(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1. The least positive integer n, such that $\left\{\begin{array}{cc}\cos \pi / 4 & \sin \pi / 4 \\ -\sin \pi / 4 & \cos \pi / 4\end{array}\right\}^{n}$ is the identity matrix of order 2 , is
(a) 4
(b) 8
(c) 12
(d) 16
2. Let $S=\left\{T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; T\right.$ is a linear transformation with $T(1,0,1)=(1,2,3)$ and $T(1,2,3)=(1,0,1)$. Then S is
(a) a singleton set
(b) a finite set containing more than one element
(c) a countable infinite set
(d) an uncountable set
3. Let $s_{n}=\int_{0}^{1} \frac{n x^{n-1}}{(1+x)} d x$ for $n \geq 1$. Then as $n \rightarrow \infty$, the sequence $\left\{s_{n}\right\}$ tends to
(a) 0
(b) $1 / 2$
(c) 1
(d) $+\infty$
4. The work done by the force $\vec{F}=4 y \hat{i}-3 x y \hat{j}+z^{2} \hat{k}$ in moving a particle over the circular path $x^{2}+y^{2}=1, z=0$ from $(1,0,0)$ to $(0,1,0)$ is
(a) $\pi+1$
(b) $\pi-1$
(c) $-\pi+1$
(d) $-\pi-1$
5. The set of all boundary points of \mathbb{Q} in \mathbb{R} is
(a) \mathbb{R}
(b) $\mathbb{R} \backslash \mathbb{Q}$
(c) \mathbb{Q}
(d) ϕ
6. Let $V=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{1}{4} \leq x^{2}+y^{2}+z^{2} \leq 1\right\}$ and $\vec{F}=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}$ for $(x, y, z) \in V$. Let \hat{n} denote the outward unit normal vector to the boundary of V and S denote the part $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=\frac{1}{4}\right\}$ of the boundary of V. Then $\iint_{S} \vec{F} . \hat{n} d S$ is equal to
(a) -8π
(b) -4π
(c) 4π
(d) 8π
7. The set $U=\left\{x \in \mathbb{R} \left\lvert\, \sin x=\frac{1}{2}\right.\right\}$ is
(a) open
(b) closed
(c) both open and closed
(d) neither open nor closed
8. Let $f(x)=\int_{0}^{x}\left(x^{2}-t^{2}\right) g(t) d t$, where g is a real valued continuous function on \mathbb{R}. Then $f^{\prime}(x)$ is equal to
(a) 0
(b) $x^{3} g(x)$
(c) $\int_{0}^{x} g(t) d t$
(d) $2 x \int_{0}^{x} g(t) d t$
9. Let $y_{1}(x)$ and $y_{2}(x)$ be linearly independent solutions of the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ where $P(x)$ and $Q(x)$ are continuous function on internal I. Then $y_{3}(x)=a y_{1}(x)+b y_{2}(x)$ and $y_{4}(x)=c y_{1}(x)+d y_{2}(x)$ are linearly independent solutions of the given differential equation if
(a) $a d=b c$
(b) $a c=b d$
(c) $a d \neq b c$
(d) $a c \neq b d$
10. The set $R=\{f \mid f$ is a function from \mathbb{Z} to $\mathbb{R}\}$ under the binary operations + and . defined as $(f+g)(n)=f(n)+g(n)$ and $(f . g)(n)=f(n) g(n)$ for all $n \in \mathbb{Z}$ forms a ring. Let $S_{1}=\{f \in R \mid f(-n)=f(n)$ for all $n \in \mathbb{Z}\}$ and $S_{2}=\{f \in R \mid f(0)=0\}$. Then
(a) S_{1} and S_{2} are both ideals in R
(b) S_{1} is an ideal in R while S_{2} is not
(c) S_{2} is an ideal in R while S_{1} is not
(d) neither S_{1} nor S_{2} is an ideal in R
11. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T(1,2,3)=(1,2,3), T(1,5,0)=(2,10,0)$ and $T(-1,2,-1)=(-3,6,-3)$. The dimension of the vector space spanned by all the eigenvectors of T is
(a) 0
(b) 1
(c) 2
(d) 3
12. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers defined as $a_{i}=1$ and for $n \geq 1, a_{n+1}=a_{n}+(-1)^{n} 2^{-n}$, $b_{n}=\frac{2 a_{n+1}-a_{n}}{a_{n}}$. Then
(a) $\left\{a_{n}\right\}$ converges to zero and $\left\{b_{n}\right\}$ is a Cauchy sequence
(b) $\left\{a_{n}\right\}$ converges to a non-zero number and $\left\{b_{n}\right\}$ is a Cauchy sequence
(c) $\left\{a_{n}\right\}$ converges to zero and $\left\{b_{n}\right\}$ is not a convergent sequence
(d) $\left\{a_{n}\right\}$ converges to a non-zero number and $\left\{b_{n}\right\}$ is not a convergent sequence
13. Let $f(-1,1) \rightarrow \mathbb{R}$ be defined as $f(x)=\frac{x^{2}}{1-\cos x}$ for $x \neq 0$ and $f(0)=2$. If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the Taylor expansion of f for all x in $(-1,1)$, then $\sum_{n=0}^{\infty} a_{2 n+1}$ is
(a) 0
(b) $\frac{1}{2}$
(c) 1
(d) 2
14. Let $y_{1}(x)$ and $y_{2}(x)$ be twice differentiable functions on a interval I satisfying the differential equations $\frac{d y_{1}}{d x}-y_{1}-y_{2}=e^{x}$ and $2 \frac{d y_{1}}{d x}+\frac{d y_{2}}{d x}-6 y_{1}=0$. Then $y_{1}(x)$ is
(a) $C_{1} e^{-2 x}+C_{2} e^{3 x}-\frac{1}{4} e^{x}$
(b) $C_{1} e^{2 x}+C_{2} e^{-3 x}+\frac{1}{4} e^{x}$
(c) $C_{1} e^{2 x}+C_{2} e^{-3 x}-\frac{1}{4} e^{x}$
(d) $C_{1} e^{-2 x}+C_{2} e^{3 x}+\frac{1}{4} e^{x}$
15. Let G be a finite group and H be a normal subgroup of G of order 2 . Then the order of the centre of G is
(a) 0
(b) 1
(c) an even integer ≥ 2
(d) an odd integer ≥ 3
16. (a) Let f and g be continuous functions on \mathbb{R} such that $f(x)=\int_{0}^{x} g(t) d t$ and $g(x)=\int_{x}^{0} f(t) d t+1$. Prove that $(f(x))^{2}+(g(x))^{2}=1$ for all $x \in \mathbb{R}$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that f^{\prime} is continuous on \mathbb{R}. Show that the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(f\left(\frac{x}{2 n}\right)-f\left(\frac{x}{2 n+1}\right)\right) \text { converges uniformly on }[0,1] . \tag{9}
\end{equation*}
$$

17. (a) Find the maxima, minima and saddle points, if any, for the function $f(x, y)=\left(y-x^{2}\right)\left(y-2 x^{2}\right)$ on \mathbb{R}^{2}.
(b) Let $P(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}+a_{3} x^{6}+\ldots \ldots \ldots .+a_{n} x^{2 n}$, where $n \geq 1$ and $a_{k}>0$ for $k=0,1, \ldots \ldots . n$. Show that $P(x)-x P^{\prime}(x)=0$ has exactly two real roots.
18. (a) Given that $y_{1}(x)=x$ is a solution of $\left(1+x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0, x>0$, find a second linearly independent solution.
(b) Solve $x^{2} y^{\prime \prime}+x y^{\prime}-y=4 x \log x, x>0$.
19. (a) Let ϕ be a differential function on [0, 1] satisfying $\phi^{\prime}(x) \leq 1+3 \phi(x)$ for all $x \in[0,1]$ with $\phi(0)=0$. Show that $3 \phi(x) \leq e^{3 x}-1$.
(b) If $y_{1}(x)=x(1-2 x), y_{2}(x)=2 x(1-x)$ and $y_{3}(x)=x\left(e^{x}-2 x\right)$ are three solutions of a nonhomogeneous linear differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)$, where $P(x), Q(x)$ and $R(x)$ are continuous functions on $[a, b]$ with $a>0$, then find its general solution. (9)
20. (a) Evaluate $\int_{1}^{4} \int_{0}^{1} \int_{2 y}^{2} \frac{\cos x^{2}}{\sqrt{z}} d x d y d z$.
(b) Find the surface area of the portion of the cone $z^{2}=x^{2}+y^{2}$ that is inside the cylinder

$$
\begin{equation*}
z^{2}=2 y \tag{9}
\end{equation*}
$$

21. (a) Using Green's theorem to evaluate the integral $\oint_{C} x^{2} d x+\left(x+y^{2}\right) d y$, where C is the closed curve given by $y=0, y=x$ and $y^{2}=2-x$ in the first quadrant, oriented counter clockwise. (6)
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Use change of variables to prove that

$$
\begin{equation*}
\iint_{D} f(x-y) d x d y=\int_{-1}^{1} f(u) d u \text { where } D=\left\{(x . y) \in R^{2}:|x|+|y| \leq 1\right\} \tag{9}
\end{equation*}
$$

22. Using Gauss's divergence theorem, evaluate the integral $\iint_{S} \vec{F} . \hat{n} d S$, where $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+4 y z \hat{k}$, S is the surface of the solid bounded by the sphere $x^{2}+y^{2}+z^{2}=10$ and the paraboloid $x^{2}+y^{2}=z-2$, and \hat{n} is the outward unit normal vector to S.
23. (a) A square matrix M of order n with complex entries is called skew Hermitian if $M+\bar{M}^{T}=0$ where 0 is the zero matrix of order n. Determine whether $V=\{M \mid M$ is a 2×2 skew Hermitian matrix $\}$ is a vector space over
(i) the field \mathbb{R} and
(ii) the field \mathbb{C} with usual operation of addition and scalar multiplication for matrices?
(b) Let $V=\left\{P(x) \mid P(x)\right.$ is a polynomial of degree $\leq n$ with real coefficients and $T: V \rightarrow \mathbb{R}^{m}$ be defined as $T(P(x))=(P(1), P(2) \ldots \ldots . . P(m))$. Show that T is linear and determine the nullity of T.
24. Let G be the set of all 3×3 real matrices M such that $M M^{T}=M^{T} M=I_{3}$ and let $H=\{M \in G \mid \operatorname{det} M=1\}$, where I_{3} is the identity matrix of order 3 . Then show that
(i) G is a group under matrix multiplication,
(ii) H is a normal subgroup of G,
(iii) $\phi: G \rightarrow\{-1,1\}$ given by $\phi(M)=\operatorname{det} M$ is onto,
(iv) G / H is abelian.
25. (a) Suppose that $(R,+,$.$) is a ring having the property a . b=c . a \Rightarrow b=c$, when $a \neq 0$. Then prove that $(R,+,$.$) is a commutative ring.$
(b) Let R be a commutative ring with identity. For $a_{1}, a_{2}, \ldots . ., a_{n} \in R$, the ideal generated by
$\left\{a_{1}, a_{2}, \ldots . ., a_{n}\right\}$ is given by

$$
\left\langle a_{1}, a_{2}, \ldots . . a_{n}\right\rangle=\left\{r_{1} a_{1}+r_{2} a_{2}+\ldots . .+r_{n} a_{n} \mid r_{i} \in R, 1 \leq i \leq n\right\} .
$$

Let $\mathbb{Z}[x]$ be the set of all polynomials with integer coefficients. Consider the ideal $I=\{f \in Z[x] \mid f(0)$ is an even integer $\}$. Prove that $I=\langle 2, x\rangle$ and that it is a maximal ideal. (9)
26. For a given positive integer $n>1$, show that there exist subspaces $X_{1}, X_{2}, \ldots . . X_{n}$ of \mathbb{R}^{m} for some integer $m>n$ and a linear transformation. $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that

- $\operatorname{dim} X_{k}=k, k=1,2, \ldots n$,
- for $i \neq j, X_{i} \cap X_{j}=\{\overrightarrow{0}\}$ where $\overrightarrow{0}$ is zero vector of \mathbb{R}^{m},
- $T\left(X_{k}\right)=X_{k-1}, k=1,2, \ldots n$, where $X_{0}=\{\overrightarrow{0}\}$.

Also, find the rank of T.
27. Let $f:(0, \infty) \rightarrow(0, \infty)$ be a continuously differentiable function and let $z=\frac{x y}{f\left(x^{2}+y^{2}\right)}$ be defined for $x y \neq 0$.
(a) Prove that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=\frac{x+y}{\left[f\left(x^{2}+y^{2}\right)\right]^{2}}\left\{f\left(x^{2}+y^{2}\right)-2 x y f^{\prime}\left(x^{2}+y^{2}\right)\right\}$.
(b) Further, if f is homogeneous of degree $\frac{1}{2}$, then verify that $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$.

CAREER ENDEAVOUR
28. Determine the interval of convergence of the power series $\sum_{n=1}^{\infty} n(2 n-1) x^{2 n}$ and show that its sum is $\frac{x^{2}\left(1+3 x^{2}\right)}{\left(1-x^{2}\right)^{3}}$ at point x in its interval of convergence.
29. (a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as $f(x, y)=x^{2} \cos \left(\frac{y}{x}\right)$ for $x \neq 0$ and $f(x, y)=0$ for $x=0$.

Compute $\frac{\partial f}{\partial x}$ at all points in \mathbb{R}^{2} and show that it is continuous at the origin.
(b) Let $f:(0,1) \rightarrow(0, \infty)$ be a uniformly continuous function. If $\left\{x_{n}\right\}$ is a Cauchy sequence in $(0,1)$, then prove that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence in $(0, \infty)$.Hence deduce that for any two Cauchy sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $(0,1),\left\{\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|\right\}$ is a Cauchy sequence in $(0, \infty)$.

