(CODE-A)

PART-I

(OBJECTIVE QUESTIONS)
Q.1-Q10: Only one option is correct. Each question carries (+1) mark for correct answer and ($-1 / 3$) marks for wrong answer.

1. Let $f(x)=\left|x^{2}-25\right|$ for all $x \in \mathbb{R}$. The total number of points of \mathbb{R} at which f attains a local extremum (minimum or maximum) is
(a) 1
(b) 2
(c) 3
(d) 4
2. The coefficient of $(x-1)^{2}$ in the Taylor series expansion of $f(x)=x e^{x}(x \in \mathbb{R})$ about the point $x=1$ is
(a) $\frac{e}{2}$
(b) $2 e$
(c) $\frac{3 e}{2}$
(d) $3 e$
3. Let $f(x, y)=\sum_{k=1}^{10}\left(x^{2}-y^{2}\right)^{k}$ for all $(x, y) \in \mathbb{R}^{2}$. Then for all $(x, y) \in \mathbb{R}^{2}$,
(a) $x \frac{\partial f}{\partial x}(x, y)-y \frac{\partial f}{\partial y}(x, y)=0$
(b) $x \frac{\partial f}{\partial x}(x, y)+y \frac{\partial f}{\partial y}(x, y)=0$
(c) $y \frac{\partial f}{\partial x}(x, y)-x \frac{\partial f}{\partial y}(x, y)=0$
(d) $y \frac{\partial f}{\partial x}(x, y)+x \frac{\partial f}{\partial y}(x, y)=0$
4. For $a, b, c \in \mathbb{R}$, if the differential equation $\left(a x^{2}+b x y+y^{2}\right) d x+\left(2 x^{2}+c x y+y^{2}\right) d y=0$ is exact, then
(a) $b=2, c=2 a$
(b) $b=4, c=2$
(c) $b=2, c=4$
(d) $b=2, a=2 c$
5. If $f(x, y, z)=x^{2} y+y^{2} z+z^{2} x$ for all $(x, y, z) \in \mathbb{R}^{3}$ and $\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}$, then the value of $\nabla \cdot(\nabla \times \nabla f)+\nabla \cdot(\nabla f)$ at $(1,1,1)$ is
(a) 0
(b) 3
(c) 6
(d) 9
6. The radius of convergence of the power series $\sum_{n=0}^{\infty} 2^{2 n} x^{n^{2}}$ is
(a) $\frac{1}{4}$
(b) 1
(c) 2
(d) 4
7. Let G be a group of order 17. The total number of non-isomorphic subgroups of G is
(a) 1
(b) 2
(c) 3
(d) 17
8. Which one of the following is a subspace of the vector space \mathbb{R}^{3} ?
(a) $\left\{(x, y, z) \in \mathbb{R}^{3}: x+2 y=0,2 x+3 z=0\right\}$
(b) $\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x+3 y+4 z-3=0, z=0\right\}$
(c) $\left\{(x, y, z) \in \mathbb{R}^{3}: x \geq 0, y \geq 0\right\}$
(d) $\left\{(x, y, z) \in \mathbb{R}^{3}: x-1=0, y=0\right\}$
9. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T(x, y, z)=(x+y, y+z, z+x)$ for all $(x, y, z) \in \mathbb{R}^{3}$. Then
(a) rank $(T)=0$, nullity $(T)=3$
(b) rank $(T)=2$, nullity $(T)=1$
(c) $\operatorname{rank}(T)=1$, nullity $(T)=2$
(d) rank $(T)=3$, nullity $(T)=0$
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $x+\int_{0}^{x} f(t) d t=e^{x}-1$ for all $x \in \mathbb{R}$. Then the set $\{x \in \mathbb{R}: 1 \leq f(x) \leq 2\}$ is the interval
(a) $[\log 2, \log 3]$
(b) $[2 \log 2,3 \log 3]$
(c) $\left[e-1, e^{2}-1\right]$
(d) $\left[0, e^{2}\right]$

Q.11-Q.35: Only one option is correct. Each question carries (+2) marks for correct answer

 and (-2/3) marks for wrong answer.11. The system of linear equations

$$
\begin{aligned}
x-y+2 z & =b_{1} \\
x+2 y-z & =b_{2} \\
2 y-2 z & =b_{3}
\end{aligned}
$$

is inconsistent when (b_{1}, b_{2}, b_{3}) equals
(a) $(2,2,0)$
(b) $(0,3,2)$
(c) $(2,2,1)$
(d) $(2,-1,-2)$
12. Let $A=\left[\begin{array}{ccc}a & -1 & 4 \\ 0 & b & 7 \\ 0 & 0 & 3\end{array}\right]$ be a matrix with real entries. If the sum and the product of all the eigenvalues of A are 10 and 30 respectively, then $a^{2}+b^{2}$ equals
(a) 29
(b) 40
(c) 58
(d) 65
13. Consider the subspace $W=\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right) \in \mathbb{R}^{10}: x_{n}=x_{n-1}+x_{n-2}\right.$ for $\left.3 \leq n \leq 10\right\}$ of the vector space \mathbb{R}^{10}. The dimension of W is
(a) 2
(b) 3
(c) 9
(d) 10
14. Let $y_{1}(x)$ and $y_{2}(x)$ be two linearly independent solutions of the differential equation $x^{2} y^{\prime \prime}(x)-2 x y^{\prime}(x)-4 y(x)=0$ for $x \in[1,10]$.
Consider the Wronskian $W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)$. If $W(1)=1$, then $W(3)-W(2)$ equals
(a) 1
(b) 2
(c) 3
(d) 5
15. The equation of the curve passing through the point $\left(\frac{\pi}{2}, 1\right)$ and having slope $\frac{\sin (x)}{x^{2}}-\frac{2 y}{x}$ at each point (x, y) with $x \neq 0$ is
(a) $-x^{2} y+\cos (x)=\frac{-\pi^{2}}{4}$
(b) $x^{2} y+\cos (x)=\frac{\pi^{2}}{4}$
(c) $x^{2} y-\sin (x)=\frac{\pi^{2}}{4}-1$
(d) $x^{2} y+\sin (x)=\frac{\pi^{2}}{4}+1$
16. The value of $\alpha \in \mathbb{R}$ for which the curves $x^{2}+\alpha y^{2}=1$ and $y=x^{2}$ intersect orthogonally is
(a) -2
(b) $\frac{-1}{2}$
(c) $\frac{1}{2}$
(d) 2
17. Let $x_{n}=2^{2 n}\left(1-\cos \left(\frac{1}{2^{n}}\right)\right)$ for all $n \in \mathbb{N}$. Then the sequence $\left\{x_{n}\right\}$
(a) does NOT converges
(b) converges to 0
(c) converges to $\frac{1}{2}$
(d) converges to $\frac{1}{4}$
18. Let $\left\{x_{n}\right\}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=c$, where c is a positive real number. Then the sequence $\left\{\frac{x_{n}}{n}\right\}$
(a) is NOT bounded
(b) is bounded but NOT convergent
(c) converges to c
(d) converges to 0
19. Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be two series, where $a_{n}=\frac{(-1)^{n} n}{2^{n}}, b_{n}=\frac{(-1)^{n}}{\log (n+1)}$ for all $n \in \mathbb{N}$. Then
(a) both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are absolutely convergent
(b) $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent but $\sum_{n=1}^{\infty} b_{n}$ is conditionally convergent
(c) $\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent but $\sum_{n=1}^{\infty} b_{n}$ is absolutely convergent
(d) both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are conditionally convergent
20. The set $\left\{\frac{x^{2}}{1+x^{2}}: x \in \mathbb{R}\right\}$ is
(a) connected but NOT compact in \mathbb{R}
(b) compact but NOT connected in \mathbb{R}
(c) compact and connected \mathbb{R}
(d) neither compact nor connected in \mathbb{R}
21. The set of all limit points of the set $\left\{\frac{2}{x+1}: x \in(-1,1)\right\}$ in \mathbb{R} is
(a) $[1, \infty)$
(b) $(1, \infty)$
(c) $[-1,1]$
(d) $[-1, \infty)$
22. Let $S=[0,1] \cup[2,3)$ and let $f: S \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}2 x & \text { if } \\ x \in[0,1], \\ 8-2 x & \text { if } \\ x \in[2,3) .\end{cases}$ If $T=\{f(x): x \in S\}$, then the inverse function $f^{-1}: T \rightarrow S$
(a) does NOT exist
(b) exists and is continuous
(c) exists and is NOT continuous
(d) exists and is monotonic
23. Let $f(x)=x^{3}+x$ and $g(x)=x^{3}-x$ for all $x \in \mathbb{R}$. If f^{-1} denotes the inverse function of f, then the derivative of the composite function $g o f^{-1}$ at the point 2 is
(a) $\frac{2}{13}$
(b) $\frac{1}{2}$
(c) $\frac{11}{13}$
(d) $\frac{11}{4}$
24. For all $(x, y) \in \mathbb{R}^{2}$, let $f(x, y)= \begin{cases}x & \text { if } y=0, \\ x-y^{3} \sin (1 / y) & \text { if } y \neq 0 .\end{cases}$

Then at the point $(0,0)$,
(a) f is NOT continuous
(b) f is continuous but NOT differentiable
(c) $\frac{\partial f}{\partial x}$ exists but $\frac{\partial f}{\partial y}$ does NOT exist
(d) f is differentiable
25. For all $(x, y) \in \mathbb{R}^{2}$, let $f(x, y)= \begin{cases}\frac{x}{|x|} \sqrt{x^{2}+y^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0 .\end{cases}$

Then $\frac{\partial f}{\partial x}(0,0)+\frac{\partial f}{\partial y}(0,0)$ equals
(a) -1
(b) 0
(c) 1
(d) 2
26. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function with continuous derivative such that $f(\sqrt{2})=2$ and $f(x)=\lim _{t \rightarrow 0} \frac{1}{2 t} \int_{x-t}^{x+t} s f^{\prime}(s) d s$ for all $x \in \mathbb{R}$. Then $f(3)$ equals
(a) $\sqrt{3}$
(b) $3 \sqrt{2}$
(c) $3 \sqrt{3}$
(d) 9
27. The value of $\int_{x=0}^{1} \int_{y=0}^{x^{2}} \int_{z=0}^{y}(y+2 z) d z d y d x$ is
(a) $\frac{1}{53}$
(b) $\frac{2}{21}$
(c) $\frac{1}{6}$
(d) $\frac{5}{3}$
28. If C is a smooth curve in \mathbb{R}^{3} from $(-1,0,1)$ to $(1,1,-1)$, then the value of $\int_{C}\left(2 x y+z^{2}\right) d x+\left(x^{2}+z\right) d y+(y+2 x z) d z$ is
(a) 0
(b) 1
(c) 2
(d) 3
29. Let C be the boundary of the region $R=\left\{(x, y) \in \mathbb{R}^{2}:-1 \leq y \leq 1,0 \leq x \leq 1-y^{2}\right\}$ oriented in the counterclockwise direction. Then the value of $\oint_{C} y d x+2 x d y$ is
(a) $\frac{-4}{3}$
(b) $\frac{-2}{3}$
(c) $\frac{2}{3}$
(d) $\frac{4}{3}$
30. Let G be a cyclic group of order 24. The total number of group isomorphisms of G onto itself is
(a) 7
(b) 8
(c) 17
(d) 24
31. Let S_{n} be the group of all permutations on the set $\{1,2, \ldots, n\}$ under the composition of mappings. For $n>2$, if H is the smallest subgroup of S_{n} containing the transposition $(1,2)$ and the cycle $(1,2, \ldots, n)$, then
(a) $H=S_{n}$
(b) H is abelian
(c) the index of H in S_{n} is 2
(d) H is cyclic
32. Let S be the oriented surface $x^{2}+y^{2}+z^{2}=1$ with the unit normal n pointing outward. For the vector field $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, the value of $\iint_{S} \mathbf{F} . \mathbf{n} d S$ is
(a) $\frac{\pi}{3}$
(b) 2π
(c) $\frac{4 \pi}{3}$
(d) 4π
33. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}\left(x^{2}\right)=1-x^{3}$ for all $x>0$ and $f(1)=0$. Then $f(4)$ equals
(a) $\frac{-47}{5}$
(b) $\frac{-47}{10}$
(c) $\frac{-16}{5}$
(d) $\frac{-8}{5}$
34. Which one of the following conditions on a group G implies that G is abelian?
(a) The order of G is p^{3} for some prime p
(b) Every proper subgroup of G is cyclic
(c) Every subgroup of G is normal in G
(d) The function $f: G \rightarrow G$, defined by $f(x)=x^{-1}$ for all $x \in G$, is a homomorphism
35. Let $S=\left\{x \in \mathbb{R}: x^{6}-x^{5} \leq 100\right\}$ and $T=\left\{x^{2}-2 x: x \in(0, \infty)\right\}$. The set $S \cap T$ is
(a) closed and bounded in \mathbb{R}
(b) closed but NOT bounded in \mathbb{R}
(c) bounded but NOT closed in \mathbb{R}
(d) neither closed nor bounded in \mathbb{R}

PART-II
 (DESCRIPTIVE QUESTIONS)

Q.36-Q. 43 carry five marks each.

36. Find all the critical points of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=x^{3}+x y+y^{3}$ for all $(x, y) \in \mathbb{R}^{2}$. Also, examine whether the function f attains a local maximum or a local minimum at each of these critical points.
37. Given that there is a common solution to the following equations:

$$
\begin{aligned}
& \mathbf{P}: y^{\prime}+2 y=e^{x} y^{2}, y(0)=1, \\
& \mathbf{Q}: y^{\prime \prime}-2 y^{\prime}+\alpha y=0,
\end{aligned}
$$

find the value of α and hence find the general solution of \mathbf{Q}.
38. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that $f\left(\frac{1}{2^{n}}\right)=0$ for all $n \in \mathbb{N}$. Show that $f^{\prime}(0)=0=f^{\prime \prime}(0)$.
39. Let A be an $n \times n$ matrix with real entries such that $A^{2}=A$. If I denotes the $n \times n$ identity matrix, then show that $\operatorname{rank}(A-I)=$ nullity (A).
40. Evaluate $\iint_{S} \frac{x y}{\sqrt{1+2 x^{2}}} d S$, where the surface $S=\left\{\left(x, y, x^{2}+y\right) \in \mathbb{R}^{3}: 0 \leq x \leq y, x+y \leq 1\right\}$.
41. Let $f:(0,1) \rightarrow \mathbb{R}$ be a differentiable function such that $\left|f^{\prime}(x)\right| \leq 5$ for all $x \in(0,1)$. Show that the sequence $\left\{f\left(\frac{1}{n+1}\right)\right\}$ converges in \mathbb{R}.
42. Let H be a subgroup of the group $(\mathbb{R},+)$ such that $H \cap[-1,1]$ is a finite set containing a nonzero element. Show that H is cyclic.
43. If K is a nonempty closed subset of \mathbb{R}, then show that the set $\{x+y: x \in K, y \in[1,2]\}$ is closed in \mathbb{R}.

