PAPER : IIT-JAM 2009 MATHEMATICS-MA

(CODE-C)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

Let V be the vector space of all 6×6 real matrices over the field \mathbb{R} . Then the dimension of the 1. subspace of V consisting of all symmetric matrices is (a) 15 (b) 18 (c) 21 (d) 35 Let *R* be the ring of all functions from \mathbb{R} to \mathbb{R} under point-wise addition and multiplication. Let 2. $I = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is a bounded function} \}, \ J = \{ f : \mathbb{R} \to \mathbb{R} \mid f(3) = 0 \}.$ Then (a) J is an ideal of R but I is not an ideal of R(b) I is an ideal of R but J is not an ideal of R(c) both I and J are ideals of R(d) neither I nor J is an ideal of RWhich of the following sequences of functions is uniformly convergent on (0, 1)? 3. (b) $\frac{n}{nx+1}$ (c) $\frac{x}{nx+1}$ (d) $\frac{1}{nx+1}$ (a) x^n Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation satisfy $T^3 + 3T^2 = 4I$, where I is the identity 4. transformation, then the linear transformation $S = T^4 + 3T^3 - 4I$ is (a) one-one but not onto (b) onto but not one-one (c) invertible (d) non-invertible The number of all subgroups of the group $(\mathbb{Z}_{60}, +)$ of integers modulo 60 is 5. (b) 10AREER (c) 12EAVOU (a) 2Let $a_n = \begin{cases} \frac{1}{3^n} & \text{if n is a prime,} \\ \frac{1}{4^n} & \text{if n is not a prime.} \end{cases}$ 6. Then the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n x^n$ is (c) $\frac{1}{3}$ (d) $\frac{1}{4}$ (a) 4(b) 3The set of all limit points of the sequence $1, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \frac{1}{16}, \frac{3}{16}, \frac{5}{16}, \frac{7}{16}, \frac{9}{16}, \dots$ is 7. (a) [0, 1] (b) (0, 1] (c) the set of all rational numbers in [0, 1](d) the set of all rational numbers in [0, 1] of the form $\frac{m}{2^n}$ where m and n are integers

8. Let $F : \mathbb{R} \to \mathbb{R}$ be a continuous function and a > 0. Then the integral $\int_{0}^{a} \left[\int_{0}^{x} F(y) dy \right] dx$ equals

(a)
$$\int_{0}^{a} yF(y)dy$$
 (b) $\int_{0}^{a} (a-y)F(y)dy$ (c) $\int_{0}^{a} (y-a)F(y)dy$ (d) $\int_{a}^{0} yF(y)dy$

9. The set of all positive values of *a* for which the series $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \tan^{-1}\left(\frac{1}{n}\right)\right)^a$ converges, is

(a)
$$\left(0,\frac{1}{3}\right]$$
 (b) $\left(0,\frac{1}{3}\right)$ (c) $\left[\frac{1}{3},\infty\right)$ (d) $\left(\frac{1}{3},\infty\right)$

10. Let a be an non-zero real number. Then $\lim_{x \to a} \frac{1}{x^2 - a^2} \int_a^x \sin(t^2) dt$ equals

(a)
$$\frac{1}{2a}\sin(a^2)$$
 (b) $\frac{1}{2a}\cos(a^2)$ (c) $-\frac{1}{2a}\sin(a^2)$ (d) $-\frac{1}{2a}\cos(a^2)$

- 11. Let $T(x, y, z) = xy^2 + 2z x^2z^2$ be the temperature at the point (x, y, z). The unit vector in the direction in which the temperature decreases most rapidly at (1,0,-1) is
 - (a) $\frac{-1}{\sqrt{5}}\hat{i} + \frac{2}{\sqrt{5}}\hat{k}$ (b) $\frac{1}{\sqrt{5}}\hat{i} \frac{2}{\sqrt{5}}\hat{k}$

(c)
$$\frac{2}{\sqrt{14}}\hat{i} + \frac{3}{\sqrt{14}}\hat{j} + \frac{1}{\sqrt{14}}\hat{k}$$
 (d) $-\left(\frac{2}{\sqrt{14}}\hat{i} + \frac{3}{\sqrt{14}}\hat{j} + \frac{1}{\sqrt{14}}\hat{k}\right)$

13. Suppose V = p(x, y)î + q(x, y) ĵ is a continuously differentiable vector field defined in a domain D in ℝ². Which one of the following statements is NOT equivalent to the remaining ones?
(a) There exists a function φ(x, y) such that ∂φ/∂x = p(x, y) and ∂φ/∂y = q(x, y) for all (x, y) ∈ D

- (b) $\frac{\partial q}{\partial x} = \frac{\partial p}{\partial y}$ holds at all points of *D* (c) $\oint_C \vec{V} \cdot d\vec{r} = 0$ for every piecewise smooth closed curve *C* in *D*
- (d) The differential pdx + qdy is exact in D

- 14. Let $f, g: [-1,1] \to \mathbb{R}$, $f(x) = x^3, g(x) = x^2 |x|$, then
 - (a) f and g are linear independent on [-1, 1]
 - (b) f and g are linearly dependent on [-1, 1]
 - (c) f(x)g'(x) f'(x)g(x) is NOT identically zero on [-1, 1].
 - (d) There exist continuous functions p(x) and q(x) such that f and g satisfy y'' + py' + qy = 0 on [-1,1]
- 15. The value of c for which there exists a twice differentiable vector field \vec{F} with curl $\vec{F} = 2x\hat{i} - 7y\hat{j} + cz\hat{k}$ is (a) 0 (b) 2 (c) 5 (d) 7
- 16. Consider A contains 100 cc of milk and container B contains 100 cc of water. 5 cc of the liquid in A is transferred to B, the mixture is thoroughly stirred and 5 cc of the mixture in B is transferred back into A. Each such two-way transfer is called a dilution. Let a_n be the percentage of water in container A after *n* such dilutions, with the understanding that $a_0 = 0$.
 - (a) Prove that $a_1 = \frac{100}{21}$ and that, in general, $a_n = \frac{100}{21} + \frac{19}{21}a_{n-1}$ for $n = 1, 2, 3, \dots$ (6)
 - (**b**) Using (a) prove that $a_n = 50 \left[1 \left(\frac{19}{21}\right)^n \right]$ for $n = 1, 2, 3, \dots$

Find $\lim_{n \to \infty} a_n$ and explain why the answer is intuitively obvious.

17. (a) Let $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ be a non-negative function. Assume that for every $m \in \mathbb{N}$, the series $\sum_{n=1}^{\infty} f(m,n)$ is convergent and has sum a_m and further that the series $\sum_{m=1}^{\infty} a_m$ is also convergent and

has sum *L*. Prove that for every *n*, the series $\sum_{m=1}^{\infty} f(m, n)$ is convergent and if we denote its sum by b_n

then the series $\sum_{n=1}^{\infty} b_n$ is also convergent and has sum *L*. (9) (b) Define $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ by

$$f(m,n) = \begin{cases} 0 & \text{if } n > m, \\ \frac{-1}{2^{m-n}} & \text{if } n < m, \\ 1 & \text{if } n = m. \end{cases}$$

Show that $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(m,n) = 2$ and $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} f(m,n) = 0$. (6)

(9)

18. (a) Evaluate
$$\iint_{R} \cos(\max\{x^3, y^{3/2}\}) dx dy$$
 where $R = [0, 1] \times [0, 1].$ (9)

(**b**) Let
$$S = \sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{10000}$$
 and $I = \int_{0}^{10000} \sqrt{x} \, dx$. Show that $I \le S \le I + 100$.
(6)

19. Let
$$D = \{(x, y) : x \ge 0, y \ge 0\}$$
. Let $f(x, y) = (x^2 + y^2)e^{-x-y}$ for $(x, y) \in D$.
Prove that f attains its maximum on D at two boundary points.

Deduce that
$$\frac{x^2 + y^2}{4} \le e^{x + y - 2}$$
 for all $x \ge 0, y \ge 0$ (15)

(a) Let $a_1, b_1, a_2, b_2 \in \mathbb{R}$. Show that the condition $a_2b_1 > 0$ is sufficient but not necessary for the 20. system

$$\frac{dx}{dt} = a_1 x + b_1 y, \quad \frac{dy}{dt} = a_2 x + b_2 y, \text{ to have two linearly independent solutions of the form } x = c_1 e^{\lambda_1 t}, \\ y = d_1 e^{\lambda_1 t} \text{ and } x = c_2 e^{\lambda_2 t}, \quad y = d_2 e^{\lambda_2 t} \text{ with } c_1, d_1, c_2, d_2, \lambda_1, \lambda_2 \in \mathbb{R}$$
(9)

(b) Show that the differential equation representing the family of all straight lines which have an

intercept of constant length *L* between the coordinate axes is
$$x \frac{dy}{dx} - y = \frac{L \frac{dy}{dx}}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}$$
. (6)

- 21.
- Let A, B, k > 0. Solve the initial value problem $\frac{dy}{dx} Ay + By^3 = 0, x > 0, y(0) = k$. (a) Also show that $k < \sqrt{\frac{A}{B}}$, then the solution y(x) is monotonically increasing on $(0, \infty)$ and

tends to
$$\sqrt{\frac{A}{B}}$$
 as $x \to \infty$;
(b) if $k > \sqrt{\frac{A}{B}}$, then the solution $y(x)$ is monotonically decreasing on $(0, \infty)$ and tends to $\sqrt{\frac{A}{B}}$
as $x \to \infty$. (15)

4

22.

(a) Evaluate $\oint_C (3y^2 + 2z^2)dx + (6x - 10z)ydy + (4xz - 5y^2)dz$ along the portion from (1,0,1) to (3,4,5) of the curve *C*, which is the intersection of the surfaces $z^2 = x^2 + y^2$ and z = y + 1. (6) (b) A particle moves counterclockwise along the curve $3x^2 + y^2 = 3$ from (1,0) to a point *P*, under the action of the force $\vec{F}(x, y) = \frac{x}{y}\hat{i} + \frac{y}{x}\hat{j}$. Prove that there are two possible locations of *P* such

that the work done by \vec{F} is 1.

23. Verify Stokes theorem for the hemisphere $x^2 + y^2 + z^2 = 9, z \ge 0$ and the vector field $\vec{F} = (z^2 - y)\hat{i} + (x - 2yz)\hat{j} + (2xz - y^2)\hat{k}$. (15)

24. (a) Let T: R³ → R² be the linear transformation defined by T(x, y, z) = (x+2y, x-z). Let N(T) be the null space of T and W = {v ∈ R³ | v.u = 0 for all u ∈ N(T)}. Find a linear transformation S: R² → W such that TS = I, where I is the identity transformation on R³. (9)
(b) Suppose A is a real square matrix of odd order such that A + A^T = 0. Prove that A is singular. (6)

25. (a) Find all pairs (a,b) of real numbers for which the system of equations x+3y = 1, 4x + ay + z = 0, 2x + 3z = b has (i) a unique solution, (ii) infinitely many solution, (iii) no solution. (9)
(b) Let A be a n×n matrix such that Aⁿ = 0 and Aⁿ⁻¹ ≠ 0. Show that there exist a vector v ∈ ℝⁿ

such that $[v, Av, \dots, A^{n-1}v]$ forms a basis for \mathbb{R}^n . (6)

- 26. (a) In which of the following pairs are the two groups isomorphic to each other? Justify your answers.
 - (i) \mathbb{R}/\mathbb{Z} and S^1 , where \mathbb{R} is the additive group of real numbers and $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ under complex multiplication.
 - (ii) $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$.
 - (b) Prove or disprove that if G is a finite abelian group of order n, and k is a positive integer which divides n, then G has at most one subgroup of order k. (6)

27. Let *I* and *J* be ideals of a ring *R*. Let *IJ* be the set of all possible sums $\sum_{i=1}^{n} a_i b_i$, where $a_i \in I, b_i \in J$

- for i = 1, 2, ..., n and $n \in \mathbb{N}$.
- (a) Prove that IJ is an ideal of R and $IJ \subseteq I \cap J$ (9)
- (b) Is it true that $IJ = I \cap J$? Justify your answer.

(9)

(9)

(6)

- 28. A sequence $\{f_n\}$ of functions defined on an interval *I* is said to be uniformly bounded on *I* if there exists some *M* such that $|f_n(x)| \le M$ for all $x \in I$ and for all $n \in N$.
 - (a) Prove that if a sequence of functions $\{f_n\}$ converges to a function f on I and $\{f_n\}$ is uniformly bounded on I, then f is bounded on I. (6)
 - (b) Suppose the sequences $\{f_n\}$ and $\{g_n\}$ of functions converge uniformly to f and g respectively

on *I* and both are uniformly bounded on *I*. Prove that the product sequence $\{f_n g_n\}$ converges to fg uniformly on *I*. Show by an example that this may fail if only one of $\{f_n\}$ and $\{g_n\}$ is uniformly bounded on *I*. (9)

29. (a) Prove that if f is a real-valued function which is uniformly continuous on an interval (a, b), then f is bounded on (a, b). (9)

(b) Let f be a differentiable function on an interval (a, b). Assume that f' is bounded on (a, b). Prove that f is uniformly continuous on (a, b). (6)

