PAPER : IIT-JAM 2010

(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1. Which of the following conditions does NOT ensure the convergence of a real sequence $\left\{a_{n}\right\}$?
(a) $\left|a_{n}-a_{n+1}\right| \rightarrow 0$ as $n \rightarrow \infty$
(b) $\sum_{n=1}^{\infty}\left|a_{n}-a_{n+1}\right|$ is convergent
(c) $\sum_{n=1}^{\infty} n a_{n}$ is convergent
(d) The sequences $\left\{a_{2 n}\right\},\left\{a_{2 n+1}\right\}$ and $\left\{a_{3 n}\right\}$ are convergent
2. The value of $\iint_{G} \frac{\ln \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}} d x d y$, where $G=\left\{(x, y) \in \mathbb{R}^{2} ; 1 \leq x^{2}+y^{2} \leq e^{2}\right\}$ is
(a) π
(b) 2π
(c) 3π
(d) 4π
3. The number of elements of S_{5} (the symmetric group on 5 letters) which are their own inverses equals
(a) 10
(b) 11
(c) 25
(d) 26
4. Let S be an infinite subset of \mathbb{R} such that $S \cap \mathbb{Q}=\phi$. Which of the following statements is true?
(a) S must have a limit point which belongs to \mathbb{Q}
(b) S must have a limit point which belongs to $\mathbb{R} \backslash \mathbb{Q}$
(c) S cannot be a closed set in \mathbb{R}
(d) $\mathbb{R} \backslash S$ must have a limit point which belongs to S
5. Let $f:(1,4) \rightarrow \mathbb{R}$ be a uniformly continuous function and let $\left\{a_{n}\right\}$ be a Cauchy sequence in $(1,2)$. Let $x_{n}=a_{n}^{2} f\left(a_{n}^{2}\right)$ and $y_{n}=\frac{1}{1+a_{n}^{2}} f\left(a_{n}^{2}\right)$, for all $n \in N$. Which of the following statement is true?
(a) Both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ must be Cauchy sequences in \mathbb{R}
(b) $\left\{x_{n}\right\}$ must be a Cauchy sequence in \mathbb{R} but $\left\{y_{n}\right\}$ need not be a Cauchy sequence in \mathbb{R}
(c) $\left\{y_{n}\right\}$ must be a Cauchy sequence in \mathbb{R} but $\left\{x_{n}\right\}$ need not be a Cauchy sequence in \mathbb{R}
(d) Neither $\left\{x_{n}\right\}$ nor $\left\{y_{n}\right\}$ needs to be a Cauchy sequence in \mathbb{R}
6. Let $\vec{F}=2 x y z e^{x^{2}} \hat{i}+z e^{x^{2}} \hat{j}+y e^{x^{2}} \hat{k}$ be the gradient of a scalar function. The value of $\int_{L} \vec{F}$. $d \vec{r}$ along the oriented path L from $(0,0,0)$ to $(1,0,2)$ and then to $(1,1,2)$ is
(a) 0
(b) $2 e$
(c) e
(d) e^{2}
7. Let $\vec{F}=x y \hat{i}+y \hat{j}-y z \hat{k}$ denote the force field on a particle traversing the path L from $(0,0,0)$ to $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ and the plane $z=x$. The work done by \vec{F} is
(a) 0
(b) $\frac{1}{4}$
(c) $\frac{1}{2}$
(d) 1
8. Let $\mathbb{R}[X]$ be the ring of real polynomials in the variables X. The number of ideals in the quotient ring $\mathbb{R}[X] /\left(X^{2}-3 X+2\right)$ is
(a) 2
(b) 3
(c) 4
(d) 6
9. Consider the differential equation $\frac{d y}{d x}=a y-b y^{2}$, where $a, b>0$ and $y(0)=y_{0}$. As $x \rightarrow+\infty$, then solution $y(x)$ tends to
(a) 0
(b) a / b
(c) b / a
(d) y_{0}
10. Consider the differential equation $(x+y+1) d x+(2 x+2 y+1) d y=0$. Which of the following statements is true?
(a) The differential equation is linear
(b) The differential equation is exact
(c) e^{x+y} is an integrating factor of the differential equation
(d) A suitable substitution transforms the differentiable equation to the variables separable form
11. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T((1,2))=(2,3)$ and $T((0,1))=(1,4)$. Then $T(5,6)$ is
(a) $(6,-1)$
(b) $(-6,1)$
(c) $(-1,6)$
(d) $(1,-6)$
12. The number of 2×2 matrices over \mathbb{Z}_{3} (the field with three elements) with determinant 1 is
(a) 24
(b) 60
(c) 20
(d) 30
13. The radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n^{2}}$, where $a_{0}=1, a_{n}=3^{-n} a_{n-1}$ for $n \in \mathbf{N}$, is
(a) 0
(b) $\sqrt{3}$
(c) 3
(d) ∞
14. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation whose matrix with respect to standard basis $\left\{e_{1}, e_{2}\right.$, $\left.e_{3}\right\}$ of \mathbb{R}^{3} is $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$. Then T
(a) maps the subspace spanned by e_{1} and e_{2} into itself
(b) has distinct eigenvalues
(c) has eigenvectors that span \mathbb{R}^{3}
(d) has a non-zero null space
15. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation whose matrix with respect to the standard basis of \mathbb{R}^{3}
is $\left(\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right)$, where a, b, c are real numbers not all zero. Then T
(a) is one to one
(b) is onto
(c) does not map any line passes through the origin onto itself
(d) has rank 1
16. (a) Obtain the general solution of the following system of differential equations:

$$
\begin{equation*}
\frac{d x}{d t}=x+2 y, \frac{d y}{d t}=4 x-y+e^{3 t} \tag{9}
\end{equation*}
$$

(b) Find the curve passing through $\left(\frac{1}{2}, 0\right)$ and having slope at (x, y) given by differential equation

$$
\begin{equation*}
2\left(1+y^{2}\right) d x+\left(2 x-\tan ^{-1} y\right) d y=0 \tag{6}
\end{equation*}
$$

17. (a) Find the volume of the region in the first octant bounded by the surfaces $x=0, y=x, y=$ $2-x^{2}, z=0$ and $z=x^{2}$.
(b) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a non-constant continuous function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$.
(i) Show that $f(x) \neq 0$ for all $x \in \mathbb{R}$.
(ii) Show that $f(x)>0$ for all $x \in \mathbb{R}$.
(iii) Show that there exists $\beta \in \mathbb{R}$ such that $f(x)=\beta^{x}$ for all $x \in \mathbb{R}$.
18. (a) Let $f(x)$ and $g(x)$ be real valued functions continuous in $[a, b]$, differentiable in (a, b) and let $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Show that there exists $c \in(a, b)$ such that $\frac{f(c)-f(a)}{g(b)-g(c)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$. (9)
(b) Let $0<\lambda<4$ and let $\left\{a_{n}\right\}$ be a sequence of positive real numbers satisfying $a_{n+1}=\lambda a_{n}^{2}\left(1-a_{n}\right)$ for $n \in \mathbb{N}$. Prove that $\lim _{n \rightarrow \infty} a_{n}$ exists and determine this limit.
19. Let G be an open subset of \mathbb{R}.
(a) If $0 \notin G$, then show that $H=\{x y: x, y \in G\}$ is an open subset of \mathbb{R}.
(b) If $0 \in G$ and if $x+y \in G$ for all $x, y \in G$, then show that $G=\mathbb{R}$
20. Let $p(x)$ be a non-constant polynomial with real coefficients such that $p(x) \neq 0$ for all $x \in \mathbb{R}$.

Define $f(x)=\frac{1}{p(x)}$ for all $x \in \mathbb{R}$. Prove that
(i) For each $\varepsilon>0$, there exists a >0 such that $|f(x)|<\varepsilon$ for all $x \in R$ satisfying $|x|>a$, and
(ii) $f: \mathbb{R} \rightarrow \mathbb{R}$ is a uniformly continuous function.
21. (a) Let $M(K)$ and $m(k)$ denote respectively the absolute maximum and the absolute minimum values of $\quad x^{3}+9 x^{2}-21 x+k$ in the closed interval $[-10,2]$. Find all the real values of k for which

$$
\begin{equation*}
|M(k)|=|m(k)| . \tag{6}
\end{equation*}
$$

(b) Let $\alpha_{1}=0, \beta_{1}=1 ; \alpha_{2}=1, \beta_{2}=1$, and for $n \geq 3$,

$$
\begin{aligned}
& \alpha_{n}=\alpha_{n-1}+2 \alpha_{n-2} \\
& \beta_{n}=\beta_{n-1}+2 \beta_{n-2} .
\end{aligned}
$$

Prove that, for $n \in \mathbb{N}$
(i) $\beta_{n}=2 \alpha_{n}+(-1)^{n-1}$
(ii) $\alpha_{n}+\beta_{n}=2^{n-1}$

Deduce that $\lim _{n \rightarrow \infty} \frac{\alpha_{n} a+\beta_{n} b}{2^{n-1}}=\frac{a+2 b}{3}$ for any $a, b \in \mathbb{R}$.
22. (a) Let $f(x, y)=\alpha x^{2}+x y+\beta y^{2}, \alpha \neq 0, \beta \neq 0,4 \alpha \beta \neq 1$. Find sufficient conditions on (α, β) such that $(0,0)$ is
(i) a point of local maxima of $f(x, y)$
(ii) a point of local minima of $f(x, y)$
(iii) a saddle point of $f(x, y)$
(b) Find the derivative of $f(x, y, z)=7 x^{3}-x^{2} z-z^{2}+28 y$ at the point $A=(1,-1,0)$ along the unit vector $\frac{1}{7}(6 \hat{i}-2 \hat{j}+3 \hat{k})$. What is the unit vector along which f decreases most rapidly at A ? Also, find the rate of this decreases.
23. Using $x=e^{u}$, transform the differential equation
$x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=\cos x$
to a second order differential equation with constant coefficients. Obtain the general solution of the transformed differential equation.
24. Let G be a group and let $A(G)$ denote the set of all automorphism of G, i.e. all one-to-one, onto, group homomorphisms from G to G. An automorphism $f: G \rightarrow G$ of the form $f(x)=$ axa $^{-1}, x \in G$ (for some $a \in G$) is called an inner automorphism. Let $I(G)$ denote the set of all inner automorphism of G.
(a) Show that $A(G)$ is a group under composition of functions and that $I(G)$ is a normal subgroup of $A(G)$.
(b) Show that $I(G)$ is isomorphic to $G / Z(G)$, where

$$
\begin{equation*}
Z(G)=\{g \in G: x g=g x \text { for all } x \in G\} \text { is the centre of } G . \tag{6}
\end{equation*}
$$

25. (a) Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T^{2}(v)=-v$ for all $v \in \mathbb{R}^{2}$.
(b) Let V be a real n-dimensional vector space and let $T: V \rightarrow V$ be a linear transformation satisfying $T^{2}(v)=-v$ for all $v \in V$.
(i) Show that n is even.
(ii) Use T to make V into complex vector space such that the multiplication by complex numbers extends the multiplication by real numbers.
(iii) Show that, with respect to the complex vector space structure on V obtained in (ii), $T: V \rightarrow V$ is a complex linear transformation.
26. Let W be the region bounded by the planes $x=0, y=0, y=3, z=0$ and $x+2 z=6$. Let S be the boundary of this region. Using Gauss' divergence theorem, evaluate $\iint_{S} F . \hat{n} d S$, where $\vec{F}=2 x y \hat{i}+y z^{2} \hat{j}+x z \hat{k}$ and \hat{n} is the outward unit normal vector to S.
27. (a) Using strokes' theorem evaluate the line integral $\int_{L}(y \hat{i}+z \hat{j}+x \hat{k}) \cdot d \vec{r}$, where L is the intersection of $x^{2}+y^{2}+z^{2}=1$ and $x+y=0$ traversed in the clockwise direction when viewed from the point $(1,1,0)$.
(b) Change the order of integration in the integral $\int_{0}^{1} \int_{x=1}^{\sqrt{1-x^{2}}} f(x, y) d y d x$.
28. In a group $G, x \in G$ is said to be conjugate to $y \in G$, written $x \sim y$, if there exists $z \in G$ such that $x=z y z^{-1}$.
(a) Show that \sim is an equivalence relation on G. Show that a subgroup N of G is a normal subgroup of G if and only if N is a union of equivalence classes of \sim.
(b) Consider the group of all non-singular 3×3 real matrices under matrix multiplication. Show
that $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 2 & 1\end{array}\right] \sim\left[\begin{array}{lll}3 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (i.e. the two matrices are conjugate).
29. Let S denote the commutative ring of all continuous real valued functions on [0,1], under pointwise addition and multiplication. For $a \in[0,1]$, let $M_{a}=\{f \in S \mid f(a)=0\}$.
(a) Show that M_{a} is an ideal in S.
(b) Show that M_{a} is a maximal ideal in S.
