PAPER : IIT-JAM 2012 MATHEMATICS-MA

(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1. Let
$$\{x_{n}\}$$
 be the sequence $+\sqrt{1}, -\sqrt{1}, +\sqrt{2}, -\sqrt{2}, +\sqrt{3}, -\sqrt{3}, +\sqrt{4}, -\sqrt{4}, \dots$ If
 $y_{n} = \frac{x_{1} + x_{2} + \dots + x_{n}}{n}$ for all $n \in \mathbb{N}$.
then the sequence $\{y_{n}\}$ is
(a) monotonic
(b) NOT bounded
(c) bounded but NOT convergent
(d) convergent
2. The number of distinct real roots of the equation $x^{9} + x^{7} + x^{5} + x^{3} + x + 1 = 0$ is
(a) 1 (b) 3 (c) 5 (d) 9
3. If $f : \mathbb{R}^{2} \to \mathbb{R}$ is defined by
 $f(x, y) = \begin{cases} \frac{x^{3}}{x^{2} + y^{4}} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$
Then
(a) $f_{x}(0, 0) = 0$ and $f_{y}(0, 0) = 0$ (b) $f_{x}(0, 0) = 1$ and $f_{y}(0, 0) = 0$
(c) $f_{x}(0, 0) = 0$ and $f_{y}(0, 0) = 1$ (d) $f_{x}(0, 0) = 1$ and $f_{y}(0, 0) = 1$
4. The value of $\int_{x=0}^{1} \int_{y=0}^{5} \int_{x=0}^{5} xy^{2}z^{3}dx dy dz$ is
(a) $\frac{1}{90}$ (b) $\frac{3}{2}$ (c) 2 (d) $\frac{1}{10}$
5. The differential equation $(1 + x^{2}y^{3} + \alpha x^{2}y^{2})dx + (2 + x^{3}y^{2} + x^{3}y)dy = 0$ is exact if α equals
(a) $\frac{1}{2}$ (b) $\frac{3}{2}$ (c) 2 (d) 3
6. An integrating factor for the differential equation $(2xy + 3x^{2}y + 6y^{3})dx + (x^{2} + 6y^{2})dy = 0$ is
(a) x^{3} (b) y^{3} (c) e^{3x} (d) e^{3y}
7. For $c > 0$, if $a\hat{i} + b\hat{j} + c\hat{k}$ is the unit normal vector at $(1, 1, \sqrt{2})$ to the cone $z = \sqrt{x^{2} + y^{2}}$, then
(a) $a^{2} + b^{2} - c^{2} = 0$ (b) $a^{2} - b^{2} + c^{2} = 0$

8. Consider the quotient group
$$\mathbb{Q}/\mathbb{Z}$$
 of the additive group of rational numbers. The order of the element $\frac{2}{3} + \mathbb{Z}$ in \mathbb{Q}/\mathbb{Z} is
(a) 2 (b) 3 (c) 5 (d) 6
9. Which one of the following is TRUE?
(a) The characteristic of the ring $\mathbb{G}\mathbb{Z}$ is 6
(b) The ring $\mathbb{G}\mathbb{Z}$ has a zero divisor
(c) The characteristic of the ring $(\mathbb{Z}/6\mathbb{Z}) \times \mathbb{G}\mathbb{Z}$ is zero
(d) The ring $\mathbb{G}\mathbb{Z} \times \mathbb{G}\mathbb{Z}$ is an integral domain.
10. Let W be a vector space over \mathbb{R} and let $T : \mathbb{R}^6 \to W$ be a linear transformation such that
 $S = \{Te_2, Te_4, Te_4\}$ spans W. Which one of the following must be TRUE?
(a) S is a basis of W (b) $T(\mathbb{R}^6) \neq W$
(c) $\{Te, Te_3, Te_4\}$ spans W (d) ker (1) contains more than one element
11. Consider the following subspace of \mathbb{R}^3
 $W = ((x, y, z) \in \mathbb{R}^3 | 2x + 2y + z = 0, 3x + 3y - 2z = 0, x + y - 3z = 0)$.
The dimension of W is
(a) 0 (b) 1 (c) 2 (d) 3
12. Let P be a 4×4 matrix whose determinant is 10. The determinant of the matrix $-3P$ is
(a) -810 (b) -30 (c) 30 (d) 810
13. If the power series $\sum_{n=0}^{\infty} a_n x^n$ converges for $x = 3$, then the series $\sum_{n=0}^{\infty} a_n x^n$
(a) converges absolutely for $x = -2$ (b) converges but not absolutely for $x = -1$
(c) converges but not absolutely for $x = -1$ (d) diverges for $y = -2$
14. If $Y = \left\{ \frac{x}{1+|x|} \middle| x \in \mathbb{R} \right\}$, then the set of all limit points of Y is
(a) $(-1, 1)$ (b) $(-1, 1]$ (c) $[0, 1]$ (d) $[-1, 1]$
15. If C is a smooth curve in \mathbb{R}^3 from $(0, 0, 0)$ to $(2, 1, -1)$, then the value of $\int_{\mathbb{C}} (2y + z) dx + (z + x^2) dy + (x + y) dz$
is
(a) -1 (b) 0 (c) 1 (d) 2
16. (a) Examine whether the following series is convergent:
 $\sum_{n=1}^{\infty} \frac{n!}{(1-3\cdot5\cdots(2n-2n)!)}$. (6)

(b) For each $x \in \mathbb{R}$, let [x] denote the greatest integer less than or equal to x. Further, for a fixed

 $\beta \in (0, 1)$, define $a_n = \frac{1}{n} [n\beta] + n^2 \beta^n$ for all $n \in \mathbb{N}$. Show that the sequence $\{a_n\}$ converges to β . (9)

20.

17. (a) Evaluate
$$\lim_{x \to 0} \frac{\int_0^{x^2} \sqrt{4 + t^3} dt}{x^2}$$
. (6)

(b) For $a, b \in \mathbb{R}$ with a < b, let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b] and twice differentiable on (a,b). Further assume that the graph of f intersects the straight line segment joining the points (a, f(a)) and (b, f(b)) at a point (c, f(c)) for a < c < b. Show that there exists a real number $\xi \in (a,b)$ such that $f''(\xi) = 0$. (9)

(a) Show that the point (0, 0) is neither a point of local minimum nor a point of local maximum for the function f: R² → R given by f(x, y) = 3x⁴ - 4x²y + y² for (x, y) ∈ R². (6)
(b) Find all the critical points of the function f: R² → R given by f(x, y) = x³ + y³ - 3x - 12y + 40 for (x, y) ∈ R². Also, examine whether the function f attains a local maximum or a local minimum at each of these critical points. (9)

19. (a) Evaluate
$$\int_{x=0}^{4} \int_{y=\sqrt{4-x}}^{2} e^{y^3} dy dx$$
. (6)

(b) Using multiple integral, find the volume of the solid region in \mathbb{R}^3 bounded above by the hemisphere $z = 1 + \sqrt{1 - x^2 - y^2}$ and bounded below by the cone $z = \sqrt{x^2 + y^2}$. (9) Find the area of the portion of the surface $z = x^2 - y^2$ in \mathbb{R}^3 which lies inside the solid cylinder $x^2 + y^2 \le 1$. (15)

- 21. Let y(x) be the solution of the differential equation $\frac{d^2y}{dx^2} y = 0$ such that y(0) = 2 and $y'(0) = 2\alpha$. Find all values of $\alpha \in [0,1)$ such that the infimum of the set $\{y(x) | x \in \mathbb{R}\}$ is greater than or equal to 1. (15)
- 22. (a) Assume that $y_1(x) = x$ and $y_2(x) = x^3$ are two linearly independent solutions of the homogeneous differential equation $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 3y = 0$. Using the method of variation of parameters, find a particular solution of the differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} - 3x\frac{dy}{dx} + 3y = x^{5}$$
(6)

(**b**) Solve the differential equation $\frac{dy}{dx} + \frac{5y}{6x} = \frac{5x^4}{y^5}$ subject to the condition y(1) = 1 (9)

(a) Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ be the position vector field in \mathbb{R}^3 and let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable 23. function. Show that $\vec{\nabla} \times \{f(|\vec{r}|)\vec{r}\} = \vec{0}$ for $\vec{r} \neq \vec{0}$. (6) (b) Let W be the region inside the solid cylinder $x^2 + y^2 \le 4$ between the plane z = 0 and the paraboloid $z = x^2 + y^2$. Let S be the boundary of W. Using Gauss's divergence theorem, evaluate $\iint \vec{F} \cdot \hat{n} \, dS$, where $\vec{F} = (x^2 + y^2 - 4)\hat{i} + (3xy)\hat{j} + (2xz + z^2)\hat{k}$ and \hat{n} is the outward unit normal vector to S. (9) (a) Let G be a finite group whose order is not divisible by 3. Show that for every $g \in G$, there 24. exists an $h \in G$ such that $g = h^3$. (6)(b) Let A be the group of all rational numbers under addition, B be the group of all non-zero rational numbers under multiplication and C the group of all positive rational numbers under multiplication. Show that no two of the groups A, B and C are isomorphic. (9) 25. (a) Let I be an ideal of a commutative ring R. Define $A = \left\{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{N} \right\}.$ Show that A is an ideal of R. (6)(b) Let F be a field. For each $p(x) \in F[x]$ (the polynomial ring in x over F) define $\varphi: F[x] \to F \times F$ by $\varphi(p(x)) = (p(0), p(1)).$

- (i) Prove that φ is a ring homomorphism
- (ii) Prove that the quotient ring $F[x]/(x^2-x)$ is isomorphic to the ring $F \times F$. (9)

(a) Let P, D and A be real square matrices of the same order such that P is invertible. D is diagonal and D = PAP⁻¹. If Aⁿ = 0 for some n ∈ N, then show that A = 0. (6)
(b) Let T: V → W be a linear transformation of vector spaces. Prove the following:
(1) If {v₁, v₂,...., v_k} spans V and T is onto, then {Tv₁, Tv₂....Tv_k} spans W.

(2) If $\{v_1, v_2, ..., v_k\}$ is linearly independent in V and T is one-one, then $\{Tv_1, Tv_2, ..., Tv_k\}$ is linearly independent in W.

(3) If $\{v_1, v_2, \dots, v_k\}$ is a basis of V, and T is bijective, then $\{Tv_1, Tv_2, \dots, Tv_k\}$ is a basis of W. (9)

27. (a) Let $\{v_1, v_2, v_3\}$ be a basis of vector space *V* over \mathbb{R} . Let $T: V \to V$ be the linear transformation determined by $Tv_1 = v_1, Tv_2 = v_2 - v_3$ and $Tv_3 = v_2 + 2v_3$. Find the matrix of the transformation *T* with $\{v_1 + v_2, v_1 - v_2, v_3\}$ as the basis of both the domain and co-domain of *T*. (6)

(b) Let *W* be a three dimensional vector space over \mathbb{R} and let $S: W \to W$ be a linear transformation. Further, assume that every non-zero vector of *W* is an eigen-vector of *S*. Prove that there exists an $\alpha \in \mathbb{R}$, such that $S = \alpha I$, where $I: W \to W$ is the identity transformation. (9) 28. (a) Show that the function $f : \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^2$ for $x \in \mathbb{R}$, is not uniformly continuous. (6)

(b) For each $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function. If the sequence $\{f_n\}$ converges uniformly on \mathbb{R} to a function $f : \mathbb{R} \to \mathbb{R}$, then show that f is uniformly continuous. (9)

29. (a) Let A be a nonempty bounded subset of \mathbb{R} . Show that $\{x \in \mathbb{R} \mid x \ge a \text{ for all } a \in A\}$ is closed subset of \mathbb{R} . (6)

(b) Let $\{x_n\}$ be a sequence in \mathbb{R} such that $|x_{n+1} - x_n| < \frac{1}{n^2}$ for all $n \in \mathbb{N}$. Show that the sequence $\{x_n\}$ is convergent. (9)

