PAPER : IIT-JAM 2013 MATHEMATICS-MA

(CODE-A)

(OBJECTIVE QUESTIONS)

Q.1-Q.10: Only one option is correct for each question. Each question carries (+2) marks for correct answer and (-0.5) marks for incorrect answer.

1.	Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -1 & 1 \\ 1 & 5 & 3 \end{bmatrix}$ and V be the vector space of all $X \in \mathbb{R}^3$ such that $AX = 0$. Then dim(V) is			
	(a) 0	(b) 1	(c) 2	(d) 3
2.	The value of <i>n</i> for which the divergence of the function $\vec{F} = \frac{\vec{r}}{ \vec{r} ^n}$, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $ \vec{r} \neq 0$, vanishes			
	is (a) 1	(b) –1	(c) 3	(d) -3
3.	Let A and B be subsets of \mathbb{R} . Which of the following is NOT necessarily true?			
	(a) $(A \cap B)^0 \subseteq A^0 \cap B^0$ (b) $A^0 \cup B^0 \subseteq (A \cup B)^0$			
	(c) $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$		(d) $\overline{A} \cap \overline{B} \subseteq \overline{A \cap B}$	
4.	Let [x] denote the greatest integer function of x. The value of α for which the function			
	$f(x) = \begin{cases} \frac{\sin[-x^2]}{[-x^2]}, & x \neq 0 \text{ AREER ENDEAVOUR} \\ \alpha, & x = 0 \end{cases}$			
	is continuous at x	= 0 is		
	(a) 0	(b) $\sin(-1)$	(c) sin 1	(d) 1
5.	Let the function $f(x)$ be defined by			
	$f(x) = \begin{cases} e^x, & x \text{ is rational} \\ e^{1-x}, & x \text{ is irrational} \end{cases}$			
	for x in $(0, 1)$. Then			
	(a) f is continuous at every point in (0, 1)			
	(b) f is discontinuous at every point in (0, 1)			
	 (c) f is discontinuous only at one point in (0, 1) (d) f is continuous only at one point in (0, 1) 			
	(a), j a a a a a a a a a a a a a a a a a a			

28/9

6. The value of the integral $\iint_D \sqrt{x^2 + y^2} dx \, dy, D = \{(x, y) \in \mathbb{R}^2; x \le x^2 + y^2 \le 2x\}$ is

7. Let
$$x_n = \left(1 - \frac{1}{3}\right)^2 \left(1 - \frac{1}{6}\right)^2 \left(1 - \frac{1}{10}\right)^2 \dots \left(1 - \frac{1}{\frac{n(n+1)}{2}}\right)^2$$
, $n \ge 2$. Then $\lim_{n \to \infty} x_n$ is

(a) $\frac{1}{3}$ (b) $\frac{1}{9}$ (c) $\frac{1}{81}$ (d) 0

8. Let p be a prime number. Let G be the group of all 2×2 matrices over \mathbb{Z}_p with determinant 1 under matrix multiplication. Then the order of G is

- (a) (p-1)p(p+1)(b) $p^{2}(p-1)$ (c) p^{3} (d) $p^{2}(p-1)+p$
- 9. Let V be the vector space of all 2×2 matrices over \mathbb{R} . Consider the subspaces

$$W_{1} = \left\{ \begin{pmatrix} a & -a \\ c & d \end{pmatrix}; a, c, d \in \mathbb{R} \right\} \text{ and } W_{2} = \left\{ \begin{pmatrix} a & b \\ -a & d \end{pmatrix}; a, b, d \in \mathbb{R} \right\}.$$

If $m = \dim(W_{1} \cap W_{2})$ and $n = \dim(W_{1} + W_{2})$, then the pair (m, n) is
(a) (2, 3) (b) (2, 4) (c) (3, 4) (d) (1, 3)
Let P be the real vector space of all polynomials of degree at most n . Let

10. Let P_n be the real vector space of all polynomials of degree at most n. Let $D: P_n \to P_{n-1}$ and $T: P_n \to P_{n+1}$ be the linear transformations defined by

$$D(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_1 + 2a_2x + \dots + na_nx^{n-1},$$

$$T(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_0x + a_1x^2 + \dots + a_nx^{n+1},$$

respectively. If A is the matrix representation of the transformation $DT - TD : P_n \to P_n$ with respect to the standard basis of P_n , then the trace of A is (a) -n (b) n (c) n + 1 (d) -(n+1)

(FILL IN THE BLANKS)

Q.11-Q.20: Each question carries (+3) marks for correct answer. There is no negative marks.

- 11. The equation of the curve satisfying $\sin y \frac{dy}{dx} = \cos y(1 x \cos y)$ and passing through the origin is_____.
- 12. Let f be a continuously differentiable function such that $\int_{0}^{2x^{2}} f(t)dt = e^{\cos x^{2}}$ for all $x \in (0, \infty)$. The value of $f'(\pi)$ is_____.

- 13. Let $u = \frac{y^2 x^2}{x^2 y^2}$, $v = \frac{z^2 y^2}{y^2 z^2}$ for $x \neq 0$, $y \neq 0$, $z \neq 0$. Let w = f(u, v), where f is a real valued function defined on \mathbb{R}^2 having continuous first order partial derivatives. The value of $x^3 \frac{\partial w}{\partial x} + y^3 \frac{\partial w}{\partial y} + z^3 \frac{\partial w}{\partial z}$ at the point (1, 2, 3) is_____.
- 14. The set of points at which the function $f(x, y) = x^4 + y^4 x^2 y^2 + 1$, $(x, y) \in \mathbb{R}^2$ attains local maximum is_____.
- 15. Let *C* be the boundary of the region in the first quadrant bounded by $y = 1 x^2$, x = 0 and y = 0, oriented counter-clockwise. The value of $\oint_C (xy^2 dx x^2 y dy)$ is_____.
- 16. Let $f(x) = \begin{cases} 0, & -1 \le x \le 0\\ x^4, & 0 < x \le 1 \end{cases}$. If $f(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$ is the Taylor's formula for f

about x = 0 with maximum possible value of *n*, then the value of ξ for $0 < x \le 1$ is_____

- 17. Let $\vec{F} = 2z\hat{i} + 4x\hat{j} + 5y\hat{k}$, and let *C* be the curve of intersection of the plane z = x + 4 and the cylinder $x^2 + y^2 = 4$, oriented counter-clockwise. The value of $\oint_C \vec{F} \cdot d\vec{r}$ is_____.
- 18. Let f and g be the functions from $\mathbb{R}\setminus\{0,1\}$ to \mathbb{R} defined by $f(x) = \frac{1}{x}$ and $g(x) = \frac{x-1}{x}$ for $x \in \mathbb{R}\setminus\{0,1\}$. The smallest group of functions from $\mathbb{R}\setminus\{0,1\}$ to \mathbb{R} containing f and g under composition of functions is isomorphic to _____.
- 19. The orthogonal trajectory of the family of curves $\frac{x^2}{2} + y^2 = c$, which passes through (1, 1) is_____.
- **20.** The function to which the power series $\sum_{n=1}^{\infty} (-1)^{n+1} n x^{2n-2}$ converges is_____.

(DESCRIPTIVE QUESTIONS)

Q.21-Q.30: Each question carries (+5) marks.

- 21. Let $0 < a \le 1$, $s_1 = \frac{a}{2}$ and for $n \in \mathbb{N}$, let $s_{n+1} = \frac{1}{2}(s_n^2 + a)$. Show that the sequence $\{s_n\}$ is convergent, and find its limit.
- 22. Evaluate $\int_{1/4}^{1} \int_{\sqrt{x-x^2}}^{\sqrt{x}} \frac{x^2 y^2}{x^2} dy dx$ by changing the order of integration.
- 23. Find the general solution of the differential equation

$$x^{2}\frac{d^{3}y}{dx^{3}} + x\frac{d^{2}y}{dx^{2}} - 6\frac{dy}{dx} + 6\frac{y}{x} = \frac{x\ln x + 1}{x^{2}}, x > 0$$

24. Let S_1 be the hemisphere $x^2 + y^2 + z^2 = 1$, z > 0 and S_2 be the closed disc $x^2 + y^2 \le 1$ in the *xy*-plane.

Using Gauss' divergence theorem, evaluate
$$\iint_{S} \vec{F} \cdot d\vec{S}$$
, where
$$\vec{F} = z^{2}x\hat{i} + \left(\frac{y^{3}}{3} + \tan z\right)\hat{j} + (x^{2}z + y^{2})\hat{k} \text{ and } S = S_{1} \cup S_{2}.$$
Also evaluate $\iint_{S} \vec{F} \cdot d\vec{S}$.

Also evaluate $\iint_{S_1} \vec{F} \cdot d\vec{S}$

25. Let
$$f(x, y) = \begin{cases} \frac{2(x^3 + y^3)}{x^2 + 2y}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0). \end{cases}$$

Show that the first order partial derivatives of f with respect to x and y exist at (0, 0). Also show that f is not continuous at (0, 0).

- 26. Let A be an $n \times n$ diagonal matrix with characteristic polynomial $(x-a)^p (x-b)^q$, where a and b are distinct real numbers. Let V be the real vector space of all $n \times n$ matrices B such that AB = BA. Determine the dimension of V.
- 27. Let *A* be an $n \times n$ real symmetric matrix with *n* distinct eigenvalues. Prove that there exists an orthogonal matrix *P* such that AP = PD, where *D* is a real diagonal matrix.
- **28.** Let *K* be a compact subset of of \mathbb{R} with nonempty interior. Prove that *K* is of the form [*a*, *b*] or of the form $[a, b] \setminus \bigcup I_n$, where $\{I_n\}$ is a countable disjoint family of open intervals with end points in *K*.
- **29.** Let $f : [a, b] \to \mathbb{R}$ be a continuous function such that *f* is differentiable in (a, c) and (c, b), a < c < b. If $\lim_{x \to c} f'(x)$ exists, then prove that *f* is differentiable at *c* and $f'(c) = \lim_{x \to c} f'(x)$.
- **30.** Let G be a finite group, and let φ be an automorphism of G such that $\varphi(x) = x$ if and only if x = e, where e is the identity element in G. Prove that every $g \in G$ can be represented as $g = x^{-1}\varphi(x)$ for some $x \in G$. Moreover, if $\varphi(\varphi(x)) = x$ for every $x \in G$, then show that G is abelian.

4

**** END ****