(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1. Let $\left\{x_{n}\right\}$ be the sequence $+\sqrt{1},-\sqrt{1},+\sqrt{2},-\sqrt{2},+\sqrt{3},-\sqrt{3},+\sqrt{4},-\sqrt{4}, \ldots$. If

$$
y_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \text { for all } n \in \mathbb{N} \text {, }
$$

then the sequence $\left\{y_{n}\right\}$ is
(a) monotonic
(b) NOT bounded
(c) bounded but NOT convergent
(d) convergent
2. The number of distinct real roots of the equation $x^{9}+x^{7}+x^{5}+x^{3}+x+1=0$ is
(a) 1
(b) 3
(c) 5
(d) 9
3. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by
$f(x, y)=\left\{\begin{array}{cc}\frac{x^{3}}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0),\end{array}\right.$
Then
(a) $f_{x}(0,0)=0$ and $f_{y}(0,0)=0$
(b) $f_{x}(0,0)=1$ and $f_{y}(0,0)=0$
(c) $f_{x}(0,0)=0$ and $f_{y}(0,0)=1$
(d) $f_{x}(0,0)=1$ and $f_{y}(0,0)=1$
4. The value of $\int_{z=0}^{1} \int_{y=0}^{z} \int_{x=0}^{y} x y^{2} z^{3} d x d y d z$ is
(a) $\frac{1}{90}$
(b) $\frac{1}{50}$
(c) $\frac{1}{45}$
(d) $\frac{1}{10}$
5. The differential equation $\left(1+x^{2} y^{3}+\alpha x^{2} y^{2}\right) d x+\left(2+x^{3} y^{2}+x^{3} y\right) d y=0$ is exact if α equals
(a) $\frac{1}{2}$
(b) $\frac{3}{2}$
(c) 2
(d) 3
6. An integrating factor for the differential equation $\left(2 x y+3 x^{2} y+6 y^{3}\right) d x+\left(x^{2}+6 y^{2}\right) d y=0$ is
(a) x^{3}
(b) y^{3}
(c) $e^{3 x}$
(d) $e^{3 y}$
7. For $c>0$, if $a \hat{i}+b \hat{j}+c \hat{k}$ is the unit normal vector at $(1,1, \sqrt{2})$ to the cone $z=\sqrt{x^{2}+y^{2}}$, then
(a) $a^{2}+b^{2}-c^{2}=0$
(b) $a^{2}-b^{2}+c^{2}=0$
(c) $-a^{2}+b^{2}+c^{2}=0$
(d) $a^{2}+b^{2}+c^{2}=0$
8. Consider the quotient group \mathbb{Q} / \mathbb{Z} of the additive group of rational numbers. The order of the element $\frac{2}{3}+\mathbb{Z}$ in \mathbb{Q} / \mathbb{Z} is
(a) 2
(b) 3
(c) 5
(d) 6
9. Which one of the following is TRUE?
(a) The characteristic of the ring $6 \mathbb{Z}$ is 6
(b) The ring $6 \mathbb{Z}$ has a zero divisor
(c) The characteristic of the ring $(\mathbb{Z} / 6 \mathbb{Z}) \times 6 \mathbb{Z}$ is zero
(d) The ring $6 \mathbb{Z} \times 6 \mathbb{Z}$ is an integral domain.
10. Let W be a vector space over \mathbb{R} and let $T: \mathbb{R}^{6} \rightarrow W$ be a linear transformation such that $S=\left\{T e_{2}, T e_{4}, T e_{6}\right\}$ spans W. Which one of the following must be TRUE?
(a) S is a basis of W
(b) $T\left(\mathbb{R}^{6}\right) \neq W$
(c) $\left\{T e_{1}, T e_{3}, T e_{5}\right\}$ spans W
(d) $\operatorname{ker}(T)$ contains more than one element
11. Consider the following subspace of \mathbb{R}^{3}
$W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 x+2 y+z=0,3 x+3 y-2 z=0, x+y-3 z=0\right\}$.
The dimension of W is
(a) 0
(b) 1
(c) 2
(d) 3
12. Let P be a 4×4 matrix whose determinant is 10 . The determinant of the matrix $-3 P$ is
(a) -810
(b) -30
(c) 30
(d) 810
13. If the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $x=3$, then the series $\sum_{n=0}^{\infty} a_{n} x^{n}$
(a) converges absolutely for $x=-2$
(b) converges but not absolutely for $x=-1$
(c) converges but not absolutely for $x=1$
(d) diverges for $x=-2$
14. If $Y=\left\{\left.\frac{x}{1+|x|} \right\rvert\, x \in \mathbb{R}\right\}$, then the set of all limit points of Y is
(a) $(-1,1)$
(b) $(-1,1]$
(c) $[0,1]$
(d) $[-1,1]$
15. If C is a smooth curve in \mathbb{R}^{3} from $(0,0,0)$ to $(2,1,-1)$, then the value of

$$
\int_{C}(2 x y+z) d x+\left(z+x^{2}\right) d y+(x+y) d z
$$

is
(a) -1
(b) 0
(c) 1
(d) 2
16. (a) Examine whether the following series is convergent:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n!}{1 \cdot 3 \cdot 5 \cdots(2 n-1)} . \tag{6}
\end{equation*}
$$

(b) For each $x \in \mathbb{R}$, let $[x]$ denote the greatest integer less than or equal to x. Further, for a fixed $\beta \in(0,1)$, define $a_{n}=\frac{1}{n}[n \beta]+n^{2} \beta^{n}$ for all $n \in \mathbb{N}$. Show that the sequence $\left\{a_{n}\right\}$ converges to β.
17. (a) Evaluate $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sqrt{4+t^{3}} d t}{x^{2}}$.
(b) For $a, b \in \mathbb{R}$ with $a<b$, let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and twice differentiable on (a, b). Further assume that the graph of f intersects the straight line segment joining the points $(a, f(a))$ and $(b, f(b))$ at a point $(c, f(c))$ for $a<c<b$. Show that there exists a real number $\xi \in(a, b)$ such that $f^{\prime \prime}(\xi)=0$.
18. (a) Show that the point $(0,0)$ is neither a point of local minimum nor a point of local maximum for the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=3 x^{4}-4 x^{2} y+y^{2}$ for $(x, y) \in \mathbb{R}^{2}$.
(b) Find all the critical points of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x^{3}+y^{3}-3 x-12 y+40$ for $(x, y) \in \mathbb{R}^{2}$. Also, examine whether the function f attains a local maximum or a local minimum at each of these critical points.
19. (a) Evaluate $\int_{x=0}^{4} \int_{y=\sqrt{4-x}}^{2} e^{y^{3}} d y d x$.
(b) Using multiple integral, find the volume of the solid region in \mathbb{R}^{3} bounded above by the hemisphere $z=1+\sqrt{1-x^{2}-y^{2}}$ and bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$.
20. Find the area of the portion of the surface $z=x^{2}-y^{2}$ in \mathbb{R}^{3} which lies inside the solid cylinder $x^{2}+y^{2} \leq 1$.
21. Let $y(x)$ be the solution of the differential equation $\frac{d^{2} y}{d x^{2}}-y=0$ such that $y(0)=2$ and $y^{\prime}(0)=2 \alpha$. Find all values of $\alpha \in[0,1)$ such that the infimum of the set $\{y(x) \mid x \in \mathbb{R}\}$ is greater than or equal to 1 .
22. (a) Assume that $y_{1}(x)=x$ and $y_{2}(x)=x^{3}$ are two linearly independent solutions of the homogeneous differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=0$. Using the method of variation of parameters, find a particular solution of the differential equation
$x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=x^{5}$
(b) Solve the differential equation $\frac{d y}{d x}+\frac{5 y}{6 x}=\frac{5 x^{4}}{y^{5}}$ subject to the condition $y(1)=1$
23. (a) Let $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ be the position vector field in \mathbb{R}^{3} and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Show that $\vec{\nabla} \times\{f(|\vec{r}|) \vec{r}\}=\overrightarrow{0}$ for $\vec{r} \neq \overrightarrow{0}$.
(b) Let W be the region inside the solid cylinder $x^{2}+y^{2} \leq 4$ between the plane $z=0$ and the paraboloid $z=x^{2}+y^{2}$. Let S be the boundary of W. Using Gauss's divergence theorem, evaluate $\iint_{S} \vec{F} \cdot \hat{n} d S$, where $\vec{F}=\left(x^{2}+y^{2}-4\right) \hat{i}+(3 x y) \hat{j}+\left(2 x z+z^{2}\right) \hat{k}$ and \hat{n} is the outward unit normal vector to S. (9)
24. (a) Let G be a finite group whose order is not divisible by 3 . Show that for every $g \in G$, there exists an $h \in G$ such that $g=h^{3}$.
(b) Let A be the group of all rational numbers under addition, B be the group of all non-zero rational numbers under multiplication and C the group of all positive rational numbers under multiplication. Show that no two of the groups A, B and C are isomorphic.
25. (a) Let I be an ideal of a commutative ring R. Define

$$
A=\left\{r \in R \mid r^{n} \in I \text { for some } \mathrm{n} \in \mathbb{N}\right\} .
$$

Show that A is an ideal of R.
(b) Let F be a field. For each $p(x) \in F[x]$ (the polynomial ring in x over F) define $\varphi: F[x] \rightarrow F \times F$ by $\varphi(p(x))=(p(0), p(1))$.
(i) Prove that φ is a ring homomorphism
(ii) Prove that the quotient ring $F[x] /\left(x^{2}-x\right)$ is isomorphic to the ring $F \times F$.
26. (a) Let P, D and A be real square matrices of the same order such that P is invertible. D is diagonal and $D=P A P^{-1}$. If $A^{\mathrm{n}}=0$ for some $n \in \mathbb{N}$, then show that $A=0$.
(b) Let $T: V \rightarrow W$ be a linear transformation of vector spaces. Prove the following:
(1) If $\left\{v_{1}, v_{2}, \ldots . ., v_{k}\right\}$ spans V and T is onto, then $\left\{T v_{1}, T v_{2} \ldots . T v_{k}\right\}$ spans W.
(2) If $\left\{v_{1}, v_{2}, \ldots . ., v_{k}\right\}$ is linearly independent in V and T is one-one, then $\left\{T v_{1}, T v_{2} \ldots . . T v_{k}\right\}$ is linearly independent in W.
(3) If $\left\{v_{1}, v_{2} \ldots . . v_{k}\right\}$ is a basis of V, and T is bijective, then $\left\{T v_{1}, T v_{2} \ldots . T v_{k}\right\}$ is a basis of W. (9)
27. (a) Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis of vector space V over \mathbb{R}. Let $T: V \rightarrow V$ be the linear transformation determined by $T v_{1}=v_{1}, T v_{2}=v_{2}-v_{3}$ and $T v_{3}=v_{2}+2 v_{3}$. Find the matrix of the transformation T with $\left\{v_{1}+v_{2}, v_{1}-v_{2}, v_{3}\right\}$ as the basis of both the domain and co-domain of T.
(b) Let W be a three dimensional vector space over \mathbb{R} and let $S: W \rightarrow W$ be a linear transformation. Further, assume that every non-zero vector of W is an eigen-vector of S. Prove that there exists an $\alpha \in \mathbb{R}$, such that $S=\alpha I$, where $I: W \rightarrow W$ is the identity transformation.
28. (a) Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f(x)=x^{2}$ for $x \in \mathbb{R}$, is not uniformly continuous.
(b) For each $n \in \mathbb{N}$, let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly continuous function. If the sequence $\left\{f_{n}\right\}$ converges uniformly on \mathbb{R} to a function $f: \mathbb{R} \rightarrow \mathbb{R}$, then show that f is uniformly continuous. (9)
29. (a) Let A be a nonempty bounded subset of \mathbb{R}. Show that $\{x \in \mathbb{R} \mid x \geq a$ for all $a \in A\}$ is closed subset of \mathbb{R}.
(b) Let $\left\{x_{n}\right\}$ be a sequence in \mathbb{R} such that $\left|x_{n+1}-x_{n}\right|<\frac{1}{n^{2}}$ for all $n \in \mathbb{N}$. Show that the sequence $\left\{x_{n}\right\}$ is convergent.

