PAPER : IIT-JAM 2014 MATHEMATICS-MA

(CODE-A)

PART-I (OBJECTIVE QUESTIONS)

Q.1-Q10: Only one option is correct. Each question carries (+1) mark for correct answer and (-1/3) marks for wrong answer.

1.	Let $f(x) = x^2 - 25 $ for all $x \in \mathbb{R}$. The total number of points of \mathbb{R} at which f attains a local extremum (minimum or maximum) is				
	(a) 1	(b) 2	(c) 3	(d) 4	
2.	The coefficient of $(x-1)^2$ in the Taylor series expansion of $f(x) = xe^x (x \in \mathbb{R})$ about the			$e^{x}(x \in \mathbb{R})$ about the point	
	x = 1 is				
	(a) $\frac{e}{2}$	(b) 2 <i>e</i>	(c) $\frac{3e}{2}$	(d) 3 <i>e</i>	
3.	Let $f(x, y) = \sum_{k=1}^{10} (x^2 - y^2)^k$ for all $(x, y) \in \mathbb{R}^2$. Then for all $(x, y) \in \mathbb{R}^2$,				
	(a) $x \frac{\partial f}{\partial x}(x, y) - y \frac{\partial f}{\partial y}(x, y)$) = 0	(b) $x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial x}(x, y)$	$\frac{\partial f}{\partial y}(x,y) = 0$	
	(c) $y \frac{\partial f}{\partial x}(x, y) - x \frac{\partial f}{\partial y}(x, y)$) = 0	(d) $y \frac{\partial f}{\partial x}(x, y) + x \frac{\partial f}{\partial x}(x, y)$	$\frac{\partial f}{\partial y}(x, y) = 0$	
4.	For $a, b, c \in \mathbb{R}$, if the diften	ferential equation $(ax^2 +$	$-bxy+y^2)dx+(2x^2-bxy$	$(+cxy + y^2)dy = 0$ is exact,	
	(a) $b = 2, c = 2a$	(b) $b = 4, c = 2$	(c) $b = 2, c = 4$	(d) $b = 2, a = 2c$	
5.	If $f(x, y, z) = x^2 y + y^2 z + y^2 $	$z^2 x$ for all $(x, y, z) \in \mathbb{R}^3$	and $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j}$	$\mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}$, then the value of	
	$\nabla \cdot (\nabla \times \nabla f) + \nabla \cdot (\nabla f)$ at $(1, 1, 1)$ is				
	(a) 0	(b) 3	(c) 6	(d) 9	
6.	The radius of convergence of the power series $\sum_{n=0}^{\infty} 2^{2n} x^{n^2}$ is				
	(a) $\frac{1}{4}$	(b) 1	(c) 2	(d) 4	
7.	Let G be a group of order 17. The total number of non-isomorphic subgroups of G is				
	(a) 1	(b) 2	(c) 3	(d) 17	
8.	Which one of the following	hich one of the following is a subspace of the vector space \mathbb{R}^3 ?			
	(a) $\{(x, y, z) \in \mathbb{R}^3 : x + 2y\}$	= 0, 2x + 3z = 0	(b) $\{(x, y, z) \in \mathbb{R}^3 :$	2x + 3y + 4z - 3 = 0, z = 0	
	(c) { $(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0$ }		(d) { $(x, y, z) \in \mathbb{R}^3 : x - 1 = 0, y = 0$ }		

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y, z) = (x + y, y + z, z + x) for all 9. $(x, y, z) \in \mathbb{R}^3$. Then (a) rank (T) = 0, nullity (T) = 3(b) rank (T) = 2, nullity (T) = 1(c) rank (T) = 1, nullity (T) = 2(d) rank (T) = 3, nullity (T) = 0Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $x + \int_{\Omega} f(t) dt = e^x - 1$ for all $x \in \mathbb{R}$. Then the set 10. $\{x \in \mathbb{R} : 1 \le f(x) \le 2\}$ is the interval (a) $[\log 2, \log 3]$ (b) $[2 \log 2, 3 \log 3]$ (c) $[e - 1, e^2 - 1]$ (d) $[0, e^2]$ Q.11-Q.35: Only one option is correct. Each question carries (+2) marks for correct answer and (-2/3) marks for wrong answer. 11. The system of linear equations $x - y + 2z = b_1$ $x + 2y - z = b_2$ $2y - 2z = b_3$ is inconsistent when (b_1, b_2, b_3) equals (c) (2, 2, 1) (d) (2, -1, -2) (a) (2, 2, 0) (b) (0, 3, 2) Let $A = \begin{bmatrix} a & -1 & 4 \\ 0 & b & 7 \\ 0 & 0 & 3 \end{bmatrix}$ be a matrix with real entries. If the sum and the product of all the eigenvalues 12. of A are 10 and 30 respectively, then $a^2 + b^2$ equals (a) 29 (b) 40 (c) 58 (d) 65 Consider the subspace $W = \{(x_1, x_2, ..., x_{10}) \in \mathbb{R}^{10} : x_n = x_{n-1} + x_{n-2} \text{ for } 3 \le n \le 10\}$ of the vector space 13. \mathbb{R}^{10} . The dimension of W is (a) 2 (c) 9(b) 3 (d) 10 Let $y_1(x)$ and $y_2(x)$ be two linearly independent solutions of the differential equation 14. $x^{2}y''(x) - 2xy'(x) - 4y(x) = 0$ for $x \in [1, 10]$. Consider the Wronskian $W(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x)$. If W(1) = 1, then W(3) - W(2) equals (a) 1 (c) 3(b) 2 (d) 5 The equation of the curve passing through the point $\left(\frac{\pi}{2},1\right)$ and having slope $\frac{\sin(x)}{x^2} - \frac{2y}{x}$ at each 15. point (x, y) with $x \neq 0$ is (a) $-x^2y + \cos(x) = \frac{-\pi^2}{4}$ (b) $x^2 y + \cos(x) = \frac{\pi^2}{4}$

(c)
$$x^2 y - \sin(x) = \frac{\pi^2}{4} - 1$$
 (d) $x^2 y + \sin(x) = \frac{\pi^2}{4} + 1$

16. The value of $\alpha \in \mathbb{R}$ for which the curves $x^2 + \alpha y^2 = 1$ and $y = x^2$ intersect orthogonally is

(a)
$$-2$$
 (b) $\frac{-1}{2}$ (c) $\frac{1}{2}$ (d) 2

17. Let
$$x_n = 2^{2n} \left(1 - \cos\left(\frac{1}{2^n}\right) \right)$$
 for all $n \in \mathbb{N}$. Then the sequence $\{x_n\}$
(a) does NOT converges (b) converges to 0

(c) converges to
$$\frac{1}{2}$$
 (d) converges to $\frac{1}{4}$

18. Let $\{x_n\}$ be a sequence of real numbers such that $\lim_{n \to \infty} (x_{n+1} - x_n) = c$, where c is a positive real

number. Then the sequence $\left\{\frac{x_n}{n}\right\}$

(a) is NOT bounded
(b) is bounded but NOT convergent
(c) converges to c
(d) converges to 0

19. Let
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ be two series, where $a_n = \frac{(-1)^n n}{2^n}$, $b_n = \frac{(-1)^n}{\log(n+1)}$ for all $n \in \mathbb{N}$. Then

- (a) both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are absolutely convergent
- (b) $\sum_{n=1}^{\infty} a_n$ is absolutely convergent but $\sum_{n=1}^{\infty} b_n$ is conditionally convergent (c) $\sum_{n=1}^{\infty} a_n$ is conditionally convergent but $\sum_{n=1}^{\infty} b_n$ is absolutely convergent
- (d) both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are conditionally convergent

20. The set $\left\{\frac{x^2}{1+x^2}: x \in \mathbb{R}\right\}$ is

21

(a) connected but NOT compact in
$$\mathbb{R}$$
 (b) compact but NOT connected in \mathbb{R}
(c) compact and connected \mathbb{R} (d) neither compact nor connected in \mathbb{R}
. The set of all limit points of the set $\left\{\frac{2}{x+1}: x \in (-1,1)\right\}$ in \mathbb{R} is

(a)
$$[1,\infty)$$
 (b) $(1,\infty)$ (c) $[-1,1]$ (d) $[-1,\infty)$

22. Let S = [0,1]∪[2,3) and let f: S → ℝ be defined by f(x) =

$$\begin{cases} 2x & \text{if } x \in [0,1], \\ 8-2x & \text{if } x \in [2,3). \end{cases}$$
If T = {f(x): x ∈ S}, then the inverse function f⁻¹: T → S
(a) does NOT exis
(c) exists and is NOT continuous
(c) exists and is NOT continuous
(d) exists and is continuous
(e) exists and g(x) = x³ - x for all x ∈ ℝ. If f⁻¹ denotes the inverse function of f, then
the derivative of the composite function g o f⁻¹ at the point 2 is
(a) $\frac{2}{13}$ (b) $\frac{1}{2}$ (c) $\frac{11}{15}$ (d) $\frac{11}{4}$
24. For all (x, y) ∈ ℝ², let f(x, y) =

$$\begin{cases} x & \text{if } y = 0, \\ x - y^3 \sin(1/y) & \text{if } y = 0, \end{cases}$$
Then at the point (0, 0),
(a) f is NOT continuous
(b) f is continuous but NOT differentiable
(c) $\frac{\partial f}{\partial x}$ exists but $\frac{\partial f}{\partial y}$ does NOT exist
(d) f is differentiable
(c) $\frac{\partial f}{\partial x}$ exists but $\frac{\partial f}{\partial y}$ does NOT exist
(d) f is differentiable
25. For all (x, y) ∈ ℝ², let f(x, y) =

$$\begin{cases} \frac{x}{1x}\sqrt{x^2 + y^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$
Then $\frac{\partial f}{\partial x}(0,0) + \frac{\partial f}{\partial y}(0,0)$ equals
(a) -1 (b) 0 (c) 1 (d) 2
26. Let f : ℝ → ℝ be a function with continuous derivative such that $f(\sqrt{2}) = 2$ and $f(x) = \lim_{x \to 0} \frac{1}{2} \int_{x \to 0}^{x} \int_{x \to 0}^{x} \int_{x \to 0}^{x} \int_{x \to 0}^{x} (y + 2z))dz dy dx$ is
(a) $\frac{1}{53}$ (b) $\frac{2}{21}$ (c) $\frac{1}{6}$ (d) $\frac{5}{3}$
28. If C is a smooth curve in ℝ³ from (-1, 0, 1) to (1, 1, -1), then the value of $\int_{x \to 0}^{x} (2xy + z^2)dx + (x^2 + z)dy + (y + 2xz)dz$ is
(a) 0 (b) 1 (c) 2 (d) 3

4

- Let C be the boundary of the region $R = \{(x, y) \in \mathbb{R}^2 : -1 \le y \le 1, 0 \le x \le 1 y^2\}$ oriented in the 29. counterclockwise direction. Then the value of $\oint_C y dx + 2x dy$ is (a) $\frac{-4}{2}$ (b) $\frac{-2}{2}$ (d) $\frac{4}{2}$ (c) $\frac{2}{3}$ 30. Let G be a cyclic group of order 24. The total number of group isomorphisms of G onto itself is (a) 7 (b) 8 (c) 17 (d) 24 Let S_n be the group of all permutations on the set $\{1, 2, ..., n\}$ under the composition of mappings. 31. For n > 2, if H is the smallest subgroup of S_n containing the transposition (1, 2) and the cycle (1, 2, ..., n), then (a) $H = S_n$ (b) H is abelian (c) the index of H in S_n is 2 (d)H is cyclic Let S be the oriented surface $x^2 + y^2 + z^2 = 1$ with the unit normal **n** pointing outward. For the 32. vector field $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, the value of $\iint_{c} \mathbf{F} \cdot \mathbf{n} dS$ is (c) $\frac{4\pi}{3}$ (d) 4π (a) $\frac{\pi}{2}$ (b) 2π Let $f:(0,\infty) \to \mathbb{R}$ be a differentiable function such that $f'(x^2) = 1 - x^3$ for all x > 0 and f(1) = 0. 33. Then f(4) equals (c) $\frac{-16}{5}$ (d) $\frac{-8}{5}$ (b) $\frac{-47}{10}$ (a) $\frac{-47}{5}$ 34. Which one of the following conditions on a group G implies that G is abelian? (a) The order of G is p^3 for some prime p (b) Every proper subgroup of G is cyclic (c) Every subgroup of G is normal in G ENDEAVOUR
 - (d) The function $f: G \to G$, defined by $f(x) = x^{-1}$ for all $x \in G$, is a homomorphism

35. Let $S = \{x \in \mathbb{R} : x^6 - x^5 \le 100\}$ and $T = \{x^2 - 2x : x \in (0, \infty)\}$. The set $S \cap T$ is

- (a) closed and bounded in \mathbb{R} (b) closed but NOT bounded in \mathbb{R}
- (c) bounded but NOT closed in \mathbb{R} (d) neither closed nor bounded in \mathbb{R}

PART-II (DESCRIPTIVE QUESTIONS)

Q.36-Q.43 carry five marks each.

- **36.** Find all the critical points of the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = x^3 + xy + y^3$ for all $(x, y) \in \mathbb{R}^2$. Also, examine whether the function *f* attains a local maximum or a local minimum at each of these critical points.
- 37. Given that there is a common solution to the following equations:

 $\mathbf{P}: y' + 2y = e^{x}y^{2}, y(0) = 1,$

 $\mathbf{Q}: y'' - 2y' + \alpha y = 0,$

find the value of α and hence find the general solution of Q.

38. Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that $f\left(\frac{1}{2^n}\right) = 0$ for all $n \in \mathbb{N}$. Show that

f'(0) = 0 = f''(0).

- **39.** Let A be an $n \times n$ matrix with real entries such that $A^2 = A$. If I denotes the $n \times n$ identity matrix, then show that rank(A I) = nullity (A).
- 40. Evaluate $\iint_{S} \frac{xy}{\sqrt{1+2x^2}} dS$, where the surface $S = \{(x, y, x^2 + y) \in \mathbb{R}^3 : 0 \le x \le y, x+y \le 1\}.$
- **41.** Let $f:(0,1) \to \mathbb{R}$ be a differentiable function such that $|f'(x)| \le 5$ for all $x \in (0,1)$. Show that the sequence $\left\{ f\left(\frac{1}{n+1}\right) \right\}$ converges in \mathbb{R} .
- 42. Let *H* be a subgroup of the group $(\mathbb{R}, +)$ such that $H \cap [-1,1]$ is a finite set containing a non-zero element. Show that *H* is cyclic.
- **43.** If K is a nonempty closed subset of \mathbb{R} , then show that the set $\{x + y : x \in K, y \in [1,2]\}$ is closed in \mathbb{R} .

**** END *****