PAPER : IIT-JAM 2010 MATHEMATICS-MA

(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (–2) marks for incorrect answer.

1. Which of the following conditions does NOT ensure the convergence of a real sequence $\{a_n\}$?

(a)
$$|a_n - a_{n+1}| \to 0 \text{ as } n \to \infty$$
 (b) $\sum_{n=1}^{\infty} |a_n - a_{n+1}|$ is convergent

- (c) $\sum_{n=1}^{\infty} n a_n$ is convergent (d) The sequences $\{a_{2n}\}, \{a_{2n+1}\}$ and $\{a_{3n}\}$ are convergent
- 2. The value of $\iint_G \frac{\ln(x^2 + y^2)}{x^2 + y^2} dx dy$, where $G = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le e^2\}$ is
- 3. (a) π (b) 2π (c) 3π (d) 4π The number of elements of S_5 (the symmetric group on 5 letters) which are their own inverses equals (a) 10 (b) 11 (c) 25 (d) 26
- 4. Let S be an infinite subset of \mathbb{R} such that $S \cap \mathbb{Q} = \phi$. Which of the following statements is true?
 - (a) S must have a limit point which belongs to \mathbb{Q}
 - (b) S must have a limit point which belongs to $\mathbb{R} \setminus \mathbb{Q}$
 - (c) S cannot be a closed set in \mathbb{R}
 - (d) $\mathbb{R} \setminus S$ must have a limit point which belongs to S
- 5. Let $f:(1,4) \to \mathbb{R}$ be a uniformly continuous function and let $\{a_n\}$ be a Cauchy sequence in (1, 2).

Let
$$x_n = a_n^2 f(a_n^2)$$
 and $y_n = \frac{1}{1 + a_n^2} f(a_n^2)$, for all $n \in N$. Which of the following statement is true?

- (a) Both $\{x_n\}$ and $\{y_n\}$ must be Cauchy sequences in \mathbb{R}
- (b) $\{x_n\}$ must be a Cauchy sequence in \mathbb{R} but $\{y_n\}$ need not be a Cauchy sequence in \mathbb{R}
- (c) $\{y_n\}$ must be a Cauchy sequence in \mathbb{R} but $\{x_n\}$ need not be a Cauchy sequence in \mathbb{R}
- (d) Neither $\{x_n\}$ nor $\{y_n\}$ needs to be a Cauchy sequence in \mathbb{R}
- 6. Let $\vec{F} = 2xyz \ e^{x^2}\hat{i} + z \ e^{x^2}\hat{j} + ye^{x^2}\hat{k}$ be the gradient of a scalar function. The value of $\int_L \vec{F} \cdot d\vec{r}$ along the oriented path L from (0, 0, 0) to (1, 0, 2) and then to (1, 1, 2) is (a) 0 (b) 2e (c) e (d) e^2
- 7. Let $\vec{F} = xy\hat{i} + y\hat{j} yz\hat{k}$ denote the force field on a particle traversing the path *L* from (0, 0, 0) to (1, 1, 1) along the curve of intersection of the cylinder $y = x^2$ and the plane z = x. The work done by \vec{F} is

(a) 0 (b)
$$\frac{1}{4}$$
 (c) $\frac{1}{2}$ (d) 1

8.	Let $\mathbb{R}[X]$ be the ring of real polynomials in the variables <i>X</i> . The number of ideals in the quotient ring $\mathbb{P}[X]/(X^2 - 3X + 2)$ is												
	ring $\mathbb{R}[X]/(X^2-3X+2)$	2) 1s (b) 3	(c) 4	(d) 6									
	(a) 2												
9.	Consider the differential equation $\frac{dy}{dx} = ay - by^2$, where $a, b > 0$ and $y(0) = y_0$. As $x \to +\infty$, then												
	solution $y(x)$ tends to												
	(a) 0	(b) <i>a/b</i>	(c) <i>b/a</i>	(d) y_0									
10.	Consider the differential equation $(x+y+1)dx+(2x+2y+1)dy=0$. Which of the following statements is true? (a) The differential equation is linear (b) The differential equation is exact												
	(c) e^{x+y} is an integrating factor of the differential equation (d) A suitable substitution transforms the differentiable equation to the variables separable for												
11.	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T((1,2)) = (2,3)$ and $T((0,1)) = (1,4)$. The												
	T(5,6) is												
	(a) (6, -1)	(b) (-6, 1)	(c) (-1, 6)	(d) (1, -6)									
12.	The number of 2 \times	2 matrices over \mathbb{Z}_3 (the field with three el	ements) with determinant 1 is									
	(a) 24	(b) 60	(c) 20	(d) 30									
		`´											
			<u>∞</u> 2										
13.	The radius of conver	gence of the power s	eries $\sum_{n=0}^{\infty} a_n z^n$, where	$a_0 = 1, a_n = 3^{-n} a_{n-1}$ for $n \in \mathbf{N}$, is									
	(a) 0	(b) $\sqrt{3}$	(c) 3	(d) ∞									
14.				respect to standard basis $\{e_1, e_2, e_3\}$									
14.	Let $I : \mathbb{R} \to \mathbb{R}$ be			Tespect to standard basis $\{e_1, e_2, e_3, e_4, e_5, e_6, e_8, e_8, e_8, e_8, e_8, e_8, e_8, e_8$									
	e_3 of \mathbb{R}^3 is $\begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Then T											
	 (a) maps the subspace spanned by e₁ and e₂ into itself (b) has distinct eigenvalues 												
	(c) has eigenvectors that span \mathbb{R}^3 (d) has a non-zero null space												

15. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation whose matrix with respect to the standard basis of \mathbb{R}^3

is
$$\begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$$
, where *a*, *b*, *c* are real numbers not all zero. Then *T*

- (a) is one to one
- (b) is onto
- (c) does not map any line passes through the origin onto itself
- (d) has rank 1

16. (a) Obtain the general solution of the following system of differential equations:

$$\frac{dx}{dt} = x + 2y, \quad \frac{dy}{dt} = 4x - y + e^{3t}$$
(9)

(b) Find the curve passing through $\left(\frac{1}{2}, 0\right)$ and having slope at (x, y) given by differential equation (6) $2(1+y^2)dx + (2x - \tan^{-1} y)dy = 0.$

17. (a) Find the volume of the region in the first octant bounded by the surfaces x = 0, y = x, y = 2 - x^2, z = 0 and z = x^2.
(b) Suppose f: ℝ → ℝ is a non-constant continuous function satisfying f(x + y) = f(x) f(y) for all x, y ∈ ℝ.

- (*i*) Show that $f(x) \neq 0$ for all $x \in \mathbb{R}$.
- (*ii*) Show that f(x) > 0 for all $x \in \mathbb{R}$.

(*iii*) Show that there exists $\beta \in \mathbb{R}$ such that $f(x) = \beta^x$ for all $x \in \mathbb{R}$.

18. (a) Let f(x) and g(x) be real valued functions continuous in [a, b], differentiable in (a, b) and let

 $g'(x) \neq 0$ for all $x \in (a,b)$. Show that there exists $c \in (a,b)$ such that $\frac{f(c) - f(a)}{g(b) - g(c)} = \frac{f'(c)}{g'(c)}$. (9)

(b) Let $0 < \lambda < 4$ and let $\{a_n\}$ be a sequence of positive real numbers satisfying $a_{n+1} = \lambda a_n^2 (1-a_n)$ for $n \in \mathbb{N}$. Prove that $\lim_{n \to \infty} a_n$ exists and determine this limit. (6)

19. Let G be an open subset of R.
(a) If 0 ∉ G, then show that H = {xy : x, y ∈ G} is an open subset of R.
(b) If 0 ∈ G and if x + y ∈ G for all x, y ∈ G, then show that G = R

(9)

(9)

(6)

20. Let p(x) be a non-constant polynomial with real coefficients such that $p(x) \neq 0$ for all $x \in \mathbb{R}$.

Define
$$f(x) = \frac{1}{p(x)}$$
 for all $x \in \mathbb{R}$. Prove that

(i) For each $\varepsilon > 0$, there exists a > 0 such that $|f(x)| < \varepsilon$ for all $x \in R$ satisfying |x| > a, and (ii) $f : \mathbb{R} \to \mathbb{R}$ is a uniformly continuous function. (15)

- 21. (a) Let M(K) and m(k) denote respectively the absolute maximum and the absolute minimum values of $x^3 + 9x^2 21x + k$ in the closed interval [-10, 2]. Find all the real values of k for which |M(k)| = |m(k)|. (6)
 - **(b)** Let $\alpha_1 = 0, \beta_1 = 1; \alpha_2 = 1, \beta_2 = 1$, and for $n \ge 3$,

$$\alpha_{n} = \alpha_{n-1} + 2\alpha_{n-2},$$

$$\beta_{n} = \beta_{n-1} + 2\beta_{n-2}.$$

Prove that, for $n \in \mathbb{N}$
(i) $\beta_{n} = 2\alpha_{n} + (-1)^{n-1}$
(ii) $\alpha_{n} + \beta_{n} = 2^{n-1}$
Deduce that $\lim_{n \to \infty} \frac{\alpha_{n}a + \beta_{n}b}{2^{n-1}} = \frac{a+2b}{3}$ for any $a, b \in \mathbb{R}$. (9)

22. (a) Let $f(x, y) = \alpha x^2 + xy + \beta y^2$, $\alpha \neq 0$, $\beta \neq 0$, $4\alpha \beta \neq 1$. Find sufficient conditions on (α, β) such that (0, 0) is (9)

- (i) a point of local maxima of f(x, y) RENDEAVOUR
- (*ii*) a point of local minima of f(x, y)
- (*iii*) a saddle point of f(x, y)

(**b**) Find the derivative of $f(x, y, z) = 7x^3 - x^2z - z^2 + 28y$ at the point A = (1, -1, 0) along the unit $\frac{1}{2}(c_1^2 - 2^2 + 2t_2)$ are a size of a = 1, -1, 0.

vector $\frac{1}{7} (6\hat{i} - 2\hat{j} + 3\hat{k})$. What is the unit vector along which *f* decreases most rapidly at *A*? Also, find the rate of this decreases. (6)

23. Using $x = e^u$, transform the differential equation

$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = \cos x$$

to a second order differential equation with constant coefficients. Obtain the general solution of the transformed differential equation. (15)

- 24. Let *G* be a group and let A(G) denote the set of all automorphism of *G*, i.e. all one-to-one, onto, group homomorphisms from *G* to *G*. An automorphism $f: G \to G$ of the form $f(x) = axa^{-1}, x \in G$ (for some $a \in G$) is called an inner automorphism. Let I(G) denote the set of all inner automorphism of *G*.
 - (a) Show that A(G) is a group under composition of functions and that I(G) is a normal subgroup of A(G). (9)
 - (**b**) Show that I(G) is isomorphic to G/Z(G), where

 $Z(G) = \{g \in G : xg = gx \text{ for all } x \in G\} \text{ is the centre of } G.$ (6)

25. (a) Give an example of a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $T^2(v) = -v$ for all $v \in \mathbb{R}^2$. (6)

(b) Let V be a real *n*-dimensional vector space and let $T: V \to V$ be a linear transformation satisfying $T^2(v) = -v$ for all $v \in V$.

(i) Show that n is even.

(ii) Use T to make V into complex vector space such that the multiplication by complex numbers extends the multiplication by real numbers.

(iii) Show that, with respect to the complex vector space structure on *V* obtained in (ii), $T: V \to V$ is a complex linear transformation. (9)

26. Let W be the region bounded by the planes x = 0, y = 0, y = 3, z = 0 and x + 2z = 6. Let S be the boundary of this region. Using Gauss' divergence theorem, evaluate $\iint_{a} F.\hat{n}dS$, where

$$\vec{F} = 2xy\hat{i} + yz^2\hat{j} + xz\hat{k}$$
 and \hat{n} is the outward unit normal vector to S. (15)

27. (a) Using strokes' theorem evaluate the line integral $\iint_L (y\hat{i} + z\hat{j} + x\hat{k}) d\vec{r}$, where *L* is the intersection

of $x^2 + y^2 + z^2 = 1$ and x + y = 0 traversed in the clockwise direction when viewed from the point (1, 1, 0). (9)

(**b**) Change the order of integration in the integral
$$\int_{0}^{1} \int_{x-1}^{\sqrt{1-x^2}} f(x, y) dy dx.$$
 (6)

28. In a group G, $x \in G$ is said to be conjugate to $y \in G$, written $x \sim y$, if there exists $z \in G$ such that $x = zyz^{-1}$.

(a) Show that \sim is an equivalence relation on G. Show that a subgroup N of G is a normal subgroup of G if and only if N is a union of equivalence classes of \sim . (6) (b) Consider the group of all non-singular 3×3 real matrices under matrix multiplication. Show

(6) (9)

	[1	0	0		3	0	4		
that	1	3	0	~	0	1	0	(i.e. the two matrices are conjugate).	(9)
	1	2	1_		0	0	1		

29. Let S denote the commutative ring of all continuous real valued functions on [0, 1], under pointwise addition and multiplication. For $a \in [0, 1]$, let $M_a = \{f \in S \mid f(a) = 0\}$.

(a) Show that M_a is an ideal in S.
(b) Show that M_a is a maximal ideal in S.

**** END *****

