PAPER : IIT-JAM 2017 MATHEMATICS-MA

SECTION-A

Multiple Choice Questions (MCQ)

Q.1 – Q.10 carry ONE mark each.

2.

1. Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. If $g(u, v) = f(u^2 - v^2)$, then

$$\frac{\partial^2 g}{\partial u^2} + \frac{\partial^2 g}{\partial v^2} =$$
(a) $4(u^2 - v^2) f''(u^2 - v^2)$
(b) $4(u^2 + v^2) f''(u^2 - v^2)$
(c) $2f'(u^2 - v^2) + 4(u^2 - v^2) f''(u^2 - v^2)$
(d) $2(u - v)^2 f''(u^2 - v^2)$
Let
$$x + |x|(1 + x) = (1)$$

$$f(x) = \frac{x + |x|(1+x)}{x} \sin\left(\frac{1}{x}\right), \quad x \neq 0.$$

Write $L = \lim_{x \to 0^{-}} f(x)$ and $R = \lim_{x \to 0^{+}} f(x)$. Then which one of the following is TRUE? (a) L exists but R does not exist (c) Both L and R exist (d) Neither L nor R exists

3. Let $f_1(x)$, $f_2(x)$, $g_1(x)$, $g_2(x)$ be differentiable functions on \mathbb{R} . Let $F(x) = \begin{vmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{vmatrix}$ be the determinant of the matrix $\begin{bmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{bmatrix}$. Then F'(x) is equal to (a) $\begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1(x) & g_2(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & g_1'(x) \\ f_2'(x) & g_2(x) \end{vmatrix}$ (b) $\begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1(x) & g_2(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & g_1'(x) \\ f_2(x) & g_2'(x) \end{vmatrix}$ (c) $\begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1(x) & g_2(x) \end{vmatrix} - \begin{vmatrix} f_1(x) & g_1'(x) \\ f_2(x) & g_2'(x) \end{vmatrix}$ (d) $\begin{vmatrix} f_1'(x) & f_2'(x) \\ g_1'(x) & g_2'(x) \end{vmatrix}$

4. If
$$\lim_{T \to \infty} \int_{0}^{T} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$
, then

$$\lim_{T \to \infty} \int_{0}^{T} x^{2} e^{-x^{2}} dx =$$
(a) $\frac{\sqrt{\pi}}{4}$ (b) $\frac{\sqrt{\pi}}{2}$ (c) $\sqrt{2\pi}$ (d) $2\sqrt{\pi}$
5. If $f(x) = \begin{cases} 1+x & \text{if } x < 0\\ (1-x)(px+q) & \text{if } x \ge 0 \end{cases}$

satisfies the assumptions of Rolle's theorem in the interval [-1, 1], then the ordered pair (p, q) is (a) (2, -1) (b) (-2, -1) (c) (-2, 1) (d) (2, 1)

 $\int_0^1 \int_x^1 \sin(y^2) dy \, dx =$ 6. (d) $\frac{1-\cos 1}{2}$ (a) $\frac{1 + \cos 1}{2}$ (b) $1 - \cos 1$ (c) $1 + \cos 1$ 7. The number of generators of the additive group \mathbb{Z}_{36} is equal to (a) 6 (b) 12 (c) 18 (d) 36 8. Consider the function $f(x, y) = 5 - 4\sin x + y^2$ for $0 < x < 2\pi$ and $y \in \mathbb{R}$. The set of critical points of f(x, y) consists of (a) a point of local maximum and a point of local minimum (b) a point of local maximum and a saddle point (c) a point of local maximum, a point of local minimum and a saddle point (d) a point of local minimum and a saddle point 9. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that φ' is strictly increasing with $\varphi'(1) = 0$. Let α and β denote the minimum and maximum values of $\varphi(x)$ on the interval [2, 3], respectively, then which one of the following is TRUE? (a) $\beta = \varphi(3)$ (b) $\alpha = \phi(2.5)$ (c) $\beta = \phi(2.5)$ (d) $\alpha = \varphi(3)$ $\lim_{n\to\infty}\frac{\pi}{n}\sum_{k=1}^n\sin\left(\frac{\pi}{2}+\frac{5\pi}{2}\cdot\frac{k}{n}\right)=$ 10. (a) $\frac{2\pi}{5}$ (c) $\frac{2}{5}$ (b) $\frac{5}{2}$ (d) $\frac{5\pi}{2}$ Q.11 - Q.30 carry TWO marks each. 11. Let y(x) be the solution of the differential equation $(xy + y + e^{-x})dx + (x + e^{-x})dy = 0$ satisfying y(0) = 1. Then y(-1) is equal to (b) $\frac{2e}{e^{-1}}$ (a) $\frac{e}{e-1}$ (c) $\frac{e}{1-e}$ (d)0Let $f : \mathbb{R} \to [0, \infty)$ be a continuous function. Then which one of the following is NOT TRUE? 12. (a) There exists $x \in \mathbb{R}$ such that $f(x) = \frac{f(0) + f(1)}{2}$ (b) There exists $x \in \mathbb{R}$ such that $f(x) = \sqrt{f(-1)f(1)}$ (c) There exists $x \in \mathbb{R}$ such that $f(x) = \int_{-1}^{1} f(t) dt$ (d) There exists $x \in \mathbb{R}$ such that $f(x) = \int_0^1 f(t) dt$

13. Let
$$M = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 0 & 1 \end{bmatrix}$$
 and $x = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Then

(a) does not exist

$$\lim_{n \to \infty} M^n x$$
(b) is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
(c) is $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$
(d) is $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$

14. Let $0 < a_1 < b_1$. For $n \ge 1$, define

$$a_{n+1} = \sqrt{a_n b_n}$$
 and $b_{n+1} = \frac{a_n + b_n}{2}$

Then which one of the followings is NOT TRUE?

(a) Both $\{a_n\}$ and $\{b_n\}$ converge, but the limits are not equal

- (b) Both $\{a_n\}$ and $\{b_n\}$ converge and the limits are equal
- (c) $\{b_n\}$ is a decreasing sequence (d) $\{a_n\}$ is an increasing sequence
- 15. The line integral of the vector field

$$\vec{F} = zx\,\hat{i} + xy\,\hat{j} + yz\,\hat{k}$$

along the boundary of the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), oriented anticlockwise, when viewed from the point (2, 2, 2), is

- (a) $\frac{-1}{2}$ (b) -2 (c) $\frac{1}{2}$ (d) 2
- 16. The flux of the vector field

$$\vec{F} = \left(2\pi x + \frac{2x^2 y^2}{\pi}\right)\hat{i} + \left(2\pi x y - \frac{4y}{\pi}\right)\hat{j}$$

along the outward normal, across the ellipse $x^2 + 16y^2 = 4$ is equal to (a) $4\pi^2 - 2$ (b) $2\pi^2 - 4$ (c) $\pi^2 - 2$ (d) 2π

17.
$$\lim_{x \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{3} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{9}} + \dots + \frac{1}{\sqrt{3n} + \sqrt{3n+3}} \right) =$$

(a) $1 + \sqrt{3}$ (b) $\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{1 + \sqrt{3}}$

18.
$$\sum_{n=1}^{\infty} \tan^{-1} \frac{2}{n^2} =$$
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{4}$ (d) π

19. Let S be an infinite subset of \mathbb{R} such that $S \setminus \{a\}$ is compact for some $a \in S$. Then which one of the following is TRUE?

(b) S contains no limit points

- (a) S is a connected set
- (c) S is a union of open intervals
- (d) Every sequence in S has a subsequence converging to an element in S

20. A particular integral of the differential equation

$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} = e^{2x}\sin x$$

(a)
$$\frac{e^{2x}}{10}(3\cos x - 2\sin x)$$

(b) $-\frac{e^{2x}}{10}(3\cos x - 2\sin x)$
(c) $-\frac{e^{2x}}{5}(2\cos x + \sin x)$
(d) $\frac{e^{2x}}{5}(2\cos x - \sin x)$

- 21. The area of the surface $z = \frac{xy}{3}$ intercepted by the cylinder $x^2 + y^2 \le 16$ lies in the interval (a) $(20\pi, 22\pi]$ (b) $(22\pi, 24\pi]$ (c) $(24\pi, 26\pi]$ (d) $(26\pi, 28\pi]$
- 22. Let P_3 denote the real vector space of all polynomials with real coefficients of degree at most 3. Consider the map $T: P_3 \to P_3$ given by T(p(x)) = p''(x) + p(x). Then (a) T is neither one-one nor onto (c) T is one-one but not onto (d) T is onto but not one-one
- 23. Let M be the set of all invertible 5×5 matrices with entries 0 and 1. For each $M \in M$, let $n_1(M)$ and $n_0(M)$ denote the number of 1's and 0's in M, respectively. Then

(a) 1
$$\min_{M \in M} |n_1(M) - n_0(M)| =$$

(b) 3 (c) 5 (d) 15

24. The interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{1}{(-3)^{n+2}} \frac{(4x-12)^n}{n^2+1} \text{ENDEAVOUR}$$

is

(a)
$$\frac{10}{4} \le x < \frac{14}{4}$$
 (b) $\frac{9}{4} \le x < \frac{15}{4}$ (c) $\frac{10}{4} \le x \le \frac{14}{4}$ (d) $\frac{9}{4} \le x \le \frac{15}{4}$

25. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(2) = 2 and

$$|f(x) - f(y)| \le 5(|x - y|)^{3/2}$$

for all $x \in \mathbb{R}$, $y \in \mathbb{R}$. Let $g(x) = x^3 f(x)$. Then g'(2) =

(a) 5 (b)
$$\frac{15}{2}$$
 (c) 12 (d) 24

26. Let $f(x, y) = \frac{x^2 y}{x^2 + y^2}$ for $(x, y) \neq (0, 0)$. Then

is

27. For
$$a > 0, b > 0$$
, let $\vec{F} = \frac{x\hat{i} - y\hat{j}}{b^2x^2 + a^2y^2}$ be a planar vector field. Let $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = a^2 + b^2\}$

be the circle oriented anti-clockwise. Then $\oint_C \vec{F} \cdot d\vec{r} =$

(a)
$$\frac{2\pi}{ab}$$
 (b) 2π (c) $2\pi ab$ (d) 0

28. Which one of the followings is TRUE?

(a) Every sequence that has a convergent subsequence is a Cauchy sequence (b) Every sequence that has a convergent subsequence is a bounded sequence

(c) The sequence $\{\sin n\}$ has a convergent subsequence

(d) The sequence
$$\left\{ n \cos \frac{1}{n} \right\}$$
 has a convergent subsequence

29. Let
$$\vec{F} = (3+2xy)\hat{i} + (x^2 - 3y^2)\hat{j}$$
 and let L be the curve

$$\vec{r}(t) = e^t \sin t \,\hat{i} + e^t \cos t \,\hat{j}, \qquad 0 \le t \le \pi \,.$$

Then

$$\int \vec{F} \cdot d\vec{r}$$

(b)

(a)
$$e^{-3\pi} + 1$$

$$e^{-6\pi} + 2$$
 (c) $e^{6\pi} + 2$ (d) $e^{3\pi} + 1$

30. The flux of $\vec{F} = y\hat{i} - x\hat{j} + z^2\hat{k}$ along the outward normal, across the surface of the solid

$$\left\{ (x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le \sqrt{2 - x^2 - y^2} \right\}$$

is equal to

(a)
$$\frac{2}{3}$$
 (b) $\frac{5}{3}$ (c) $\frac{8}{3}$ (d) $\frac{4}{3}$

SECTION-B

Multiple Select Questions (MSQ)

Q.31 – Q.40 carry TWO marks each.

- 31. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function. Then which of the following statements is/are TRUE?
 - (a) If f is differentiable at (0, 0), then all directional derivatives of f exist at (0, 0)
 - (b) If all directional derivatives of f exist at (0, 0), then f is differentiable at (0, 0)
 - (c) If all directional derivatives of f exist at (0, 0), then f is continuous at (0, 0)

(d) If the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous in a disc centered at (0, 0), then *f* is differentiable at (0, 0)

- 32. Let M be an $n \times n$ matrix with real entries such that $M^3 = I$. Suppose that $M_V \neq v$ for any non zero vector v. Then which of the following statements is/are TRUE?
 - (a) M has real eigenvalues(b) $M + M^{-1}$ has real eigenvalues(c) n is divisible by 2(d) n is divisible by 3
- 33. Let $k_2 \ell \in \mathbb{R}$ be such that every solution of

$$\frac{d^2y}{dx^2} + 2k\frac{dy}{dx} + \ell y = 0$$

satisfies $\lim_{x \to \infty} y(x) = 0$. Then

(a)
$$3k^2 + \ell < 0$$
 and $k > 0$
(b) $k^2 + \ell > 0$ and $k < 0$
(c) $k^2 - \ell \le 0$ and $k > 0$
(d) $k^2 - \ell > 0, k > 0$ and $\ell > 0$

 $(x, y, z) \in \mathbb{R}^3 | 1 \le x \le 2, \quad 0 \le y \le$

34. The volume of the solid

is expressible as

(a)
$$\int_{1}^{2} \int_{0}^{2/x} \int_{0}^{x} dz \, dy \, dx$$

(b) $\int_{1}^{2} \int_{0}^{x} \int_{0}^{2/x} dy \, dz \, dx$
(c) $\int_{0}^{2} \int_{1}^{2} \int_{0}^{2/x} dy \, dx \, dz$
(d) $\int_{0}^{2} \int_{\max[2,1]}^{2} \int_{0}^{2/x} dy \, dx \, dz$

35. Let y(x) be the solution of the differential equation

$$\frac{dy}{dx} = (y-1)(y-3)$$

satisfying the condition y(0) = 2. Then which of the followings is/are TRUE?

- (a) The function y(x) is not bounded above (b) The function y(x) is bounded
- (c) $\lim_{x \to -\infty} y(x) = 1$ (d) $\lim_{x \to -\infty} y(x) = 3$

36. Let G be a group of order 20 in which the conjugacy classes have sizes 1, 4, 5, 5, 5. Then which of the followings is/are TRUE?

- (a) G contains a normal subgroup of order 5
- (b) G contains a non-normal subgroup of order 5
- (c) G contains a subgroup of order 10
- (d) G contains a normal subgroup of order 4

37. Let $\{x_n\}$ be a real sequence such that $7x_{n+1} = x_n^3 + 6$ for $n \ge 1$. Then which of the following statements is/ are TRUE?

(a) If
$$x_1 = \frac{1}{2}$$
, then $\{x_n\}$ converges to 1
(b) If $x_1 = \frac{1}{2}$, then $\{x_n\}$ converges to 2
(c) If $x_1 = \frac{3}{2}$, then $\{x_n\}$ converges to 1
(d) If $x_1 = \frac{3}{2}$, then $\{x_n\}$ converges to -3

38. For $\alpha, \beta \in \mathbb{R}$, define the map $\varphi_{\alpha,\beta} : \mathbb{R} \to \mathbb{R}$ by $\varphi_{\alpha,\beta}(x) = \alpha x + \beta$. Let $G = \{\varphi_{\alpha,\beta} \mid (\alpha,\beta) \in \mathbb{R}^2\}$

For $f, g \in G$, define $g \circ f \in G$ by $(g \circ f)(x) = g(f(x))$. Then which of the following statements is/are TRUE?

- (a) The binary operation \circ is associative
- (b) The binary operation $\circ\,$ is commutative

(c) For every $(\alpha,\beta) \in \mathbb{R}^2$, $\alpha \neq 0$ there exists $(a,b) \in \mathbb{R}^2$ such that $\varphi_{\alpha,\beta} \circ \varphi_{a,b} = \varphi_{1,0}$

- (d) (G, \circ) is group
- 39. If X and Y are $n \times n$ matrices with real entries, then which of the following is/are TRUE?

(a) If $P^{-1}XP$ is diagonal for some real invertible matrix P, then there exists a basis for \mathbb{R}^n consisting of eigenvectors of X

(b) If X is diagonal with distinct diagonal entries and XY = YX, then Y is also diagonal

(c) If X^2 is diagonal, then X is diagonal

(d) If X is diagonal and XY = YX for all Y, then $X = \lambda l$ for some $\lambda \in \mathbb{R}$

- 40. Let S be the set of all rational numbers in (0, 1). Then which of the following statements is/are TRUE?
 - (a) S is a closed subset of \mathbb{R} (b) S is not a closed subset of \mathbb{R}
 - (c) S is an open subset of \mathbb{R} (d) Every $x \in (0,1) \setminus S$ is a limit point of S

SECTION-C

Numerical Answer Type (NAT)

Q.41 – Q.50 carry ONE mark each.

- 41. Let G be a subgroup of $GL_2(\mathbb{R})$ generated by $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$. Then the order of G is ______
- 42. Let P be the point on the surface $z = \sqrt{x^2 + y^2}$ closest to the point (4, 2, 0). Then the square of the distance between the origin and P is _____
- 43. Consider the permutations $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 3 & 7 & 8 & 6 & 1 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 3 & 1 & 7 & 6 & 8 & 2 \end{pmatrix}$ in S_8 . The number of $\eta \in S_8$ such that $\eta^{-1} \sigma \eta = \tau$ is equal to ______
- 44. For x > 0, let |x| denote the greatest integer less than or equal to x. Then

$$\lim_{x \to 0^+} x \left(\left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{10}{x} \right\rfloor \right) = \underline{\qquad}$$

- 45. The number of subgroups of $\mathbb{Z}_7 \times \mathbb{Z}_7$ of order 7 is _____
- 46. Let $v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Let *M* be the matrix whose columns are $v_1, v_2, 2v_1 v_2, v_1 + 2v_2$ in that order.

Then the number of linearly independent solutions of the homogeneous system of linear equations Mx = 0 is ______

47.
$$\left(\int_0^1 x^4 (1-x)^5 dx\right)^{-1} =$$

- 48. Let *P* be a 7 × 7 matrix of rank 4 with real entries. Let $a \in \mathbb{R}^7$ be a column vector. Then the rank of $P + aa^T$ is at least _____
- 49. If the orthogonal trajectories of the family of ellipses $x^2 + 2y^2 = c_1, c_1 > 0$, are given by $y = c_2 x^a, c_2 \in \mathbb{R}$, then $\alpha =$ _____

50.
$$\frac{1}{2\pi} \left(\frac{\pi^3}{1!3} - \frac{\pi^5}{3!5} + \frac{\pi^7}{5!7} - \dots + \frac{(-1)^{n-1} \pi^{2n+1}}{(2n-1)!(2n+1)} + \dots \right) = \underline{\qquad}$$

Q.51 - Q.60 carry TWO marks each.

- 51. The radius of convergence of the power series, $\sum_{0}^{\infty} n! x^{n^2}$ is _____
- 52. Let $f(x) = \frac{\sin \pi x}{\pi \sin x}$, $x \in (0, \pi)$, and let $x_0 \in (0, \pi)$ be such that $f'(x_0) = 0$. Then

$$f(x_0)^2 (1+(\pi^2-1)\sin^2 x_0) =$$

53. Let $\alpha, \beta, \gamma, \delta$ be the eigenvalues of the matrix

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Then $a^2 + \beta^2 + \gamma^2 + \delta^2 =$ _____

54. Let $a_n = \sqrt{n}$, $n \ge 1$, and let $s_n = a_1 + a_2 + \dots + a_n$. Then

$$\lim_{x \to \infty} \left(\frac{a_n / S_n}{-\ln(1 - a_n / S_n)} \right) = \underline{\qquad}$$

55. For x > 1, let $f(x) = \int_{1}^{x} \left(\sqrt{\log t} - \frac{1}{2} \log \sqrt{t} \right) dt$

The number of tangents to the curve y = f(x) parallel to the line x + y = 0 is _____

8

56. For a real number x, define $\lceil x \rceil$ to be the smallest integer greater than or equal to x. Then

$$\int_0^1 \int_0^1 \int_0^1 \left(\left\lceil x \right\rceil + \left\lceil y \right\rceil + \left\lceil z \right\rceil \right) dx \, dy \, dz = \underline{\qquad}$$

57. If $y(x) = \int_{\sqrt{x}}^{x} \frac{e^{t}}{t} dt, x > 0$ then y'(1) =_____

58. Let y(x), x > 0 be the solution of the differential equation

$$x^2 \frac{d^2 y}{dx^2} + 5x \frac{dy}{dx} + 4y = 0$$

satisfying the conditions y(1) = 1 and y'(1) = 0. Then the value of $e^2 y(e)$ is _____

- 59. The maximum order of a permutation σ in the symmetric group S_{10} is ______
- 60. Let *T* be the smallest positive real number such that the tangent to the helix

$$\cos t \,\hat{i} + \sin t \,\hat{j} + \frac{t}{\sqrt{2}}\hat{k}$$

at t = T is orthogonal to the tangent at t = 0. Then the line integral of $\vec{F} = x\hat{j} - y\hat{i}$ along the section of the helix from t = 0 to t = T is ______