## (CODE-C)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1. Let $V$ be the vector space of all $6 \times 6$ real matrices over the field $\mathbb{R}$. Then the dimension of the subspace of $V$ consisting of all symmetric matrices is
(a) 15
(b) 18
(c) 21
(d) 35
2. Let $R$ be the ring of all functions from $\mathbb{R}$ to $\mathbb{R}$ under point-wise addition and multiplication. Let $I=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is a bounded function $\}, J=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(3)=0\}$.
Then
(a) $J$ is an ideal of $R$ but $I$ is not an ideal of $R$
(b) $I$ is an ideal of $R$ but $J$ is not an ideal of $R$
(c) both $I$ and $J$ are ideals of $R$
(d) neither $I$ nor $J$ is an ideal of $R$
3. Which of the following sequences of functions is uniformly convergent on $(0,1)$ ?
(a) $x^{n}$
(b) $\frac{n}{n x+1}$
(c) $\frac{x}{n x+1}$
(d) $\frac{1}{n x+1}$
4. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a linear transformation satisfy $T^{3}+3 T^{2}=4 I$, where $I$ is the identity transformation, then the linear transformation $S=T^{4}+3 T^{3}-4 I$ is
(a) one-one but not onto
(b) onto but not one-one
(c) invertible
(d) non-invertible
5. The number of all subgroups of the group $\left(\mathbb{Z}_{60},+\right)$ of integers modulo 60 is
(a) 2
(b) 10
(c) 12
(d) 60
6. Let $a_{n}= \begin{cases}\frac{1}{3^{n}} & \text { if } \mathrm{n} \text { is a prime, } \\ \frac{1}{4^{n}} & \text { if } \mathrm{n} \text { is not a prime. }\end{cases}$

Then the radius of convergence of the power series $\sum_{n=1}^{\infty} a_{n} x^{n}$ is
(a) 4
(b) 3
(c) $\frac{1}{3}$
(d) $\frac{1}{4}$
7. The set of all limit points of the sequence $1, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \frac{1}{16}, \frac{3}{16}, \frac{5}{16}, \frac{7}{16}, \frac{9}{16}, \ldots$ is
(a) $[0,1]$
(b) $(0,1]$
(c) the set of all rational numbers in $[0,1]$
(d) the set of all rational numbers in $[0,1]$ of the form $\frac{m}{2^{n}}$ where $m$ and $n$ are integers
8. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and $a>0$. Then the integral $\int_{0}^{a}\left[\int_{0}^{x} F(y) d y\right] d x$ equals
(a) $\int_{0}^{a} y F(y) d y$
(b) $\int_{0}^{a}(a-y) F(y) d y$
(c) $\int_{0}^{a}(y-a) F(y) d y$
(d) $\int_{a}^{0} y F(y) d y$
9. The set of all positive values of $a$ for which the series $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\tan ^{-1}\left(\frac{1}{n}\right)\right)^{a}$ converges, is
(a) $\left(0, \frac{1}{3}\right]$
(b) $\left(0, \frac{1}{3}\right)$
(c) $\left[\frac{1}{3}, \infty\right)$
(d) $\left(\frac{1}{3}, \infty\right)$
10. Let a be an non-zero real number. Then $\lim _{x \rightarrow a} \frac{1}{x^{2}-a^{2}} \int_{a}^{x} \sin \left(t^{2}\right) d t$ equals
(a) $\frac{1}{2 a} \sin \left(a^{2}\right)$
(b) $\frac{1}{2 a} \cos \left(a^{2}\right)$
(c) $-\frac{1}{2 a} \sin \left(a^{2}\right)$
(d) $-\frac{1}{2 a} \cos \left(a^{2}\right)$
11. Let $T(x, y, z)=x y^{2}+2 z-x^{2} z^{2}$ be the temperature at the point $(x, y, z)$. The unit vector in the direction in which the temperature decreases most rapidly at $(1,0,-1)$ is
(a) $\frac{-1}{\sqrt{5}} \hat{i}+\frac{2}{\sqrt{5}} \hat{k}$
(b) $\frac{1}{\sqrt{5}} \hat{i}-\frac{2}{\sqrt{5}} \hat{k}$
(c) $\frac{2}{\sqrt{14}} \hat{i}+\frac{3}{\sqrt{14}} \hat{j}+\frac{1}{\sqrt{14}} \hat{k}$
(d) $-\left(\frac{2}{\sqrt{14}} \hat{i}+\frac{3}{\sqrt{14}} \hat{j}+\frac{1}{\sqrt{14}} \hat{k}\right)$
12. Consider the differential equation $2 \cos \left(y^{2}\right) d x-x y \sin \left(y^{2}\right) d y=0$ then
(a) $e^{x}$ is an integrating factor
(b) $e^{-x}$ is an integrating factor
(c) $3 x$ is an integrating factor
(d) $x^{3}$ is an integrating factor
13. Suppose $\vec{V}=p(x, y) \hat{i}+q(x, y) \hat{j}$ is a continuously differentiable vector field defined in a domain $D$ in $\mathbb{R}^{2}$. Which one of the following statements is NOT equivalent to the remaining ones?
(a) There exists a function $\phi(x, y)$ such that $\frac{\partial \phi}{\partial x}=p(x, y)$ and $\frac{\partial \phi}{\partial y}=q(x, y)$ for all $(x, y) \in D$
(b) $\frac{\partial q}{\partial x}=\frac{\partial p}{\partial y}$ holds at all points of $D$
(c) $\oint_{C} \vec{V} \cdot d \vec{r}=0$ for every piecewise smooth closed curve $C$ in $D$
(d) The differential $p d x+q d y$ is exact in $D$
14. Let $f, g:[-1,1] \rightarrow \mathbb{R}, f(x)=x^{3}, g(x)=x^{2}|x|$, then
(a) $f$ and $g$ are linear independent on $[-1,1]$
(b) $f$ and $g$ are linearly dependent on $[-1,1]$
(c) $f(x) g^{\prime}(x)-f^{\prime}(x) g(x)$ is NOT identically zero on $[-1,1]$.
(d) There exist continuous functions $p(x)$ and $q(x)$ such that $f$ and $g$ satisfy $y^{\prime \prime}+p y^{\prime}+q y=0$ on $[-1,1]$
15. The value of $c$ for which there exists a twice differentiable vector field $\vec{F}$ with curl $\vec{F}=2 x \hat{i}-7 y \hat{j}+c z \hat{k}$ is
(a) 0
(b) 2
(c) 5
(d) 7
16. Consider A contains 100 cc of milk and container $B$ contains 100 cc of water. 5 cc of the liquid in A is transferred to B , the mixture is thoroughly stirred and 5 cc of the mixture in B is transferred back into A. Each such two-way transfer is called a dilution. Let $a_{n}$ be the percentage of water in container A after $n$ such dilutions, with the understanding that $a_{0}=0$.
(a) Prove that $a_{1}=\frac{100}{21}$ and that, in general, $a_{n}=\frac{100}{21}+\frac{19}{21} a_{n-1}$ for $n=1,2,3, \ldots \ldots$.
(b) Using (a) prove that $a_{n}=50\left[1-\left(\frac{19}{21}\right)^{n}\right]$ for $n=1,2,3, \ldots \ldots$.

Find $\lim _{n \rightarrow \infty} a_{n}$ and explain why the answer is intuitively obvious.
17. (a) Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ be a non-negative function. Assume that for every $m \in \mathbb{N}$, the series $\sum_{n=1}^{\infty} f(m, n)$ is convergent and has sum $a_{m}$ and further that the series $\sum_{m=1}^{\infty} a_{m}$ is also convergent and has sum $L$. Prove that for every $n$, the series $\sum_{m=1}^{\infty} f(m, n)$ is convergent and if we denote its sum by $b_{n}$ then the series $\sum_{n=1}^{\infty} b_{n}$ is also convergent and has sum $L$.
(b) Define $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ by

$$
f(m, n)= \begin{cases}0 & \text { if } n>m \\ \frac{-1}{2^{m-n}} & \text { if } n<m \\ 1 & \text { if } n=m\end{cases}
$$

Show that $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(m, n)=2$ and $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} f(m, n)=0$.
18. (a) Evaluate $\iint_{R} \cos \left(\max \left\{x^{3}, y^{3 / 2}\right\}\right) d x d y$ where $R=[0,1] \times[0,1]$.
(b) Let $S=\sqrt{1}+\sqrt{2}+\sqrt{3}+\ldots . .+\sqrt{10000}$ and $I=\int_{0}^{10000} \sqrt{x} d x$. Show that $I \leq S \leq I+100$.
19. Let $D=\{(x, y): x \geq 0, y \geq 0\}$. Let $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x-y}$ for $(x, y) \in D$.

Prove that $f$ attains its maximum on $D$ at two boundary points.
Deduce that $\frac{x^{2}+y^{2}}{4} \leq e^{x+y-2}$ for all $x \geq 0, y \geq 0$
20. (a) Let $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{R}$. Show that the condition $a_{2} b_{1}>0$ is sufficient but not necessary for the system
$\frac{d x}{d t}=a_{1} x+b_{1} y, \frac{d y}{d t}=a_{2} x+b_{2} y$, to have two linearly independent solutions of the form $x=c_{1} e^{\lambda_{1} t}$,
$y=d_{1} e^{\lambda_{1} t}$ and $x=c_{2} e^{\lambda_{2} t}, y=d_{2} e^{\lambda_{2} t}$ with $c_{1}, d_{1}, c_{2}, d_{2}, \lambda_{1}, \lambda_{2} \in \mathbb{R}$
(b) Show that the differential equation representing the family of all straight lines which have an intercept of constant length $L$ between the coordinate axes is $x \frac{d y}{d x}-y=\frac{L \frac{d y}{d x}}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}$.
21. Let $A, B, k>0$. Solve the initial value problem $\frac{d y}{d x}-A y+B y^{3}=0, x>0, y(0)=k$.
(a) Also show that $k<\sqrt{\frac{A}{B}}$, then the solution $y(x)$ is monotonically increasing on $(0, \infty)$ and tends to $\sqrt{\frac{A}{B}}$ as $x \rightarrow \infty$;
(b) if $k>\sqrt{\frac{A}{B}}$, then the solution $y(x)$ is monotonically decreasing on $(0, \infty)$ and tends to $\sqrt{\frac{A}{B}}$ as $x \rightarrow \infty$.
22. (a) Evaluate $\oint_{C}\left(3 y^{2}+2 z^{2}\right) d x+(6 x-10 z) y d y+\left(4 x z-5 y^{2}\right) d z$ along the portion from $(1,0,1)$ to $(3,4,5)$ of the curve $C$, which is the intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $z=y+1$.
(b) A particle moves counterclockwise along the curve $3 x^{2}+y^{2}=3$ from $(1,0)$ to a point $P$, under the action of the force $\vec{F}(x, y)=\frac{x}{y} \hat{i}+\frac{y}{x} \hat{j}$. Prove that there are two possible locations of $P$ such that the work done by $\vec{F}$ is 1 .
23. Verify Stokes theorem for the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$ and the vector field $\vec{F}=\left(z^{2}-y\right) \hat{i}+(x-2 y z) \hat{j}+\left(2 x z-y^{2}\right) \hat{k}$.
24. (a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T(x, y, z)=(x+2 y, x-z)$. Let $N(T)$ be the null space of $T$ and $W=\left\{\vec{v} \in \mathbb{R}^{3} \mid \vec{v} \cdot \vec{u}=0\right.$ for all $\left.\vec{u} \in N(T)\right\}$. Find a linear transformation $S: \mathbb{R}^{2} \rightarrow W$ such that $T S=I$, where $I$ is the identity transformation on $\mathbb{R}^{3}$.
(b) Suppose $A$ is a real square matrix of odd order such that $A+A^{T}=0$. Prove that $A$ is singular.
25. (a) Find all pairs $(a, b)$ of real numbers for which the system of equations $x+3 y=1,4 x+a y+z=0,2 x+3 z=b$
has (i) a unique solution, (ii) infinitely many solution, (iii) no solution.
(b) Let $A$ be a $n \times n$ matrix such that $A^{n}=0$ and $A^{n-1} \neq 0$. Show that there exist a vector $v \in \mathbb{R}^{n}$ such that $\left[v, A v, \ldots \ldots A^{n-1} v\right]$ forms a basis for $\mathbb{R}^{n}$.
26. (a) In which of the following pairs are the two groups isomorphic to each other? Justify your answers.
(i) $\mathbb{R} / \mathbb{Z}$ and $S^{1}$, where $\mathbb{R}$ is the additive group of real numbers and $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ under complex multiplication.
(ii) $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$.
(b) Prove or disprove that if $G$ is a finite abelian group of order $n$, and $k$ is a positive integer which divides $n$, then $G$ has at most one subgroup of order $k$.
27. Let $I$ and $J$ be ideals of a ring $R$. Let $I J$ be the set of all possible sums $\sum_{i=1}^{n} a_{i} b_{i}$, where $a_{i} \in I, b_{i} \in J$ for $\mathrm{i}=1,2, \ldots . ., \mathrm{n}$ and $n \in \mathbb{N}$.
(a) Prove that $I J$ is an ideal of $R$ and $I J \subseteq I \cap J$
(b) Is it true that $I J=I \cap J$ ? Justify your answer.
28. A sequence $\left\{f_{n}\right\}$ of functions defined on an interval $I$ is said to be uniformly bounded on $I$ if there exists some $M$ such that $\left|f_{n}(x)\right| \leq M$ for all $x \in I$ and for all $n \in N$.
(a) Prove that if a sequence of functions $\left\{f_{n}\right\}$ converges to a function $f$ on $I$ and $\left\{f_{n}\right\}$ is uniformly bounded on $I$, then $f$ is bounded on $I$.
(b) Suppose the sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ of functions converge uniformly to $f$ and $g$ respectively
on $I$ and both are uniformly bounded on $I$. Prove that the product sequence $\left\{f_{n} g_{n}\right\}$ converges to $f g$ uniformly on $I$. Show by an example that this may fail if only one of $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ is uniformly bounded on $I$.
29. (a) Prove that if $f$ is a real-valued function which is uniformly continuous on an interval $(a, b)$, then $f$ is bounded on $(a, b)$.
(b) Let $f$ be a differentiable function on an interval $(a, b)$. Assume that $f^{\prime}$ is bounded on $(a, b)$. Prove that $f$ is uniformly continuous on $(a, b)$.


