) $\{a_n\}$ converges to zero and $\{b_n\}$ is a Cauchy sequence
- (b) $\{a_n^n\}$ converges to a non-zero number and $\{b_n\}$ is a Cauchy sequence
- (c) $\{a_n^n\}$ converges to zero and $\{b_n\}$ is not a convergent sequence (d) $\{a_n\}$ converges to a non-zero number and $\{b_n\}$ is not a convergent sequence

Let $f(-1,1) \to \mathbb{R}$ be defined as $f(x) = \frac{x^2}{1 - \cos x}$ for $x \neq 0$ and f(0) = 2. If $f(x) = \sum_{n=1}^{\infty} a_n x^n$ is the 13.

Taylor expansion of f for all x in (-1, 1), then $\sum_{n=0}^{\infty} a_{2n+1}$ is

(a) 0 (b)
$$\frac{1}{2}$$
 (c) 1 (d) 2

14. Let y₁(x) and y₂(x) be twice differentiable functions on a interval I satisfying the differential equations
$$\frac{dy_1}{dx} - y_1 - y_2 = e^x$$
 and $2\frac{dy_1}{dx} + \frac{dy_2}{dx} - 6y_1 = 0$. Then y₁(x) is
(a) $C_1e^{-2x} + C_2e^{3x} - \frac{1}{4}e^x$
(b) $C_1e^{2x} + C_2e^{-3x} + \frac{1}{4}e^x$
(c) $C_1e^{2x} + C_2e^{-3x} - \frac{1}{4}e^x$
(d) $C_1e^{-2x} + C_2e^{-3x} + \frac{1}{4}e^x$
15. Let G be a finite group and H be a normal subgroup of G of order 2. Then the order of the centre of G is
(a) 0
(b) 1
(c) an even integer ≥ 2
(d) an odd integer ≥ 3
16. (a) Let f and g be continuous functions on ℝ such that $f(x) = \sum_{0}^{x} g(t) dt$ and $g(x) = \int_{x}^{0} f(t) dt + 1$. Prove that $(f(x))^2 + (g(x))^2 = 1$ for all $x \in \mathbb{R}$.
(b) Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f' is continuous on ℝ. Show that the series
 $\sum_{n=1}^{x} (f\left(\frac{x}{2n}\right) - f\left(\frac{x}{2n+1}\right))$ converges uniformly on [0, 1].
(e) Find the maxima, minima and saddle points, if any, for the function $f(x, y) = (y - x^2) (y - 2x^2) \text{ on } \mathbb{R}^2$.
(f) Let $P(x) = a_0 + a_1x^2 + a_2x^4 + a_3x^3 + x_1, \dots, x_1 + a_8x^3 + x_2, x_1 + a_1x^3 + a_1x^3 + x_2, x_2 + 2y = 0, x > 0$, find a second linearly independent solution.
(f) Solve $x^2y'' + xy' - y = 4x \log x, x > 0$.

- 19. (a) Let ϕ be a differential function on [0, 1] satisfying $\phi'(x) \le 1 + 3\phi(x)$ for all $x \in [0,1]$ with $\phi(0) = 0$. Show that $3\phi(x) \le e^{3x} 1$. (6)
 - (b) If $y_1(x) = x(1-2x)$, $y_2(x) = 2x(1-x)$ and $y_3(x) = x(e^x 2x)$ are three solutions of a nonhomogeneous linear differential equation y'' + P(x)y' + Q(x)y = R(x), where P(x), Q(x) and R(x) are continuous functions on [a, b] with a>0, then find its general solution. (9)

(15)

(6)

20. (a) Evaluate
$$\int_{1}^{4} \int_{0}^{1} \int_{2y}^{2} \frac{\cos x^{2}}{\sqrt{z}} dx dy dz.$$

- (b) Find the surface area of the portion of the cone $z^2 = x^2 + y^2$ that is inside the cylinder $z^2 = 2y$. (9)
- (a) Using Green's theorem to evaluate the integral \$\oint_C x^2 dx + (x + y^2) dy\$, where C is the closed curve given by \$y = 0\$, \$y = x\$ and \$y^2 = 2 x\$ in the first quadrant, oriented counter clockwise. (6)
 (b) Let \$f: \mathbb{R} \rightarrow \mathbb{R}\$ be a continuous function. Use change of variables to prove that

$$\iint_{D} f(x-y)dx \, dy = \int_{-1}^{1} f(u)du \quad \text{where} \quad D = \{(x,y) \in \mathbb{R}^2 : |x|+|y| \le 1\}.$$
(9)

22. Using Gauss's divergence theorem, evaluate the integral $\iint_{S} \vec{F} \cdot \hat{n} dS$, where $\vec{F} = 4xz\hat{i} - y^2\hat{j} + 4yz\hat{k}$,

S is the surface of the solid bounded by the sphere $x^2 + y^2 + z^2 = 10$ and the paraboloid $x^2 + y^2 = z - 2$, and \hat{n} is the outward unit normal vector to S. (15)

- 23. (a) A square matrix M of order n with complex entries is called skew Hermitian if $M + \overline{M}^T = 0$ where 0 is the zero matrix of order n. Determine whether $V = \{M \mid M \text{ is a } 2 \times 2 \text{ skew Hermitian matrix}\}$ is a vector space over
 - (i) the field \mathbb{R} and
 - (ii) the field \mathbb{C} with usual operation of addition and scalar multiplication for matrices? (6) (b) Let $V = \{P(x) | P(x) \text{ is a polynomial of degree } \le n \text{ with real coefficients and } T : V \to \mathbb{R}^m$ be defined as $T(P(x)) = (P(1), P(2), \dots, P(m))$. Show that T is linear and determine the nullity of T. (9)
- 24. Let G be the set of all 3×3 real matrices M such that MM^T = M^TM = I₃ and let H = {M ∈ G | det M = 1}, where I₃ is the identity matrix of order 3. Then show that
 (i) G is a group under matrix multiplication,
 (ii) H is a normal subgroup of G,
 (iii) φ:G→{-1,1} given by φ(M) = det M is onto,
 - (iv) G/H is abelian.
- 25. (a) Suppose that (R, +, .) is a ring having the property $a.b = c.a \Rightarrow b = c$, when $a \neq 0$. Then prove that (R, +, .) is a commutative ring. (6)
 - (b) Let R be a commutative ring with identity. For $a_1, a_2, \dots, a_n \in R$, the ideal generated by

 $\{a_1, a_2, \dots, a_n\}$ is given by

$$\langle a_1, a_2, \dots, a_n \rangle = \{r_1 a_1 + r_2 a_2 + \dots + r_n a_n \mid r_i \in \mathbb{R}, 1 \le i \le n\}.$$

Let $\mathbb{Z}[x]$ be the set of all polynomials with integer coefficients. Consider the ideal $I = \{f \in \mathbb{Z}[x] | f(0) \text{ is an even integer}\}$. Prove that $I = \langle 2, x \rangle$ and that it is a maximal ideal. (9)

- 26. For a given positive integer n > 1, show that there exist subspaces X_1, X_2, \dots, X_n of \mathbb{R}^m for some integer m > n and a linear transformation. $T : \mathbb{R}^m \to \mathbb{R}^m$ such that
 - dim $X_k = k, k = 1, 2, ... n$,
 - for $i \neq j$, $X_i \cap X_j = \{\vec{0}\}$ where $\vec{0}$ is zero vector of \mathbb{R}^m ,
 - $T(X_k) = X_{k-1}, k = 1, 2, ...n$, where $X_0 = \{\vec{0}\}$. Also, find the rank of *T*. (15)

27. Let $f:(0,\infty) \to (0,\infty)$ be a continuously differentiable function and let $z = \frac{xy}{f(x^2 + y^2)}$ be defined for $xy \neq 0$.

(a) Prove that
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{x+y}{\left[f(x^2+y^2)\right]^2} \left\{ f\left(x^2+y^2\right) - 2xy f'\left(x^2+y^2\right) \right\}.$$
 (6)

(**b**) Further, if f is homogeneous of degree $\frac{1}{2}$, then verify that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$.

28. Determine the interval of convergence of the power series $\sum_{n=1}^{\infty} n(2n-1)x^{2n}$ and show that its sum is

$$\frac{x^2(1+3x^2)}{(1-x^2)^3}$$
 at point x in its interval of convergence. (15)

29. (a) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined as $f(x, y) = x^2 \cos\left(\frac{y}{x}\right)$ for $x \neq 0$ and f(x, y) = 0 for x = 0.

Compute $\frac{\partial f}{\partial x}$ at all points in \mathbb{R}^2 and show that it is continuous at the origin. (6) (b) Let $f: (0,1) \to (0,\infty)$ be a uniformly continuous function. If $\{x_n\}$ is a Cauchy sequence in (0, 1), then prove that $\{f(x_n)\}$ is a Cauchy sequence in $(0,\infty)$. Hence deduce that for any two Cauchy sequences $\{x_n\}$ and $\{y_n\}$ in (0, 1), $\{|f(x_n) - f(y_n)|\}$ is a Cauchy sequence in $(0,\infty)$. (9)