PAPER: IIT-JAM 2008 BIOTECHNOLOGY-BT

INSTRUCTIONS:

- (i) This test paper has a total of 100 questions.
- (ii) Each question has **4 choices** for its answer: (a), (b), (c) and (d). Only **one** of them is the correct answer.
- (iii) For each correct answer, you will be awarded 3 (three) marks.
- (iv) For each wrong answer, you will be awarded -1 (Negative one) mark.
- (v) Multiple answers to a question will be treated as a wrong answer.

(vi) (vi)	For each un-attempted question, you will be awarded 0 (zero) mark.				
1.	In cells, cellulose and glycogen function as (a) energy storage components (b) structural and energy storage components, respectively (c) energy storage and structural components, respectively (d) structural components				
2.	The structures of myoglobin and hemoglobin are (a) Quaternary (b) Quaternary and tertiary, respectively (c) Tertiary and quaternary, respectively (d) Molten globule				
3.	The chromatographic technique for determination of the native molecular weight of proteins is (a) Gel permeation (b) Ion exchange (c) Hydrophobic interaction (d) Chromatofocusing				
4.	The affinity of an enzyme to the substrate is indicated by (a) pK_a (b) K_i (c) K_{cat} (d) K_m				
5.	Which one of the following compounds is optically INACTIVE? (a) Ala (b) Cys (c) Gly (d) Lys				
6.	In O-linked glycoproteins, the glycan part is linked to the polypeptide. The amino acid residues involved in this linkage are				
7.	(a) Ser and Thr (b) Gln and Tyr (c) Tyr and Thr (d) Asn and Tyr The cofactor (s) required for the nitrogenase enzyme complex involved in N ₂ fixation is /are (a) Fe and Mo (b) Fe (c) Fe and S (d) Fe, S and Mo				
8.	The anaplerotic (filling up) reaction to replenish citric acid cycle is (a) decarboxylation of isocitrate to α-ketoglutarate (b) decarboxylation of α-ketoglutarate of succinyl CoA (c) carboxylation of phosphoenolpyruvate to oxaloacetate (d) conversion of malate to oxaloacetate				
9.	Which one of the following is NOT a neurotransmitter? (a) Glutamine (b) Glutamate (c) Glycine (d) Acetylcholine				
10.	Which one of the following is NOT an energy rich compound? (a) Phosphoenolpyruvate (b) Glucosel, 6-bisphosphate (c) Acetyl phosphate (d) Phosphoarginine				

11.	During photosynthesis, ATP synthesis takes place	in	
	(a) stroma		thylacoid lumen
	(c) thylacoid membrane	(d)	cytoplasm
12.	Contact inhibition phenomenon is observed in		
	(a) animal cell culture	(b)	plant cell culture
	(c) bacterial cell culture	(d)	fungal cell culture
13.	Choose the correct set of match between Group l	I and	Group II.
	Group I		Group II
	P. IgM	1.	Present in various body secretions
	Q. IgE	2.	Antigen presentation
	R. IgA	3.	Allergic reaction
	S. MHC	4.	Complement activation
		5.	Ten heavy chains and ten light chains
	(a) P-4, Q-3, R-1, S-5		P-5, Q-3, R-1, S-2
	(c) P-5, Q-3, R-4, S-1	(d)	P-3, Q-2, R-4, S-5
14.	Choose the correct set of match between Group I	and	Group II
	Group I		Group II
	P. Gibberellins	1.	Breaking dormancy
	Q. Ethylene	2.	Apical dominance
	R. Cytokines	3.	Fruit ripening
	S. Abscisic acid	4.	Seed germination
		5.	Cell division and growth
	(a) P-1, Q-3, R-2, S-4	(b)	P-1, Q-2, R-4, S-5
	(c) P-2, Q-3, R-4, S-1	(d)	P-4, Q-3, R-5, S-1
15.	Choose the correct set of match between Group I	and	Group II.
	Group I		Group II
		a .\	Carboxylation reaction
	Q. Biotin		One-carbon transfer reaction
	R. Thiamine pyrophosphate		3. Decarboxylation reaction
	S. N ⁵ , N ¹⁰ -methylene tetrahydrofolate	4.	Oxidation reduction reaction
			C-C bond cleavage
	(a) P-1, Q-3, R-5, S-2		P-3, Q-1, R-5, S-4
	(c) P-3, Q-1, R-5, S-2	` ′	P-1, Q-4, R-2, S-3
16.	Choose the correct set of match between Group I		
10.	Group I	una	Group II
	P. Calcitonin	1.	Blood glucose level regulation
	Q. Glucagon	2.	Female reproductive system maintenance
	R. Adrenalin	2. 3.	Mammary gland development
			• •
	S. Prolactin	4.	Increase in basal metabolic rate
	(a) D.5. O.1. D.4. G.2	5.	Calcium homeostasis
	(a) P-5, Q-1, R-4, S-3		P-2, Q-5, R-3, S-1
	(c) P-5, Q-1, R-2, S-4	(d)	P-4, Q-2, R-3, S-5

17.	Microaerophilic bacteria have the ability t	o grow in					
	(a) high concentration of oxygen	(b) absence of oxygen					
	(c) low concentration of oxygen	(d) low concentration of carbondioxide					
18.	Cocci arranged in the form of chains are classified as						
	(a) Sterptococci	(b) Micrococci					
	(c) Sarcinae	(d) Staphylococci					
19.	The process of Tyndallization requires						
	P. Temperature of 100°C	Q. Pressure of 15 psi					
	R. Time period of 30 min	S. Free flow of steam					
	(a) P, Q, R (b) P, Q, S	(c) P, R, S (d) Q, R, S					
20.	Choose the correct set of match between	Group I and Group II					
	Group I	Group II					
	P. Campylobactor jejuni	1. eye infection in human					
	Q. Neisseria gonorrhoeae	2. lung disease in human with AIDS					
	R. Pneumocystis carnii	3. intenstinal disease with diarrhea					
	S. Haemophilus aegyptius	4. sexually transmitted disease					
		5. skin infection					
	(a) P-3, Q-4, R-2, S-1	(b) P-3, Q-5, R-2, S-1					
	(c) P-2, Q-3, R-1, S-4	(d) P-2, Q-4, R-1, S-5					
21.	Asexual reproductive process of budding	occurs in					
	(a) all fungi	(b) yeasts					
	(c) fungi undergoing sexual reproduction	(d) Bacillus subtilis					
22.	One mL of E. coli culture was diluted to	100 mL and 0.5 mL of the diluted culture was plated					
	on to an agar plate. After 12 h of incubation	on, 200 colonies were observed. What was the number					
	of bacteria per mL in the original culture	2					
	(a) 2×10^4 (b) 4×10^4	(c) 1×10^5 (d) 2×10^5					
23.	Phylogeny describes a species						
	(a) morphological similarities with other	species					
	(b) reproductive compatibilities with other	r species					
	(c) evolutionary history						
	(d) geographic distribution						
24.	The term prophage refers to						
	(a) an auxotrophic mutant						
	(b) a phage DNA incorporated in to bacterial chromosome						
	(c) host DNA packed into viral particles						
	(d) DNA of lytic phage						
25.	According to Darwin, two different areas within the same continent have different species because they have different						
	(a) evolutionary mechanisms	(b) ancestors					
	(c) environments	(d) evolutionary times					

26.	A sequence of species through as	gh which an organi	c molecule passes in a community is referre	ed to		
	(a) pyramid of energy		(b) food chain			
	(c) food web		(d) nutrient cycle			
27.	When a number of genes are	e transcribed as on	e mRNA, such mRNA is termed as			
	(a) multimeric (b)	o) polymeric	(c) polycistronic (d) polysomal			
28.	The presence and location o	f a specific gene ir	a bacterial genome can be detected by			
	(a) Southern blot (b)) Western blot	(c) Eastern blot (d) Northern blot			
29.	Match the terms in Group I	with their definition	ns in Group II			
	Group I	Group II				
	P. Ammonification	1. Conversion of	f atmospheric nitrogen into ammonia			
	Q. Denitrification	2. Conversion of	f organic nitrogen into ammonia			
	R. Nitrification	3. Conversion o	f nitrite or nitrate into atmospheric nitroger	1		
	S. Nitrogen fixation	4. Conversion of	f ammonium into nitrite and nitrate			
	(a) P-2, Q-3, R-1, S-4		(b) P-3, Q-2, R-4, S-1			
	(c) P-3, Q-2, R-1, S-4		(d) P-2, Q-3, R-4, S-1			
30.	Nucleosome is composed of					
	(a) DNA and histone protein	ns	(b) DNA, histone and non-histone pro	teins		
	(c) DNA, RNA and histone	Ť	(d) RNA, histone and non-histone pro-			
31.	Usually there is one specific tRNA for each amino acid but some of the amino acids are recognized					
	·	NAs that recognize	the same amino acid are known as			
	(a) Cognate tRNAs		(b) Isoaccepting tRNAs			
	(c) Isoschizomers		(d) Catenated tRNAs			
32.	Shine-Delgarno sequence is	a part of				
	(a) Eukaryotic mRNA	DCCD CN	(b) Prokaryotic mRNA			
	(c) Eukaryotic tRNA	KEEK EN	(d) Eukaryotic rRNA			
33.	Which of the following state					
		-	both directions but in antiparallel orientation	on		
	Q. DNA which reads the same sequence from both directions but in parallel orientation					
	R. It is recognized by a specific restriction endonuclease and causes specific cleavage					
	S. It is recognized by exon		•			
2.4	` '	e) P and S	(c) Q and R (d) Q and S			
34.	Which of the following statements are true regarding DNA replication?					
	P. It is semiconservative both in prokaryotes and eukaryotes					
	Q. It is semiconservative in	•	* ·			
		-	ated by DNA Pol-III in prokaryotes			
	0 00 0	-	by two different polymerases in eukaryotes			
	(a) P, R, S (b)	o) P, Q, R	(c) Q, R, S (d) P, Q, S			

35.	Which of the following	statements are true about	t genetic code and	translation?			
	P. Genetic code is degenerate because more than one codon codes for a particular amino acid						
	Q. Genetic code is de	generate because a single	codon codes for m	ore than one amino acid			
	R. Genetic code deger	neracy is due to wobble na	ature of 3' base				
	S. Fidelity exists in tr	ranslation as there is no pr	roof reading mecha	nnism			
	(a) P, Q, S	(b) Q, R, S	(c) P, Q, R	(d) P, R, S			
36.	Which of the following	g techniques are used for t	transfer of a gene i	into the cells?			
	P. Electroporation						
	Q. Electroelution						
	R. Particle bombardm	ent					
	S. Microinjection						
	(a) Q, R, S	(b) P, Q, R	(c) P, R, S	(d) P, Q, S			
37.	Match the terms in Gro	oup-I with terms in Group	-II				
	Group-I	Group-II					
	P. RNA-P	1. <i>lac</i> operon					
	Q. Leucine zipper	2. rRNA gene transc	*				
	R. RNA Pol-I	3. tRNA gene transc					
	S. Attenuation	4. Transcription factor	ors				
		5. Ribozymes					
		6. <i>trp</i> operon					
	() 5 5 6 5 6 6 6	7. mRNA splicing	4) 54 6 5 5				
	(a) P-7, Q-5, R-3, S-1		(b) P-4, Q-5, R-				
20	(c) P-5, Q-4, R-2, S-6		(d) P-4, Q-5, R-				
38.		wing modifications leads t	_	ion?			
	(a) Methylation(c) Phosphorylation	CYDCCD CVIL	(b) Acetylation(d) Ubiquitination				
39.	• •	wing protein is involved in		ep of microtubules <i>in vivo</i> ?			
37.							
4.0	(a) α-Actin	(b) β-Tubulin	(c) α-Tubulin	(d) γ-Tubulin			
40.		S UAC, the anticodon on t		(1) 51 CFL 21			
41	(a) 5'AUG3'	(b) 5'GUA3'	(c) 5'ATC3'	(d) 5'CTA3'			
41.		wing structure-function pa					
	(a) Nucleolus - rRNA digestion	synthesis	(b)	Lysosome - intracellular			
	(c) Endoplasmic reticu	lum - glycosylation	(d) Microtubule	s - muscle contraction			
42.	· · ·	eting takes place through	(d) Wherotubule	s muscle contraction			
12.	(a) COP-coated vesicle		(b) Clathrin coa	(b) Clathrin coated vesicles			
	(c) Liposome		, ,	(d) Receptor mediated endocytosis			
43.	• •	m endoplasmic reticulum to	. ,	onse to stimulus is mediated			
-	by	1	J 1 P				
	(a) cAMP	(b) IP3	(c) DAG	(d) Calmodulin			

44.	Match	the	terms	in	Group-I	with	terms	in	Group-Il	I
-----	-------	-----	-------	----	---------	------	-------	----	----------	---

Group-I

Group-II

- P. Leucoplast
- 1. Protein modification and targeting
- Q. Mitochondria
- 2. Microtubule organizing centre
- R. Golgi complex
- 3. Starch storage 4. Kreb's cycle
- S. Centriole
- 5. Glycogen storage
- 6. Calvin cycle
- (a) P-3, Q-4, R-2, S-1

(b) P-5, Q-4, R-6, S-5

(c) P-3, Q-6, R-4, S-5

- (d) P-3, Q-4, R-1, S-2
- 45. At constant pressure, the internal energy of a gaseous system will always decrease for
 - (a) an endothermic process with decrease in the volume
 - (b) an endothermic process with increase in the volume
 - (c) an exothermic process with decrease in the volume
 - (d) an exothermic process with increase in the volume
- 46. First ionization energy of C, N, O and Si follows the order
 - (a) Si < O < N < C

(b) C < N < O < Si

(c) Si < C < N < O

- (d) Si < C < O < N
- Which one of the following isoelectronic ions has the largest ionic radius? 47.

- (b) F
- (c) Mg^{2+}
- (d) Na^+
- 48. The correct set of match between molecules of Group I and their shapes in Group II is

Group I

P. I₃

 $Q. H_2S$

R. XeOF

S. PCl₅

(a) P-3, Q-4, R-1, S-2

Group II

- 1. Square pyramidal
- 2. Trigonal bipyramidal
- 3. Linear
- 4. Angular
- (b) P-4, Q-3, R-1, S-2 (d) P-4, Q-3, R-2, S-1
- (c) P-3, Q-4, R-2, S-1
- Thallium (Tl) exhibits monovalency whereas aluminium (Al) exhibits trivalency. This is due to 49.
 - (a) the energy required to unpair outer s-electrons in Tl exceeds the energy involved in the bond formation
 - (b) Tl has only one electron in its outermost orbital
 - (c) Al can use its vacant d-orbitals for the bond formation
 - (d) Tl is a non-metal
- 50. Which one of the following compounds has non-zero spin-only magnetic moment?
 - (a) $[Fe(CN)_6]^{4-}$
- (b) $[Co(NH_3)_6]^{3+}$
- (c) $[Zn(H_2O)_6]^{2+}$ (d) $[NiF_6]^{4-}$
- Isomerism exhibited by the pair of compounds [Co(NH₃)₆] [Cr(CN)₆] and [Cr(NH₃)₆] [Co(CN)₆] 51. is
 - (a) linkage
- (b) coordination
- (c) ionization
- (d) geometric
- With increase in pressure, the equilibrium concentration of product will NOT change for 52.
 - (a) $2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$

(b) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

(c) $SO_2(g) \rightleftharpoons S(s) + O_2(g)$

- (d) $C_2H_4(g) + H_2(g) \rightleftharpoons C_2H_6(g)$
- During a cyclic process, which one of the following is NOT always zero? 53.

(a) Enthalpy change

(b) Entropy change

(c) Internal energy change

- (d) Work done by the system
- 54. The rate of reaction (r) is expressed as, $r = k[A]^m[B]^n$. The rate constant (k) for this reaction is $2L^2 \text{ mol}^{-2} \text{ s}^{-1}$. The possible values of m and n are
 - (a) 1 and 1

(b) 1 and 2

(c) 1 and 3

- (d) 1 and 4
- 55. Half-cell reaction for the electrode Ag/AgCl/Cl is
 - (a) $Ag^+ + e^- \rightarrow Ag(s)$

(b) $\frac{1}{2} \text{Cl}_2(g) + e^- \rightarrow \text{Cl}^-$

(c) $AgCl(s) + e^- \rightarrow Ag(s) + Cl^-$

- (d) $Ag^{+} + \frac{1}{2}Cl_{2}(g) + 2e^{-} \rightarrow Ag(s) + Cl^{-}$
- 56. Which one of the following is NOT a correct statement for carbohydrates?
 - (a) Epimers give the same osazone
 - (b) D(+)-glucose undergoes mutarotation
 - (c) α -D(+)-glucose and β -D(+)-glucose are anomers
 - (d) Conversion of α -D(+)-glucose to β -D(+)-glucose is called sugar inversion
- 57. In an electrophoresis experiment at pH 5 (shown below) x, y and z refer respectively to

- (a) Lysine, alanine and aspartic acid
- (b) Alanine, aspartic acid and lysine
- (c) Lysine, aspartic acid and alanine
- (d) Aspartic acid, alanine and lysine
- 58. Which one of the following 0.1 M solutions has the lowest pH?
 - (a) NaNO₂
- (b) NH₄Cl
- (c) NaCl
- (d) NH₂
- 59. In a thin layer chromatography experiment, three spots k, l and m are detected in an iodine chamber. The spots k, l and m, respectively are

- (a) PhCH₂OH, PhCOOH, PhCH₂OCOCH₃
- (b) PhCOOH, PhCH₂OCOCH₃, PhCH₂OH
- (c) PhCOOH, PhCH₂OH, PhCH₂OCOCH₃
- (d) PhCH₂OCOCH₃, PhCH₂OH, PhCOOH
- 60. IR stretching frequency at ~2200, ~1700, ~1100 and ~1600 cm⁻¹ corresponds respectively to the functional groups

(c)
$$\searrow N$$
, $-C \equiv N$, $-C = 0$, $\searrow 0$

(d)
$$\longrightarrow$$
 N, \longrightarrow C-O, \longrightarrow C \equiv N, \longrightarrow O

PAPER: IIT-JAM 2008

Which one of the following species does NOT have 6π electrons? 61.

- Which one of the following compounds will NOT show three signals in its ¹H NMR spectrum? 62.
 - (a) CH₂CH₂CH₂Br
- (b) $\stackrel{\mathsf{H}}{\triangleright} = \stackrel{\mathsf{H}}{\stackrel{\mathsf{I}}{\triangleright}}$ (c) $\mathrm{CH_3OCH_2CH_2OCH_3}$ (d) \langle
- 63. Choose the correct match between reactions of Group-I and named reactions in Group-II.

Group-I

P.

1. Clemmensen reduction

Group-II

- NaOH
- 2. Schotten-Bauman reaction

R Zn/HCI R.

3. Aldol condensation

CHCI-S. NaOH

4. Hoffman degradation

- 5. Reimer-Tiemann reaction
- 6. Sandmeyer reaction

(a) P-3, Q-2, R-1, S-5

(b) P-2, Q-3, R-4, S-5

(c) P-3, Q-4, R-5, S-6

- (d) P-4, Q-3, R-6, S-5
- (+)-Mandelic acid has a specific rotation of +160°. What is the observed specific rotation of a 64. mixture of 40%(-)-mandelic acid and 60% (+)-mandelic acid?
 - (a) -32°

- (b) $+32^{\circ}$
- (c) $+64^{\circ}$
- $(d) -64^{\circ}$
- 65. Group-I lists fundamental forces in nature and Group-II lists the particles relevant to these forces. Choose the correct set of match.

Group-I

- P. Gravitational
- Q. Electromagnetic
- R. Weak nuclear
- S. Strong nuclear
- (a) P-1, Q-4, R-2, S-3
- (c) P-4, Q-2, R-3, S-1

Group-II

- 1. Charges
- Nucleons 2.
- Masses
- 4. Elementary particles
- (b) P-3, Q-1, R-2, S-4
- (d) P-3, Q-1, R-4, S-2

66.	A small body of mass 0.2 kg undergoes a uniform circular motion on a frictionless horizontal surface. The body is attached to the centre by a string of length 2m and has a linear speed of 10							
	m/s. The force exerted	by the string on the	mass is					
	(a) 1N	(b) 5N	(c) 10N	(d) 50N				
67.	Resistance (<i>R</i>), capacit the resonant frequency (a) <i>L</i> is increased to 2	same, the quality fac	tor (Q) can be doubl	in series in a circuit. Keeped if	oing			
	(b) C is increased to 2	2C and L is decreased	to $L/2$					
	(c) L is increased to 4	L and C is decreased	to <i>C</i> /4					
	(d) C is increased to 4	4C and L is decreased	to L/4					
68.	de-Broglie wavelengths	s of two electrons which	ch start from rest and	accelerated by potentials V	and			
	4V are λ_1 and λ_2 res	pectively. The ratio λ	$_{1}:\lambda_{2}$ is					
	(a) 1:2	(b) 1:4	(c) 2:1	(d) 4:1				
69.	The mass numbers of t	two nuclei M and N a	re 4 and 8 respective	y. The ratio of the volume	s of			
	the nuclei, $V_M:V_N$ is							
	(a) 1:2	(b) 1:4	(c) 1:8	(d) 1:16				
70.	A student is interested	in converting a galva	nometer into a voltm	eter. The student should				
	(a) connect a large re	(a) connect a large resistance in series with the galvanometer						
	(b) connect a large re-	sistance in parallel to	the galvanometer					
	(c) connect a small resistance in series with the galvanometer							
	(d) connect a small re	sistance in parallel to	the galvanometer					
71.	The phase difference between points that are 2m apart along the direction of propagation of a wave having a wavelength of 6m is							
	(a) 60°	(b) 120°	(c) 150°	(d) 180°				
72.	•	a force of 50N. The fri	-1/11 11 // // 11 11-	wind and assisted by the f the tyres and the road is 10				
	(a) 50W	(b) 100W	(c) 500W	(d) 1800W				
73.		ce between the centre	of the lighter planet (I	d the ratio of their masses P) and the point on the line				
		P L	•					
		Γ	Q					
	(a) L/4	(b) $L/3$	(c) $L/2$	(d) $3L/4$				
74.	A charge is placed or statements is FALSE?	A charge is placed on a solid conductor. Under static condition, which one of the following statements is FALSE?						
	(a) There is no free charge in the interior of the conductor							
	(b) Potential is constant over the surface of the conductor							

(c) Electric field is zero inside the conductor

(d) Electric field at the surface has both normal and tangential components

75. A circular wire of radius R_1 carrying a current I in the anticlockwise direction is concentric with another circular wire of radius $R_2(R_2 > R_1)$ also carrying a current I in the clockwise direction as shown in the figure

The magnetic field \vec{B} at the centre is

(a)
$$\frac{\mu_0 I}{2} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \hat{z}$$

(b)
$$-\frac{\mu_0 I}{2} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \hat{z}$$

(c)
$$\frac{\mu_0 I}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \hat{z}$$

(d)
$$-\frac{\mu_0 I}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \hat{z}$$

- 76. The ionization energy for a hydrogen atom in its first excited state (n = 2) is
 - (a) 13.6 eV
- (b) 3.4 eV
- (c) -3.4 eV
- (d) -13.6 eV
- 77. The volume expansion coefficient for a uniform solid cube is γ and the linear expansion coefficient is α . For small temperature changes, the relationship between α and γ is
 - (a) $\gamma = \sqrt[3]{\alpha}$
- (b) $\gamma = \alpha/3$
- (c) $\gamma = 3\alpha$ (d) $\gamma = \alpha^3$
- The velocity (v) of a particle moving along positive x-axis is given by $v = k\sqrt{x}$ where k is a 78. positive constant. At time t = 0 the particle is at x = 0. The distance of the particle as a function of time is given by

(a)
$$x = kt^{1/2}$$

- (b) $x = k^2 t$
- (c) $x = kt^{3/2}$ (d) $x = k^2t^2$
- Two springs of spring constants, k_1 and k_2 are connected in series where one end is fixed to a wall 79. and other end is connected to a block of mass m. The arrangement is kept on a frictionless surface. What is the frequency of oscillation when the mass is slightly displaced?

(a)
$$\frac{1}{2\pi} \sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}}$$
 (b) $\frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{m}}$

(b)
$$\frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{m}}$$

(c)
$$\frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{2m}}$$

(c)
$$\frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{2m}}$$
 (d) $\frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{mk_1k_2}}$

L, M and N are points on the isotherms $(T_1 \text{ and } T_2)$ 80. as shown in the figure. If $\boldsymbol{W}_{LM},\,\boldsymbol{W}_{MN}$ and \boldsymbol{W}_{LN} denote the work done by one mole of an ideal gas along the paths LM, MN and LN respectively, then $(\ln 2 = 0.693)$

				
81.	temperature T_2 . The (a) electron concert (b) electron concert (c) hole concentrate	, the intrinsic carrier cone en for an n -type Si crystantration n at T_1 is twice to attration p at T_1 is four ting ion p at T_1 is twice to the	I, that of n at T_2 nes to that of n at T_2 at of p at T_2	sperature T_1 is twice that of at T_2
82.				internal reflection occurs at the dia are given in brackets in the
	figure and $n_1 > n_2 >$	$> n_3$)		
	(a) $\sin^{-1} \frac{n_2}{n_1}$	(b) $\sin^{-1} \frac{n_3}{n_1}$	А	ir (n ₃)
	(c) $\sin^{-1} \frac{n_1}{n_2}$	(d) $\sin^{-1} \frac{n_1}{n_3}$		$\begin{array}{c} \operatorname{quid}(n_2) \\ \operatorname{lass}(n_1) \end{array}$
83.	If the vectors $\vec{a} = \hat{i}$	$+\hat{j} - \hat{k}, \ \vec{b} = 2\hat{i} - \hat{j} - \hat{k}$ and	$\vec{c} = 2\hat{i} + 2\hat{j} + p\hat{k} $ a	are coplanar, then the value of p
	is			(1) 2
84.	include at least 2 w be formed is	vomen and a particular wo	oman is always selec	(d) 2 women. If the committee has to cted, the number of ways it can
	(a) 36	(b) 60	(c) 64	(d) 90
85.	The shortest distance	ce of the point (1, 0, 1)	from the straight lin	e given by $\frac{x-4}{-2} = \frac{y}{1} = \frac{z-1}{-1}$ is
	(a) $\sqrt{2}$	(b) 2 EER E	(c) $\sqrt{3}$	(d) 3
86.	The area of the reg	gion in the first quadrant		
	(a) 1/12	(b) 1/6	(c) 1/2	(d) 3/4
87.	The value of $\lim_{x\to 0^+} x$	$\sin x$ is		
	(a) -1	(b) <i>e</i>	(c) 1	(d) 0
88.	If $\theta = \pi/14$, then t	the value of $\frac{\cos 8\theta}{\sin \theta}$ is		

(a) 0

(b) -1

(c) 1/14

(d) 1

89. If tan A and tan B are the roots of the equation $x^2 - px + q = 0$, then the value of tan(A + B) is

(a) p/q

(b) q/p

(c) q/(1-p)

(d) p/(1-q)

90. A fair coin is tossed 100 times. The probability of getting tails an odd number of times is

(a) 1/8

(b) 1/4

(c) 3/8

(d) 1/2

91.	If y is a function of x give	$y = \sqrt{x + \sqrt{x + \sqrt{x}}}$	$\frac{dy}{\sqrt{x+}}$ then $\frac{dy}{dx}$	at (0, 0) is
	(a) -1	(b) 0	(c) 1	(d) $\sqrt{2}$
92.	If a is given by $a = \frac{1}{2} - \frac{1}{8}$	$+\frac{1}{24} - \frac{1}{64} + \dots$, then the	value of e^{-a} is	
	(a) 1/2	(b) 2/3	(c) 1	(d) 3/2
93.	The complex number $\left(\frac{\sqrt{2}}{2}\right)$	$\left(\frac{3}{2} + i\frac{1}{2}\right)^6$ equals		
	(a) -1	(b) 1	(c) $i - \sqrt{3}$	
94.	If λ_1 and λ_2 are the value	the piece of λ for which $\begin{vmatrix} 1 & \lambda \\ \lambda & \lambda \\ 0 & 1 \end{vmatrix}$	$\begin{vmatrix} \lambda & 0 \\ 2 & 1 \\ 1 & 1 \end{vmatrix} = 0, \text{ then } \lambda_1 + 1$	$-\lambda_2$ equals
95.	(a) -1 The distance of the point $x^2 + y^2 = 4$ and $(x+1)^2 +$	(b) 0 (1/2, 0) and the line of	(c) 1	(d) 2
96.	(a) $1/\sqrt{2}$ The maximum area of a	(b) $\sqrt{2}$	(c) 1 circle of radius a is	(d) 2
97.	(a) a^2 A missile is projected from 50m high at a horizontal due to gravity)	_		(d) $4a^2$ ical. If it has to hit a target n is $(g \text{ is the acceleration})$
	(a) $10\sqrt{6g} \text{ m/s}$	(b) $10\sqrt{5g}$ m/s	(c) $10\sqrt{3g}$ m/s	(d) $10\sqrt{2g} \text{ m/s}$
98.	The maximum value of 3			
	$0 \le x_1 \le 4,$			
	$0 \le x_2 \le 6,$			
	$3x_1 + 2x_2 \le 18$			
	is (a) 21	(b) 27	(c) 30	(d) 36
99.	The function $y(x)$ satisfied	es the differential equation	$n \frac{dy}{dx} = \tan x. \text{ If } y($	$(\pi/4) = 0$, then $y(\pi/3)$ is
	(a) ln 2	(b) $\ln \sqrt{2}$	(c) 1	(d) <i>e</i>
100.	The sum of the series $\frac{1}{1.2}$	$\frac{1}{2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{n}$	$\frac{1}{(n+1)} + \dots$ is	
	(a) 2	(b) 0.5	(c) 1	(d) 0.25