PAPER : IIT-JAM 2017

SECTION-A

Multiple Choice Questions (MCQ)

Q. 1 - Q. 10 carry ONE mark each.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. If $g(u, v)=f\left(u^{2}-v^{2}\right)$, then

$$
\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial v^{2}}=
$$

(a) $4\left(u^{2}-v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$
(b) $4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$
(c) $2 f^{\prime}\left(u^{2}-v^{2}\right)+4\left(u^{2}-v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$
(d) $2(u-v)^{2} f^{\prime \prime}\left(u^{2}-v^{2}\right)$
2. Let

$$
f(x)=\frac{x+|x|(1+x)}{x} \sin \left(\frac{1}{x}\right), \quad x \neq 0 .
$$

Write $L=\lim _{x \rightarrow 0^{-}} f(x)$ and $R=\lim _{x \rightarrow 0^{+}} f(x)$. Then which one of the following is TRUE?
(a) Lexists but R does not exist
(b) L does not exist but R exists
(c) Both L and R exist
(d) Neither L nor R exists
3. Let $f_{1}(x), f_{2}(x), g_{1}(x), g_{2}(x)$ be differentiable functions on \mathbb{R}. Let $F(x)=\left|\begin{array}{ll}f_{1}(x) & f_{2}(x) \\ g_{1}(x) & g_{2}(x)\end{array}\right|$ be the determinant of the matrix $\left[\begin{array}{ll}f_{1}(x) & f_{2}(x) \\ g_{1}(x) & g_{2}(x)\end{array}\right]$. Then $F^{\prime}(x)$ is equal to
(a) $\left|\begin{array}{ll}f_{1}^{\prime}(x) & f_{2}^{\prime}(x) \\ g_{1}(x) & g_{2}(x)\end{array}\right|+\left|\begin{array}{ll}f_{1}(x) & \square \\ g_{1}^{\prime}(x) \\ f_{2}^{\prime}(x) & g_{2}(x)\end{array}\right|$
(b) $\left|\begin{array}{ll}f_{1}^{\prime}(x) & A f_{2}^{\prime}(x) \\ g_{1}(x) & g_{2}(x)\end{array}\right|+\left|\begin{array}{ll}f_{1}(x) & g_{1}^{\prime}(x) \\ f_{2}(x) & g_{2}^{\prime}(x)\end{array}\right|$
(c) $\left|\begin{array}{ll}f_{1}^{\prime}(x) & f_{2}^{\prime}(x) \\ g_{1}(x) & g_{2}(x)\end{array}\right|-\left|\begin{array}{ll}f_{1}(x) & g_{1}^{\prime}(x) \\ f_{2}(x) & g_{2}^{\prime}(x)\end{array}\right|$
(d) $\left|\begin{array}{ll}f_{1}^{\prime}(x) & f_{2}^{\prime}(x) \\ g_{1}^{\prime}(x) & g_{2}^{\prime}(x)\end{array}\right|$
4. If $\lim _{T \rightarrow \infty} \int_{0}^{T} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$, then

$$
\lim _{T \rightarrow \infty} \int_{0}^{T} x^{2} e^{-x^{2}} d x=
$$

(a) $\frac{\sqrt{\pi}}{4}$
(b) $\frac{\sqrt{\pi}}{2}$
(c) $\sqrt{2 \pi}$
(d) $2 \sqrt{\pi}$
5. If $f(x)= \begin{cases}1+x & \text { if } x<0 \\ (1-x)(p x+q) & \text { if } x \geq 0\end{cases}$
satisfies the assumptions of Rolle's theorem in the interval $[-1,1]$, then the ordered pair (p, q) is
(a) $(2,-1)$
(b) $(-2,-1)$
(c) $(-2,1)$
(d) $(2,1)$
6. $\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x=$
(a) $\frac{1+\cos 1}{2}$
(b) $1-\cos 1$
(c) $1+\cos 1$
(d) $\frac{1-\cos 1}{2}$
7. The number of generators of the additive group \mathbb{Z}_{36} is equal to
(a) 6
(b) 12
(c) 18
(d) 36
8. Consider the function $f(x, y)=5-4 \sin x+y^{2}$ for $0<x<2 \pi$ and $y \in \mathbb{R}$. The set of critical points of $f(x, y)$ consists of
(a) a point of local maximum and a point of local minimum
(b) a point of local maximum and a saddle point
(c) a point of local maximum, a point of local minimum and a saddle point
(d) a point of local minimum and a saddle point
9. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that φ^{\prime} is strictly increasing with $\varphi^{\prime}(1)=0$. Let α and β denote the minimum and maximum values of $\varphi(x)$ on the interval $[2,3]$, respectively. then which one of the following is TRUE?
(a) $\beta=\varphi(3)$
(b) $\alpha=\varphi(2.5)$
(c) $\beta=\varphi(2.5)$
(d) $\alpha=\varphi(3)$
10. $\lim _{n \rightarrow \infty} \frac{\pi}{n} \sum_{k=1}^{n} \sin \left(\frac{\pi}{2}+\frac{5 \pi}{2} \cdot \frac{k}{n}\right)=$
(a) $\frac{2 \pi}{5}$
(b) $\frac{5}{2}$
(c) $\frac{2}{5}$
(d) $\frac{5 \pi}{2}$

Q. 11 - Q. 30 carry TWO marks each.

11. Let $y(x)$ be the solution of the differential equation

$$
\left(x y+y+e^{-x}\right) d x+\left(x+e^{-x}\right) d y=0
$$

satisfying $y(0)=1$. Then $y(-1)$ is equal to
(a) $\frac{e}{e-1}$
(b) $\frac{2 e}{e-1}$
(c) $\frac{e}{1-e}$
(d) 0
12. Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a continuous function. Then which one of the following is NOT TRUE?
(a) There exists $x \in \mathbb{R}$ such that $f(x)=\frac{f(0)+f(1)}{2}$
(b) There exists $x \in \mathbb{R}$ such that $f(x)=\sqrt{f(-1) f(1)}$
(c) There exists $x \in \mathbb{R}$ such that $f(x)=\int_{-1}^{1} f(t) d t$
(d) There exists $x \in \mathbb{R}$ such that $f(x)=\int_{0}^{1} f(t) d t$
13. Let $M=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{4} \\ 0 & 1\end{array}\right]$ and $x=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. Then

$$
\lim _{n \rightarrow \infty} M^{n} x
$$

(a) does not exist
(b) is $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(c) is $\left[\begin{array}{l}2 \\ 4\end{array}\right]$
(d) is $\left[\begin{array}{l}3 \\ 4\end{array}\right]$
14. Let $0<a_{1}<b_{1}$. For $n \geq 1$, define

$$
a_{n+1}=\sqrt{a_{n} b_{n}} \text { and } b_{n+1}=\frac{a_{n}+b_{n}}{2}
$$

Then which one of the followings is NOT TRUE?
(a) Both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge, but the limits are not equal
(b) Both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge and the limits are equal
(c) $\left\{b_{n}\right\}$ is a decreasing sequence
(d) $\left\{a_{n}\right\}$ is an increasing sequence
15. The line integral of the vector field

$$
\vec{F}=z x \hat{i}+x y \hat{j}+y z \hat{k}
$$

along the boundary of the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$, oriented anticlockwise, when viewed from the point $(2,2,2)$, is
(a) $\frac{-1}{2}$
(b) -2
(c) $\frac{1}{2}$
(d) 2
16. The flux of the vector field

$$
\vec{F}=\left(2 \pi x+\frac{2 x^{2} y^{2}}{\pi}\right) \hat{i}+\left(2 \pi x y-\frac{4 y}{\pi}\right) \hat{j}
$$

along the outward normal, across the ellipsc $x^{2}+16 y^{2}=4$ is equal to
(a) $4 \pi^{2}-2$
(b) $2 \pi^{2}-4$
(c) $\pi^{2}-2$
(d) 2π
17. $\lim _{x \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{3}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{9}}+\cdots+\frac{1}{\sqrt{3 n}+\sqrt{3 n+3}}\right)=$
(a) $1+\sqrt{3}$
(b) $\sqrt{3}$
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{1}{1+\sqrt{3}}$
18. $\sum_{n=1}^{\infty} \tan ^{-1} \frac{2}{n^{2}}=$
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}$
(c) $\frac{3 \pi}{4}$
(d) π
19. Let S be an infinite subset of \mathbb{R} such that $S \backslash\{a\}$ is compact for some $a \in S$. Then which one of the following is TRUE?
(a) S is a connected set
(b) S contains no limit points
(c) S is a union of open intervals
(d) Every sequence in S has a subsequence converging to an element in S
20. A particular integral of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=e^{2 x} \sin x
$$

is
(a) $\frac{e^{2 x}}{10}(3 \cos x-2 \sin x)$
(b) $-\frac{e^{2 x}}{10}(3 \cos x-2 \sin x)$
(c) $-\frac{e^{2 x}}{5}(2 \cos x+\sin x)$
(d) $\frac{e^{2 x}}{5}(2 \cos x-\sin x)$
21. The area of the surface $z=\frac{x y}{3}$ intercepted by the cylinder $x^{2}+y^{2} \leq 16$ lies in the interval
(a) $(20 \pi, 22 \pi]$
(b) $(22 \pi, 24 \pi]$
(c) $(24 \pi, 26 \pi]$
(d) $(26 \pi, 28 \pi]$
22. Let P_{3} denote the real vector space of all polynomials with real coefficients of degree at most 3. Consider the map $T: P_{3} \rightarrow P_{3}$ given by $T(p(x))=p^{\prime \prime}(x)+p(x)$. Then
(a) T is neither one-one nor onto
(b) T is both one-one and onto
(c) T is one-one but not onto
(d) T is onto but not one-one
23. Let M be the set of all invertible 5×5 matrices with entries 0 and 1 . For each $M \in \mathrm{M}$, let $n_{1}(M)$ and $n_{0}(M)$ denote the number of 1 's and 0 's in M , respectively. Then

$$
\min _{M \in \mathrm{M}}\left|n_{1}(M)-n_{0}(M)\right|=
$$

(a) 1
(b) 3
(c) 5
(d) 15
24. The interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{1}{(-3)^{n+2}} \frac{(4 x-12)^{n}}{n^{2}+1}-\mathbb{C}
$$

is
(a) $\frac{10}{4} \leq x<\frac{14}{4}$
(b) $\frac{9}{4} \leq x<\frac{15}{4}$
(c) $\frac{10}{4} \leq x \leq \frac{14}{4}$
(d) $\frac{9}{4} \leq x \leq \frac{15}{4}$
25. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f(2)=2$ and

$$
|f(x)-f(y)| \leq 5(|x-y|)^{3 / 2}
$$

for all $x \in \mathbb{R}, y \in \mathbb{R}$. Let $g(x)=x^{3} f(x)$. Then $g^{\prime}(2)=$
(a) 5
(b) $\frac{15}{2}$
(c) 12
(d) 24
26. Let $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$. Then
(a) $\frac{\partial f}{\partial x}$ and f are bounded
(b) $\frac{\partial f}{\partial x}$ is bounded and f is unbounded
(c) $\frac{\partial f}{\partial x}$ is unbounded and f is bounded
(d) $\frac{\partial f}{\partial x}$ and f are unbounded
27. For $a>0, b>0$, let $\vec{F}=\frac{x \hat{i}-y \hat{j}}{b^{2} x^{2}+a^{2} y^{2}}$ be a planar vector field. Let $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=a^{2}+b^{2}\right\}$ be the circle oriented anti-clockwise. Then $\oint_{C} \vec{F} \cdot d \vec{r}=$
(a) $\frac{2 \pi}{a b}$
(b) 2π
(c) $2 \pi a b$
(d) 0
28. Which one of the followings is TRUE?
(a) Every sequence that has a convergent subsequence is a Cauchy sequence
(b) Every sequence that has a convergent subsequence is a bounded sequence
(c) The sequence $\{\sin n\}$ has a convergent subsequence
(d) The sequence $\left\{n \cos \frac{1}{n}\right\}$ has a convergent subsequence
29. Let $\vec{F}=(3+2 x y) \hat{i}+\left(x^{2}-3 y^{2}\right) \hat{j}$ and let L be the curve

$$
\vec{r}(t)=e^{t} \sin t \hat{i}+e^{t} \cos t \hat{j}, \quad 0 \leq t \leq \pi .
$$

Then

$$
\int_{L} \vec{F} \cdot d \vec{r}=
$$

(a) $e^{-3 \pi}+1$
(b) $e^{-6 \pi}+2$
(c) $e^{6 \pi}+2$
(d) $e^{3 \pi}+1$
30. The flux of $\vec{F}=y \hat{i}-x \hat{j}+z^{2} \hat{k}$ along the outward normal, across the surface of the solid

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq \sqrt{2-x^{2}-y^{2}}\right\}
$$

is equal to
(a) $\frac{2}{3}$
(b) $\frac{5}{3}$
(c) $\frac{8}{3}$
(d) $\frac{4}{3}$

SECTION-B

Multiple Select Questions (MSQ)

Q. 31 - Q. 40 carry TWO marks each.

31. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function. Then which of the following statements is/are TRUE?
(a) If f is differentiable at $(0,0)$, then all directional derivatives of f exist at $(0,0)$
(b) If all directional derivatives of f exist at $(0,0)$, then f is differentiable at $(0,0)$
(c) If all directional derivatives of f exist at $(0,0)$, then f is continuous at $(0,0)$
(d) If the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous in a disc centered at $(0,0)$, then f is differentiable at $(0,0)$
32. Let M be an $n \times n$ matrix with real entries such that $M^{3}=I$. Suppose that $M v \neq v$ for any non zero vector v. Then which of the following statements is/are TRUE?
(a) M has real eigenvalues
(b) $M+M^{-1}$ has real eigenvalues
(c) n is divisible by 2
(d) n is divisible by 3
33. Let $k_{2} \ell \in \mathbb{R}$ be such that every solution of

$$
\frac{d^{2} y}{d x^{2}}+2 k \frac{d y}{d x}+\ell y=0
$$

satisfies $\lim _{x \rightarrow \infty} y(x)=0$. Then
(a) $3 k^{2}+\ell<0$ and $k>0$
(b) $k^{2}+\ell>0$ and $k<0$
(c) $k^{2}-\ell \leq 0$ and $k>0$
(d) $k^{2}-\ell>0, k>0$ and $\ell>0$
34. The volume of the solid $\left\{(x, y, z) \in \mathbb{R}^{3} \mid 1 \leq x \leq 2, \| 0 \leq y \leq \frac{2}{x}, 00 \leq z \leq x\right\}$ is expressible as
(a) $\int_{1}^{2} \int_{0}^{2 / x} \int_{0}^{x} d z d y d x$
(b) $\int_{1}^{2} \int_{0}^{x} \int_{0}^{2 / x} d y d z d x$
(c) $\int_{0}^{2} \int_{1}^{2} \int_{0}^{2 / x} d y d x d z$
(d) $\int_{0}^{2} \int_{\max [2,1]}^{2} \int_{0}^{2 / x} d y d x d z$
35. Let $y(x)$ be the solution of the differential equation

$$
\frac{d y}{d x}=(y-1)(y-3)
$$

satisfying the condition $y(0)=2$. Then which of the followings is/are TRUE?
(a) The function $y(x)$ is not bounded above
(b) The function $y(x)$ is bounded
(c) $\lim _{x \rightarrow+\infty} y(x)=1$
(d) $\lim _{x \rightarrow-\infty} y(x)=3$
36. Let G be a group of order 20 in which the conjugacy classes have sizes $1,4,5,5,5$. Then which of the followings is/are TRUE?
(a) G contains a normal subgroup of order 5
(b) G contains a non-normal subgroup of order 5
(c) G contains a subgroup of order 10
(d) G contains a normal subgroup of order 4
37. Let $\left\{x_{n}\right\}$ be a real sequence such that $7 x_{n+1}=x_{n}^{3}+6$ for $n \geq 1$. Then which of the following statements is/ are TRUE?
(a) If $x_{1}=\frac{1}{2}$, then $\left\{x_{n}\right\}$ converges to 1
(b) If $x_{1}=\frac{1}{2}$, then $\left\{x_{n}\right\}$ converges to 2
(c) If $x_{1}=\frac{3}{2}$, then $\left\{x_{n}\right\}$ converges to 1
(d) If $x_{1}=\frac{3}{2}$, then $\left\{x_{n}\right\}$ converges to -3
38. For $\alpha, \beta \in \mathbb{R}$, define the $\operatorname{map} \varphi_{\alpha, \beta}: \mathbb{R} \rightarrow \mathbb{R}$ by $\varphi_{\alpha, \beta}(x)=\alpha x+\beta$. Let $G=\left\{\varphi_{\alpha, \beta} \mid(\alpha, \beta) \in \mathbb{R}^{2}\right\}$

For $f, g \in G$, define $g \circ f \in G$ by $(g \circ f)(x)=g(f(x))$. Then which of the following statements is/are TRUE?
(a) The binary operation \circ is associative
(b) The binary operation \circ is commutative
(c) For every $(\alpha, \beta) \in \mathbb{R}^{2}, \alpha \neq 0$ there exists $(a, b) \in \mathbb{R}^{2}$ such that $\varphi_{\alpha, \beta} \circ \varphi_{a, b}=\varphi_{1,0}$
(d) (G, \circ) is group
39. If X and Y are $n \times n$ matrices with real entries, then which of the following is/are TRUE?
(a) If $P^{-1} X P$ is diagonal for some real invertible matrix P, then there exists a basis for \mathbb{R}^{n} consisting of eigenvectors of X
(b) If X is diagonal with distinct diagonal entries and $\mathrm{XY}=\mathrm{YX}$, then Y is also diagonal
(c) If X^{2} is diagonal, then X is diagonal
(d) If X is diagonal and $\mathrm{XY}=\mathrm{YX}$ for all Y , then $X=\lambda l$ for some $\lambda \in \mathbb{R}$
40. Let S be the set of all rational numbers in $(0,1)$. Then which of the following statements is/are TRUE?
(a) S is a closed subset of \mathbb{R}
(b) S is not a closed subset of \mathbb{R}
(c) S is an open subset of \mathbb{R}
(d) Every $x \in(0,1) \backslash S$ is a limit point of S

SECTION-C

Numerical Answer Type (NAT)

Q. 41 - Q. 50 carry ONE mark each.

41. Let G be a subgroup of $G L_{2}(\mathbb{R})$ generated by $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right]$. Then the order of G is \qquad
42. Let P be the point on the surface $z=\sqrt{x^{2}+y^{2}}$ closest to the point $(4,2,0)$. Then the square of the distance between the origin and P is \qquad
43. Consider the permutations $\sigma=\left(\begin{array}{ll}123 & 455678 \\ 45378612\end{array}\right)$ and $\tau=\left(\begin{array}{ll}123 & 345678 \\ 45317 & 68\end{array}\right)$ in S_{8}. The number of $\eta \in S_{8}$ such that $\eta^{-1} \sigma \eta=\tau$ is equal to \qquad
44. For $x>0$, let $\lfloor x\rfloor$ denote the greatest integer less than or equal to x. Then

$$
\lim _{x \rightarrow 0^{+}} x\left(\left\lfloor\frac{1}{x}\right\rfloor+\left\lfloor\frac{2}{x}\right\rfloor+\cdots+\left\lfloor\frac{10}{x}\right\rfloor\right\rfloor=
$$

45. The number of subgroups of $\mathbb{Z}_{7} \times \mathbb{Z}_{7}$ of order 7 is \qquad
46. Let $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Let M be the matrix whose columns are $v_{1}, v_{2}, 2 v_{1}-v_{2}, v_{1}+2 v_{2}$ in that order.

Then the number of linearly independent solutions of the homogeneous system of linear equations $M x=0$ is \qquad
47. $\left(\int_{0}^{1} x^{4}(1-x)^{5} d x\right)^{-1}=$ \qquad
48. Let P be a 7×7 matrix of rank 4 with real entries. Let $a \in \mathbb{R}^{7}$ be a column vector. Then the rank of $P+a a^{T}$ is at least \qquad
49. If the orthogonal trajectories of the family of ellipses $x^{2}+2 y^{2}=c_{1}, c_{1}>0$, are given by $y=c_{2} x^{a}, c_{2} \in \mathbb{R}$, then $\alpha=$ \qquad
50. $\frac{1}{2 \pi}\left(\frac{\pi^{3}}{1!3}-\frac{\pi^{5}}{3!5}+\frac{\pi^{7}}{5!7}-\cdots+\frac{(-1)^{n-1} \pi^{2 n+1}}{(2 n-1)!(2 n+1)}+\cdots\right)=$ \qquad

Q. 51 - Q. 60 carry TWO marks each.

51. The radius of convergence of the power series, $\sum_{0}^{\infty} n!x^{n^{2}}$ is \qquad
52. Let $f(x)=\frac{\sin \pi x}{\pi \sin x}, x \in(0, \pi)$, and let $x_{0} \in(0, \pi)$ be such that $f^{\prime}\left(x_{0}\right)=0$. Then
53. Let $\alpha, \beta, \gamma, \delta$ be the eigenvalues of the matrix

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Then $a^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=$ \qquad
54. Let $a_{n}=\sqrt{n}, n \geq 1$, and let $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$. Then

$$
\lim _{x \rightarrow \infty}\left(\frac{a_{n} / S_{n}}{-\ln \left(1-a_{n} / S_{n}\right)}\right)=
$$

\qquad
55. For $x>1$, let $f(x)=\int_{1}^{x}\left(\sqrt{\log t}-\frac{1}{2} \log \sqrt{t}\right) d t$

The number of tangents to the curve $y=f(x)$ parallel to the line $x+y=0$ is \qquad
56. For a real number x, define $\lceil x\rceil$ to be the smallest integer greater than or equal to x. Then

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(\lceil x\rceil+\lceil y\rceil+\lceil z\rceil) d x d y d z=
$$

\qquad
57. If $y(x)=\int_{\sqrt{x}}^{x} \frac{e^{t}}{t} d t, x>0$
then $y^{\prime}(1)=$ \qquad
58. Let $y(x), x>0$ be the solution of the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+5 x \frac{d y}{d x}+4 y=0
$$

satisfying the conditions $y(1)=1$ and $y^{\prime}(1)=0$. Then the value of $e^{2} y(e)$ is \qquad
59. The maximum order of a permutation σ in the symmetric group S_{10} is \qquad
60. Let T be the smallest positive real number such that the tangent to the helix

$$
\cos t \hat{i}+\sin t \hat{j}+\frac{t}{\sqrt{2}} \hat{k}
$$

at $t=T$ is orthogonal to the tangent at $t=0$. Then the line integral of $\vec{F}=x \hat{j}-y \hat{i}$ along the section of the helix from $t=0$ to $t=T$ is \qquad -

