(CODE-A)

(OBJECTIVE QUESTIONS)
Q.1-Q.10: Only one option is correct for each question. Each question carries (+2) marks for correct answer and (-0.5) marks for incorrect answer.

1. Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 3 & -1 & 1 \\ 1 & 5 & 3\end{array}\right]$ and V be the vector space of all $X \in \mathbb{R}^{3}$ such that $A X=0$. Then $\operatorname{dim}(V)$ is
(a) 0
(b) 1
(c) 2
(d) 3
2. The value of n for which the divergence of the function $\vec{F}=\frac{\vec{r}}{|\vec{r}|^{n}}, \vec{r}=x \hat{i}+y \hat{j}+z \hat{k},|\vec{r}| \neq 0$, vanishes is
(a) 1
(b) -1
(c) 3
(d) -3
3. Let A and B be subsets of \mathbb{R}. Which of the following is NOT necessarily true?
(a) $(A \cap B)^{0} \subseteq A^{0} \cap B^{0}$
(b) $A^{0} \cup B^{0} \subseteq(A \cup B)^{0}$
(c) $\bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$
(d) $\bar{A} \cap \bar{B} \subseteq \overline{A \cap B}$
4. Let $[x]$ denote the greatest integer function of x. The value of α for which the function

$$
f(x)=\left\{\begin{array}{cl}
\frac{\sin \left[-x^{2}\right]}{\left[-x^{2}\right]}, & x \neq 0 \text { AREER ENDEAWOUR } \\
\alpha & , x=0
\end{array}\right.
$$

is continuous at $x=0$ is
(a) 0
(b) $\sin (-1)$
(c) $\sin 1$
(d) 1
5. Let the function $f(x)$ be defined by $f(x)= \begin{cases}e^{x}, & x \text { is rational } \\ \mathrm{e}^{1-x}, & x \text { is irrational }\end{cases}$
for x in $(0,1)$. Then
(a) f is continuous at every point in $(0,1)$
(b) f is discontinuous at every point in $(0,1)$
(c) f is discontinuous only at one point in $(0,1)$
(d) f is continuous only at one point in $(0,1)$
6. The value of the integral $\iint_{D} \sqrt{x^{2}+y^{2}} d x d y, D=\left\{(x, y) \in \mathbb{R}^{2} ; x \leq x^{2}+y^{2} \leq 2 x\right\}$ is
(a) 0
(b) $7 / 9$
(c) $14 / 9$
(d) $28 / 9$
7. Let $x_{n}=\left(1-\frac{1}{3}\right)^{2}\left(1-\frac{1}{6}\right)^{2}\left(1-\frac{1}{10}\right)^{2} \ldots\left(1-\frac{1}{\frac{n(n+1)}{2}}\right)^{2}, n \geq 2$. Then $\lim _{n \rightarrow \infty} x_{n}$ is
(a) $\frac{1}{3}$
(b) $\frac{1}{9}$
(c) $\frac{1}{81}$
(d) 0
8. Let p be a prime number. Let G be the group of all 2×2 matrices over \mathbb{Z}_{p} with determinant 1 under matrix multiplication. Then the order of G is
(a) $(p-1) p(p+1)$
(b) $p^{2}(p-1)$
(c) p^{3}
(d) $p^{2}(p-1)+p$
9. Let V be the vector space of all 2×2 matrices over \mathbb{R}. Consider the subspaces

$$
W_{1}=\left\{\left(\begin{array}{cc}
a & -a \\
c & d
\end{array}\right) ; a, c, d \in \mathbb{R}\right\} \text { and } W_{2}=\left\{\left(\begin{array}{cc}
a & b \\
-a & d
\end{array}\right): a, b, d \in \mathbb{R}\right\} .
$$

If $m=\operatorname{dim}\left(W_{1} \cap W_{2}\right)$ and $n=\operatorname{dim}\left(W_{1}+W_{2}\right)$, then the pair (m, n) is
(a) $(2,3)$
(b) $(2,4)$
(c) $(3,4)$
(d) $(1,3)$
10. Let P_{n} be the real vector space of all polynomials of degree at most n. Let $D: P_{n} \rightarrow P_{n-1}$ and $T: P_{n} \rightarrow P_{n+1}$ be the linear transformations defined by
$D\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .+a_{n} x^{n}\right)=a_{1}+2 a_{2} x+\ldots .+n a_{n} x^{n-1}, V O \| R$
$T\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .+a_{n} x^{n}\right)=a_{0} x+a_{1} x^{2}+\ldots . .+a_{n} x^{n+1}$,
respectively. If A is the matrix representation of the transformation $D T-T D: P_{n} \rightarrow P_{n}$ with respect to the standard basis of P_{n}, then the trace of A is
(a) $-n$
(b) n
(c) $n+1$
(d) $-(n+1)$

(FILL IN THE BLANKS)

Q.11-Q.20: Each question carries (+3) marks for correct answer. There is no negative marks.

11. The equation of the curve satisfying $\sin y \frac{d y}{d x}=\cos y(1-x \cos y)$ and passing through the origin is \qquad .
12. Let f be a continuously differentiable function such that $\int_{0}^{2 x^{2}} f(t) d t=e^{\cos x^{2}}$ for all $x \in(0, \infty)$. The value of $f^{\prime}(\pi)$ is \qquad .
13. Let $u=\frac{y^{2}-x^{2}}{x^{2} y^{2}}, v=\frac{z^{2}-y^{2}}{y^{2} z^{2}}$ for $x \neq 0, y \neq 0, z \neq 0$. Let $w=f(u, v)$, where f is a real valued function defined on \mathbb{R}^{2} having continuous first order partial derivatives. The value of $x^{3} \frac{\partial w}{\partial x}+y^{3} \frac{\partial w}{\partial y}+z^{3} \frac{\partial w}{\partial z}$ at the point $(1,2,3)$ is \qquad .
14. The set of points at which the function $f(x, y)=x^{4}+y^{4}-x^{2}-y^{2}+1,(x, y) \in \mathbb{R}^{2}$ attains local maximum is \qquad .
15. Let C be the boundary of the region in the first quadrant bounded by $y=1-x^{2}, x=0$ and $y=0$, oriented counter-clockwise. The value of $\oint_{C}\left(x y^{2} d x-x^{2} y d y\right)$ is \qquad .
16. Let $f(x)=\left\{\begin{array}{cc}0, & -1 \leq x \leq 0 \\ x^{4}, & 0<x \leq 1\end{array}\right.$. If $f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}+\frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$ is the Taylor’s formula for f about $x=0$ with maximum possible value of n, then the value of ξ for $0<x \leq 1$ is \qquad .
17. Let $\vec{F}=2 z \hat{i}+4 x \hat{j}+5 y \hat{k}$, and let C be the curve of intersection of the plane $z=x+4$ and the cylinder $x^{2}+y^{2}=4$, oriented counter-clockwise. The value of $\oint_{C} \vec{F} \cdot d \vec{r}$ is \qquad .
18. Let f and g be the functions from $\mathbb{R} \backslash\{0,1\}$ to \mathbb{R} defined by $f(x)=\frac{1}{x}$ and $g(x)=\frac{x-1}{x}$ for $x \in \mathbb{R} \backslash\{0,1\}$. The smallest group of functions from $\mathbb{R} \backslash\{0,1\}$ to \mathbb{R} containing f and g under composition of functions is isomorphic to \qquad .
19. The orthogonal trajectory of the family of curves $\frac{x^{2}}{2}+y^{2}=c$, which passes through (1, 1) is \qquad .
20. The function to which the power series $\sum_{n=1}^{\infty}(-1)^{n+1} n x^{2 n-2}$ converges is \qquad .

(DESCRIPTIVE QUESTIONS)

Q.21-Q.30: Each question carries (+5) marks.

21. Let $0<a \leq 1, s_{1}=\frac{a}{2}$ and for $n \in \mathbb{N}$, let $s_{n+1}=\frac{1}{2}\left(s_{n}^{2}+a\right)$. Show that the sequence $\left\{s_{n}\right\}$ is convergent, and find its limit.
22. Evaluate $\int_{1 / 4}^{1} \int_{\sqrt{x-x^{2}}}^{\sqrt{x}} \frac{x^{2}-y^{2}}{x^{2}} d y d x$ by changing the order of integration.
23. Find the general solution of the differential equation

$$
x^{2} \frac{d^{3} y}{d x^{3}}+x \frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+6 \frac{y}{x}=\frac{x \ln x+1}{x^{2}}, x>0
$$

24. Let S_{1} be the hemisphere $x^{2}+y^{2}+z^{2}=1, z>0$ and S_{2} be the closed disc $x^{2}+y^{2} \leq 1$ in the $x y$-plane.
Using Gauss' divergence theorem, evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=z^{2} x \hat{i}+\left(\frac{y^{3}}{3}+\tan z\right) \hat{j}+\left(x^{2} z+y^{2}\right) \hat{k}$ and $S=S_{1} \cup S_{2}$.
Also evaluate $\iint_{S_{1}} \vec{F} \cdot d \vec{S}$.
25. Let $f(x, y)=\left\{\begin{array}{cl}\frac{2\left(x^{3}+y^{3}\right)}{x^{2}+2 y} & ,(x, y) \neq(0,0) \\ 0, & (x, y)=(0,0) .\end{array}\right.$

Show that the first order partial derivatives of f with respect to x and y exist at $(0,0)$. Also show that f is not continuous at $(0,0)$.
26. Let A be an $n \times n$ diagonal matrix with characteristic polynomial $(x-a)^{p}(x-b)^{q}$, where a and b are distinct real numbers. Let V be the real vector space of all $n \times n$ matrices B such that $A B=B A$. Determine the dimension of V.
27. Let A be an $n \times n$ real symmetric matrix with n distinct eigenvalues. Prove that there exists an orthogonal matrix P such that $A P=P D$, where D is a real diagonal matrix.
28. Let K be a compact subset of of \mathbb{R} with nonempty interior. Prove that K is of the form $[\mathrm{a}, \mathrm{b}]$ or of the form $[a, b] \backslash \bigcup I_{n}$, where $\left\{I_{n}\right\}$ is a countable disjoint family of open intervals with end points in K.
29. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that f is differentiable in (a, c) and $(c, b), a<c<b$. If $\lim _{x \rightarrow c} f^{\prime}(x)$ exists, then prove that f is differentiable at c and $f^{\prime}(c)=\lim _{x \rightarrow c} f^{\prime}(x)$.
30. Let G be a finite group, and let φ be an automorphism of G such that $\varphi(x)=x$ if and only if $x=e$, where e is the identity element in G. Prove that every $g \in G$ can be represented as $g=x^{-1} \varphi(x)$ for some $x \in G$. Moreover, if $\varphi(\varphi(x))=x$ for every $x \in G$, then show that G is abelian.

