PAPER: IIT-JAM 2010 BIOTECHNOLOGY-BT

INSTRUCTIONS:

- (i) This test paper has a total of 100 questions.
- (ii) Each question has **4 choices** for its answer: (a), (b), (c) and (d). Only **one** of them is the correct answer.
- (iii) For each correct answer, you will be awarded 3 (three) marks.
- (iv) For each wrong answer, you will be awarded -1 (Negative one) mark.
- (v) Multiple answers to a question will be treated as a wrong answer.
- (vi) For each un-attempted question, you will be awarded 0 (zero) mark.
- 1. The composition of proteins P1 to P4 are shown below:

Protein	Composition
P1	Rich in polar residues; poor in apolar residues
P2	Rich in apolar residues; poor in polar residues
P3	Has comparable number of polar and apolar residues
P4	Rich in glycine and proline

Which one of the following options CORRECTLY relates the propensities of these proteins to be folded, aggregated or disordered in an aqueous buffered solution?

- (a) P1, P2 and P4 are disordered and P3 is folded
- (b) P1 and P3 are folded, P2 is aggregated and P4 is disordered
- (c) P1 and P3 are folded, and P2 and P4 are disordered
- (d) P1 and P4 are disordered, P2 aggregated and P3 is folded
- 2. EnzP, EnzQ, EnzR, and EnzS catalyze the metabolic reactions as shown below:

Transamination

3.

4.

5.

6.

7.

8.

9.

10.

11.

PAPER: IIT-JAM 2010

				CARGER ENDEAVOUR)
Each of the above enzymes is dependent on one of the following four vitamins (either the vitamin itself or its derivative):				
Vit B2:	Vitamin B2 (riboflavin))		
Vit B3:	Vitamin B3 (niacin)			
Vit B6:	Vitamin B6 (pyridoxal)	ı		
Vit K:	Vitamin K			
Which one of the following	ng options gives the con	rect enzyn	ne-vitamin	matches?
(a) EnzP and Vit B3, Enz	Q and Vit B2, EnzR an	d Vit B6,	EnzS and	Vit K
(b) EnzP and Vit B2, Enz	Q and Vit B3, EnzR an	d Vit B6,	EnzS and	Vit K
(c) EnzP and Vit B2, Enz	Q and Vit B3, EnzR an	d Vit K, E	EnzS and	Vit B6
(d) EnzP and Vit B6, Enz	•			
The ground state energy of	•		he hc = 12	240 eV. nm. The maximum
wavelength in Balmer seri		=		
(a) 103	(b) 122	(c) 244		(d) 653
A sample of gas $\left(\frac{C_P}{C_V} = 1.6\right)$	5, at a higher pressure	P and tem	nperature	T, is suddenly released to
atmosphere. The final tem		2. The val	lue of P (in the units of atm) is
(a) 4	(b) $4\sqrt{2}$	(c) 8		(d) $8\sqrt{2}$
A ball is thrown with a spe	ed of 40 m/sec in a direc	tion of 30°	with the	ground. Assume $g = 10m/$
sec ² . The ball will reach t	o a maximum height (in	meters) o	of	
(a) 20	(b) 40	(c) 60		(d) 80
The dimensions $ML^2 T^{-2} a$				
(a) work	(b) torque	(c) heat		(d) angular momentum
$\lim_{n \to \infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} \right]$	$++\frac{1}{8n}$] is			
(a) 1/8	(b) 1/4	(c) 3/8		(d) 1/2
The area (in square units	of length) enclosed by	$y = 2x^2 + 1$	and $6x -$	y = 3 is
The area (in square units (a) 1/3	(b) 2/3 CK CNU	(c) 1	UK/	(d) 4/3
Suppose the principal incre				
years, then r is	•		1 0	
(a) $5 \log_e 2$	(b) $10 \log_{e} 2$	(c) 50 lo	$g_e 2$	(d) $100 \log_{e} 2$
A eukaryotic cell lacking	active telomerase		C	· ·
(a) will be unable to proofread incorrectly-added nucleotides				
(b) is highly probable to be a cancerous cell				
(c) will experience a grad	ual reduction of chromo	some leng	th with e	ach, replication cycle
(d) will be unable to com	nect Okazaki fragments			
Which of the following ar	e used as reporter genes	s?		
P. β-glucuronidase gene		Q. ampi	cillin-resis	stance gene
R. Gal4 gene		S. lucife	erase gene	e
(a) P and S		(b) P and	_	
(c) R and S		(d) O an	-	

12.	p-aminobenzoic acid is a biosynthetic precursor	
	(a) glutamic acid	(b) acetic acid
10	(c) citric acid	(d) folic acid
13.	Ribosomes are made of	
	(a) DNA and proteins	(b) RNA and proteins
1 /	(c) only proteins The anticodon in tRNA is	(d) DNA, RNA and proteins
14.		
	(a) complementary to codon in rRNA(b) complementary to codon in mRNA	
	•	amino said hinds
	(c) complementary to 3' – end of tRNA where	
15.	(d) changeable depending upon the amino acid Which one of the following hormones shows p	
15.	(a) thyroxine	(b) melatonin
	(c) cortisol	(d) relaxin
16.	Which of the following ligament(s) is/are attach	• •
10.	P. ovarian ligaments	Q. suspensory ligaments
	R. broad ligaments	Q. suspensor) agaments
	(a) only P	(b) only P and Q
	(c) only P and R	(d) P, Q and R
17.	The role of salicylic acid in systemic acquired in	resistance of plants is to
	(a) directly destroy the pathogens	
	(b) activate defenses throughout the plant before	re the infection spreads
	(c) activate heat shock proteins	
	(d) sacrifice the infected tissue	
18.	Match the therapeutics in Column-I with their a	
	Column-I	Column-II
	P. Erythropoietin	1. Diabetes
	Q. Plasminogen activator	2. Obesity
	R. Leptin S. Cathepsin K CAREER EN	3. Anemia 4. Myocardial infarction
	T. Humulin	5. Osteoporosis
		6. Cancer therapy
	(a) P-3, Q-6, R-2, S-4, T-1	(b) P-5, Q-4, R-6, S-3, T-2
	(c) P-3, Q-4, R-2, S-5, T-1	(d) P-5, Q-6, R-4, S-3, T-1
19.	The 2009 Nobel prizes were awarded to work of	on
	(a) human papilloma virus and ribosome	(b) Helicobactor pylori and human papilloma
	virus	
• •	(c) ribosome and telomerase	(d) telomerase and <i>Helicobacter pylori</i>
20.	Which of the following statements about yeast	are correct!
	P. Yeast are fungi	
	Q. Yeast can form pseudohyphae	
	R. Yeast reproduce asexually by budding	
	S. Yeast are facultative anaerobes	
	T. All yeast are pathogenic	
	U. All yeast are dimorphic	
	(a) P, Q, R and S	(b) R, S, T and U
	(c) P, R, S and U	(d) Q, R, S and T

- 21. An L shaped wire PQR carrying a current i is placed at a distance s from the origin (see the figure below). The length PQ is l such the l >> s. The magnitude of the magnetic field B at origin O is
 - (a) $\frac{\mu_0 i}{\pi S}$

(b) $\frac{\mu_0 i}{2\pi S}$

(c) $\frac{\mu_0 i}{4\pi S}$

(d) $\frac{\mu_0 i}{8\pi S}$

- 22. The current (in A) in the given circuit, assuming the internal resistance of the batteries to be negligible, is
 - (a) 1/4
 - (b) 1/2
 - (c) 3/4
 - (d) 9/8

23. A gaseous mass M in the form of a thin disk of radius R is rotating with ω_1 as shown in the figure below.

A fraction M/4 of the gas condenses into a thin ring of radius R and the remaining into a concentric disk of radius R/2. The system now rotates with ω_1 about the same axis. The ratio $\frac{\omega_1}{\omega_2}$

is

(a) 16/7

- (b) 16/11
- (c) 7/8
- (d) 4/5
- 24. The terminal speed (in m/s) of vertically falling raindrop of radius 0.03 cm (g = 9.9 m/s², $\eta_{air} = 1.8 \times 10^{-4}$ poise and $\rho_{power} = 1000$ kg/m³) is approximately
 - (a) 0.11

- (b) 0.55
- (c) 1.10
- (d) 2.20
- 25. In an RC circuit, a resistor of resistance 120Ω and a capacitor are connected to a 240 V, 50Hz ac source. The circuit takes a current of 1.2A. The reactance of the capacitor (in Ω) is
 - (a) 80

- (b) 120
- (c) 160
- (d) 240
- 26. A bob of mass *m* of a long pendulum of length L is at a horizontal position P (see figure below). When released, it hits a ball of mass *m* placed at a position Q. Assume the collision to be elastic. After hitting the ball at Q, the bob will attain a height (with respect to Q) of

(b) L/4

(c) L/2

(d) L

PAPER: IIT-JAM 2010

- 27. Signal recognition particles (SRPs) are
 - (a) protein-DNA complexes involved in protein sorting
 - (b) protein-RNA complexes involved in protein sorting
 - (c) protein-RNA complexes involved in RNA splicing
 - (d) protein-RNA complexes involved in cell cycle
- 28. M Phase promoting factor (MPF) facilitates cells to move from G2 to M phase during the cell cycle. The sudden decline in MPF at the end of the M Phase is due to
 - (a) degradation of CDKs
 - (b) degradation of cyclins
 - (c) the reduced expression of cyclins
 - (d) an increase in the ratio of cell volume and genome
- 29. Which of the following statements are true regarding the dolichol phosphate pathway?
 - P. a 14-residue precursor oligosacchadride chain is synthesized in the ER
 - Q. a 14-residue precursor oligosacchadride chain is synthesized in the Golgi complex
 - R. it helps in N-linked glycosylation of proteins
 - S. it helps in O-linked glycosylation of proteins
 - (a) P and R
- (b) Q and R
- (c) Q and S
- (d) P and S
- 30. Which one of the following is *not true* about Klenow, fragment?
 - (a) It is a proteolytic cleavage product of DNA polymerase I
 - (b) It has $5' \rightarrow 3'$ polymerase activity
 - (c) It has $3' \rightarrow 5'$ exonuclease activity
 - (d) It has $5' \rightarrow 3'$ exonuclease activity
- 31. In which one of the following options are the cellular compartments arranged in the increasing order of their pH?
 - (a) Nucleus, mitochondrial matrix, trans-Golgi network, lysosome
 - (b) Lysosome, nucleus, trans-Golgi network, mitochondrial matrix
 - (c) Lysosome, trans-Golgi network, nucleus, mitochondrial matrix
 - (d) Lysosome, nucleus, mitochondrial matrix, trans-Golgi network
- 32. Match the entries in Column-I with those in Column-II

Column-I	Column-II
P. Photoautotrophs	1. Energy source : light Carbon source : CO ₂
Q. Photoheterotrophs	Energy source : light Principal carbon source : an organic compound
R. Chemoautotrophs	3. Energy source : chemical molecule Principal carbon source: CO ₂
S. Chemoheterotrophs	Energy source : chemical molecule Principal carbon source: an organic compound

(a) P-1, Q-2, R-3, S-4

(b) P-3, Q-2, R-4, S-1

(c) P-2, Q-4, R-1, S-3

(d) P-4, Q-3, R-2, S-1

33.

PAPER: IIT-JAM 2010

Which one of the following is NOT a saturated fatty acid?

	(a) Palmitic acid		(b) Stearic acid	d	
	(c) Oleic acid		(d) Myristic ac	eid	
34.	The feeding relationship among the species in a community determine the community's				
	(a) secondary successio	n	(b) ecological	niche	
	(c) Oleic acid		(d) Myristic ac	cid	
35.	Which one of the follo	wing techniques can be	` '	ther a given sample cont	ains
	glucose or galactose?				
	(a) Paper chromatograp	hy	(b) Thin layer	chromatography	
	(c) NMR spectroscopy	•	(d) UV spectro	oscopy	
36.	Match the entries in Co	olumn-I with those in Co	lumn-II.		
	Column-I	Column-II	1		
	P. Metachromatic granules	1. Phosphate storage	-		
	Q. Sulfur granules	2. Energy reserve	-		
	R. Magnetosomes	3. Decomposition of H ₂ O ₂			
	-	e. But sing solution of H ₂ e ₁			
	(a) P-1, Q-2, R-3		(b) P-2, Q-3, I		
	(c) P-2, Q-1, R-3		(d) P-3, Q-2, I		
37.	Which of the following CORRECT?	g statements pertaining	to 2D gel electro	phoresis of proteins is /	are
	P. While preparing the	sample from a tissue, t	he sample should	be dissolved in SDS	
	Q. The duration for wh	nich the SDS gel is run	should not vary to	ensure reproducibility	
	(a) Only P	(b) Only Q	(c) P and Q	(d) Neither P nor Q	
38.		istance 10 is connected	to a 20V battery. I	Neglect the internal resista	nce
				instant when the current	
	risen to one-fourth of it		,		
	(a) 5	(b) $5\sqrt{2}$	(c) 10	(d) 15	
39.	` /			magnitude of the electric f	ield
37.		CADEED ENI		magnitude of the electric i	icia
	E at a distance $\frac{R}{2}$ from	the centre of the spher	e is AVOUR		
	2				
	(-) 0	Q	Q	Q	
	(a) 0	(b) $\frac{Q}{32\pi\varepsilon_0 R^2}$	$\frac{(c)}{16\pi\varepsilon_0 R^2}$	(d) $\frac{1}{8\pi\epsilon_0 R^2}$	
40.	A vibrating string of lens	oth <i>l</i> has mass <i>m</i> . It vibra	tes with a fundame	ntal frequency when stretc	hed
				e., first overtone) if the fo	
	is increased to	\mathcal{S}	`	,	
	1	_			
	(a) $\frac{1}{2}$ N	(b) $\sqrt{2}$ N	(c) 4N	(d) 8N	
4.1	2	1 . 1	11.		
41.		•	-	emitted in radioactive de	cay
		f the following statement			
	(a) The energy of photo	pelectrons is much greate	er than that of beta	a particles	
	(b) The energy of beta	particles is much greater	than that of photo	oelectrons	
	(c) The energies of pho	toelectrons and beta par	ticles are of same	order	
		photoelectrons have diffe			
	() I I				

- 42. Two sources of light are coherent if they emit radiation of
 - (a) unequal intensities, same wavelength and same phase
 - (b) equal intensity, same wavelength and different phases
 - (c) unequal intensities, same wavelength and different phases
 - (d) equal intensity, different wavelengths and different phases
- 43. Which one of the following schematics CORRECTLY depicts the variation of conductance as a function of membrane potential for the voltage-gated K⁺-channel?

- 44. In a xenogenic cell based therapy, the donor and recipient belong to different species. In which of the following, do the donor and recipient belong to the same species?
 - P. Autologous
 - Q. Allogenic
 - R. Syngeneic
 - (a) Only P

(b) Only P and Q

(c) Only P and R

- (d) P, Q and R
- 45. According to the following schematic, which shows the effect of the ligand L on the allosteric protein P,

- (a) L has to be an allosteric activator
- (b) L has to be an allosteric inhibitor
- (c) L can be either an allosteric activator or an allosteric inhibitor
- (d) L is not an allosteric modulator of the protein
- 46. Which one(s) among helicase, primase, telomerase and topoisomerase can form phosphodiester bonds?
 - (a) Only primase

- (b) Primase and telomerase only
- (c) Primase, telomerase and topoisomerase only
- (d) All the four enzymes

- 47. Type II hypersensitivity
 - (a) is antibody independent
 - (b) is complement independent
 - (c) is mediated by CD8+T cells
 - (d) involves antibody mediated destruction of cells

- 48. Which of the following statements relating to photosynthesis are CORRECT?
 - P. Carotenoids protect against toxic oxygen species
 - Q. When plants utilize blue light, they can harness more energy than when they utilize red light
 - R. The porphyrin ring in both chlorophyll and bacteriopheophytin has magnesium
 - S. Chemical modification of the porphyrin ring alters its absorption spectrum
 - T. The Z-scheme, depicting the flow of electrons in photosynthesis, is based on oxidation potentials
 - U. Carboxysomes are subcellular structures present in certain prokaryotes
 - V. Efflux of magnesium from the thylakoid lumen into he stroma helps in the activation of RuBisCo
 - (a) P, Q and R

(b) Q, R, S and V

(c) R, S, T and V

(d) P, S, T, U and V

49. Which of the following membranes have a proton-pumping ATPases?

Bacterial plasma membrane **BPM**

CIM Chloroplast inner membrane

TGM Trans-Golgi membrane

LM Lysosomal membrane

MIM Mitochondrial inner membrane

VM Vacuolar membrane

(a) BPM, CIM, MIM and VM

(b) BPM, TGM, MIM and VM

(c) CIM, LM, MIM and VM

- (d) BPM, LM, MIM and VM
- 50. Which one of the following statements is NOT CORRECT?
 - (a) A mass m is enclosed in a spherical shell. The gravitational force on this mass due to another point mass M lying outside the shell is zero
 - (b) When an object of mass m is in motion under a gravitational force, both angular momentum and total mechanical energy are conserved
 - (c) The acceleration due to gravity decreases with increasing altitude
 - (d) The acceleration due to gravity is dependent on the mass of earth
- 51. An electromagnetic wave with a magnetic field vector

 $\vec{B} = 100 \times 10^{-9} \text{ T cos } [(1.8 \text{ rad/m})y + (5.4 \times 10^6 \text{ rad/s})t]\hat{k}$ propagates along

- (a) $+\hat{i}$ and its electric field vector is along $-\hat{i}$ (b) $-\hat{i}$ and its electric field vector is along

 $+\hat{i}$

- (c) $+\hat{j}$ and its electric field vector is along $+\hat{i}$ (d) $-\hat{j}$ and its electric field vector is along

 $-\hat{i}$

- 52. Which one of the following statement is NOT CORRECT?
 - (a) In an unbiased p-n junction, the electric potential of n-side is higher than that of the p-side
 - (b) When a p-n junction is forward biased, the width of the depletion region increases
 - (c) When a p-n junction is forward biased, the forward current is due to both electron and hole diffusion
 - (d) When a p-n junction is forward biased, the potential of the p-side increases

53. Which one of the following statements is **CORRECT** for the reaction

 $2HNO_3(aq) + Cu(s) + 2H^+(aq) \rightarrow 2NO_2(g) + Cu^{2+}(g) + 2H_2O(l)$?

- (a) H⁺ is the oxidizing agent, and Cu is the reducing agent
- (b) H⁺ is the oxidizing agent, and HNO₃ is the reducing agent
- (c) HNO3 is the oxidizing agent, and Cu is the reducing agent
- (d) Cu is the oxidizing agent, and HNO3 is the reducing agent
- 54. Which of the following Fischer projections of glyceraldehyde have identical absolute configuration?

- (a) K, L and M
- (b) J, K and M
- (c) J, K and L
- (d) J, L and M
- 55. In a water solution, the concentration of OH⁻ at 25°C is 10⁻⁵ mole/liter. The concentration of H₃O⁺ is
 - (a) 10^{-19} mole/liter

(b) 10^{-12} mole/liter

(c) 10^{-9} mole/liter

- (d) 10^{-2} mole/liter
- 56. The CORRECT order of basicity of the following amines P, Q, R and S is

(a) S < P < Q < R

(b) R < Q < P < S

(c) Q < P < R < S

- (d) P < Q < S < R
- 57. The values of x and y in the given structure of Nylon 66 are

(a) x = 4 and y = 6

(b) x = 6 and y = 4

(c) x = 6 and y = 6

- (d) x = 4 and y = 4
- 58. In the following transformations, the groups R^1 , R^2 and R^3 are

59.

60.

61.

62.

63.

64.

65.

66.

(c) Diacylglycerol

(a) $R^1 = CH_2OH$, $R^2 = CH_2Br$ and $R^3 = COOH$					
(b) $R^1 = COOH$, $R^2 = CH_2Br$ and $R^3 = CH_2OH$					
(c) $R^1 = COOH$, $R^2 = CH_2OH$ and $R^3 = CH_2Br$					
(d) $R^1 = CH_2Br$, $R^2 = COOH$ and $R^3 = CH_2OH$					
The correct match between items of Column-I and	Co	lumn-II is			
Column-I		Column-II			
P. Friedel-Crafts reaction	1.	Cycloaddition			
Q. Baeyer-Villiger reaction		2. Walden inversion			
R. Diels-Alder reaction	3.	Oxidation			
S. S _N 2 reaction	4.	Aromatic electrophilic substitution			
(a) P-3, Q-2, R-1, S-4	(b)	P-4, Q-3, R-1, S-2			
(c) P-1, Q-2, R-3, S-4	(d)	P-4, Q-3, R-2, S-1			
The molecular shape of XeF ₂ is					
(a) trigonal bipyramidal	(b)	trigonal pyramidal			
(c) V-shape	(d)	linear			
The number of signals in the ¹ H NMR spectra of th	ne fo	ollowing molecules P and Q, respectively,			
are					
	_				
CH ₃					
H_3C — CH — C — CH_3 H_3CO — CH_2 — CH_3					
H ₃ CO CH ₃	1				
P Q					
(a) 6 and 4 (b) 4 and 4	` ′	3 and 3 (d) 4 and 3			
Which of the following can be used as a biological					
	Q.	Bacillus thuringiensis			
R. Bacillus subtilis	S.	Ebola virus			
(a) P and S (b) P and Q	(c)	P and R (d) Q and S			
The number of acetylated amino sugar(s) in the re-	peat	ing unit of peptidoglycan is			
(a) 1 (b) 2	(c)	3 (d) 4			
The genome of an adenovirus is a					
(a) linear double stranded DNA		(b) circular double stranded			
DNA					
(c) plus-strand RNA	` ′	minus-strand RNA			
Which one of the following CANNOT be used to					
(a) Gamma radiation	` '	Ethylene oxide			
(c) Autoclaving	` '	UV radiation			
Which one of the following second messengers tar	_	_			
(a) cAMP	(b)	cGMP			

(d) Inositol 1, 4, 5-triphosphate

67.	Idiogram is				
	(a) a diagrammatic representation of karyotype of a species				
	(b) a diagrammatic representation of isotypic antibodies of a species				
	(c) a diagrammatic re	presentation of the evolut	tionary tree of variou	is species	
	(d) an autoradiogram	profile of isotypic antiboo	dies of a species obta	ained using ¹²⁵ [
68.	Spindle fibers, formed	during the cell division,	are composed of		
	(a) actin	(b) collagen	(c) myosin	(d) tubulin	
69.	<u>-</u>	on representing the family	of circles passing thr	rough the points $(0, -b)$ and	
	(0, b) is				
	$(a) x^2 - y^2 + 2xy\frac{dy}{dx} +$	$b^2 = 0$	(b) $x^2 + y^2 + 2xy$	$y\frac{dy}{dx} + b^2 = 0$	
	(c) $x^2 - y^2 - 2xy \frac{dy}{dx} +$	$b^2 = 0$	(d) $x^2 + y^2 - 2xy$	$y\frac{dy}{dx} + b^2 = 0$	
	πc	osx			
70.	The value of $\int_{-\pi}^{\pi} \frac{a^{\cos x}}{a^{\cos x}} + \frac{1}{2} \frac{a^{\cos x}}$	$\frac{1}{a^{-\cos x}}dx$ is			
	(a) $a^{-\pi}$	(b) a^{π}	(c) -π	(d) π	
71.	The point at which the	e tangent to the curve x^3	$+ y^3 = 6xy$ is parallel	to y-axis (but is not y-axis)	
	is				
	(a) $(4\sqrt[3]{2}, 2\sqrt[3]{2})$	(b) $(2\sqrt[3]{2}, 4\sqrt[3]{2})$	(c) $(2\sqrt[3]{2}, 2\sqrt[3]{4})$	(d) $(2\sqrt[3]{4}, 2\sqrt[3]{2})$	
72.	For $p \ge 0$, $q \ge 0$, if th	e maximum of $px+qy$, su	bject to the constrain	ts $0 \le x$, $0 \le y$, $x + 2y \le 10$	
	and $3x + y \le 15$, exists at points (0, 5) and (4, 3), then the relationship between p and q is				
	(a) $2p = a$	(b) $p = 2q$	(c) p = 3q	(d) $3p = q$	
73.	The set of complex r	numbers z which satisfy	the equation $\lfloor z-3 \rfloor$	(d) $3p = q$ + $ z+3 =10$ in the Argano	
	plane, forms	wine of the same o	one equation (c. e)	1,0,10,10,11.01.01.01.01.01.01.01.01.01.01.01.01.0	
	(a) a circle	(b) a parabola	(c) an ellipse	(d) a hyperbola	
		_	. ,	•	
74.	If $(x+iy)^3 = u+iv$, th	en $\frac{u}{x} + \frac{v}{v}$ is			
			2 2	2 2	
	(a) $4(x^2 + y^2)$	(b) $4(y^2 - x^2)$	(c) $4(x^2 - y^2)$	(d) $-4(x^2 + y^2)$	
75.	Saji and Milind are or	a treasure hunt. The pro	obability that Saji wil	I find it is $\frac{2}{3}$ and that both	
	Saji and Milind will f	ind it simultaneously is $\frac{1}{\epsilon}$. The probability th	at Saji alone finds it is	

(b) $\frac{1}{2}$

(a) $\frac{1}{4}$

(c) $\frac{3}{4}$ (d) $\frac{5}{6}$

76.	Considering the equation $\Delta G^0 = \Delta H^0 - T\Delta S^0$, CORRECT?	which one of the fo	ollowing statements is NOT		
	(a) When ΔG^0 is negative, the reaction is exe	ergonic			
	(b) When ΔG^0 is negative, the reaction can o				
	_	_	41		
	(c) When ΔS^0 is negative, the molecular disorder of the molecular		the reaction		
(d) When ΔH^0 is negative, the reaction is endothermic					
77.	The difference in the energies of the eclipsed a approximately	and staggered conforr	nations of ethane at 25°C is		
	(a) 5.40 kcal/mole	(b) 2.70 kcal/m	ole		
	(c) 0.54 kcal/mole	(d) 0.27 kcal/m	ole		
78.	Which one of the following statements is NOT	Γ CORRECT?			
	(a) The second ionization potential of an atom	n is larger than its fir	est ionization potential		
	(b) Atomic size increases from top to bottom	in a group of the pe	riodic table		
	(c) Electron affinity of an atom is the energy i	required to add an ele	ectron to its outermost orbit		
	(d) Electronegativity of an atom is its ability t	o attract electrons to	wards itself		
79.	Name of the compound $[Co(NH_3)_6]Cl_3$ is				
	(a) cobalt (III) hexaammine chloride	(b) hexaammine	cobalt chloride (III)		
	(c) hexaamminecobalt trichloride	(d)	hexaamminecobalt (III)		
	chloride				
80.	Which one of the following molecules has dip	oole moment?			
	(a) PCl_3 (b) BCl_3	(c) CO ₂	$(d) N_2$		
81.	In a photochemical reaction, light is involved	in			
	(a) initiation step only	(b) propagation	step only		
82.	(c) termination step only Proteasomes are		and termination steps		
02.	(a) proteomes of lysosomes				
	(b) protein complexes which recognize and degrade ubiquitinated proteins				
	(c) protein and cholesterol complexes which help in cholesterol transport				
	(d) protein and RNA complexes which are in	•	-		
	(d) protein and Kivi complexes which are in-	voived in mixtvi spii	Cing		
	$\begin{bmatrix} -1 & 0 < x \le 1 \end{bmatrix}$				
83.	For the function $f(x) = \begin{cases} 2 & 1 < x < 2 \end{cases}$				
	For the function $f(x) = \begin{cases} -1 & 0 < x \le 1 \\ 2 & 1 < x < 2 \\ x & 2 \le x < 4 \end{cases}$				
	(a) limit exists but is not continuous at 1	(b) limit exists	and is continuous at 1		

- (c) limit exists but is not continuous at 2
- (d) limit exists and is continuous at 2
- 84. The minimum value of the function $x^3 6x^2 + 9x + 10$ in the interval [0, 4] is at
 - (a) 1 only
- (b) 1 and 3
- (c) 0 and 3
- (d) 3 only

85. The equation of the plane passing through the line of intersec				of the planes $3x + 2y = 5$ and	
		containing the point (1,			
	(a) $14x - 9y + 2z = 2$		(b) $14x + 9y - 2$		
	(c) $9x + 14y - 2z = 31$		(d) $9x+14y+1$	2z = 43	
86.	If \hat{a} and \hat{b} are unit v	vectors inclined at an an	gle θ , then $ \hat{a} - \hat{b} $ i	s	
	(a) $2\cos\frac{\theta}{2}$	(b) $2\sin\theta$	(c) $2\cos\theta$	(d) $2\sin\frac{\theta}{2}$	
87.	For $A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 3 & -1 \\ -3 & 1 & 4 \end{bmatrix}$, the value of the dete	rminant of adjoint of	A is	
	(a) 576	(b) 529	(c) 441	(d) 361	
88.	The converse of the s	tatement " $x = 2$ implies			
	(a) $x^2 = 4$ implies $x = 4$	= 2	(b) $x^2 = 4$ imp	olies $x = -2$	
	(c) $x^2 = 4$ implies (x	= 2 or x = -2)	(d) $x^2 = 4 \text{ imp}$	plies $(x=2 \text{ and } x=-2)$	
89.	The number of function	ons from the set $\{a,b,c,$	d } to the set {1, 2, 3}	is	
	(a) 12	(b) 36	(c) 64	(d) 81	
90.				e set of rational numbers, \mathbb{R} There is a bijection between	
91.	(a) a delayed rejection(b) low serum levels		(c) \mathbb{R} and \mathbb{Q} cken results in	(d) \mathbb{Q} and \mathbb{C}	
92.	(c) anemia(d) a marked decreaseA mouse, which lacks	e in the number of circu	lating T lymphocytes		
<i>72</i> .	(a) SCID mouse	thymus, is caned	(b) NUDE mo	use	
	(c) BEIGE mouse		(d) CBA/N mo		
93.	Which one of the follo	owing is a gratuitous inc	ducer of the lac oper	on?	
	(a) Galactose- $\beta(1, 6)$	-glucose	(b) Galactose-	$\beta(1, 4)$ -glucose	
	(c) O-Nitrophenylgala	ctoside	(d) Isopropyl-	3-thiogalactoside	
94.	Which of the following statements pertaining to cell and tissue culture are CORRECT? P. In a tissue culture incubator, increasing the partial pressure of CO ₂ results in a decrease of the pH of the medium				
	Q. An inactive telomerase is required for a cell to achieve immortality				
	R. Antibiotics are added to the culture media to prevent microbial contamination S. Hayflick limit refers to the number of cells that can grow in a culture flask				
	T. Serum proteins are required for the adhesion of cells to the surface of a solid substrate				
	(a) P, Q, S and T	1	(b) P, Q and T		
	(c) P, R and T		(d) Q, R and T		

95. In the schematic shown below, P, Q, R, S, T, U and V are metabolites.

The dotted lines denote

- (a) sequential feedback inhibition
- (c) repression

- (b) negative feedback inhibition
- (d) cumulative feedback inhibition
- The correct match between items of Column I and Column II is 96.

Column-I

- P. Co²⁺ (aq)
- Q. Zn^{2+} (aq)
- R. Cu^{2+} (aq)
- S. Ni²⁺ (aq)
- (a) P-3, Q-1, R-2, S-4
- (c) P-3, Q-4, R-2, S-1

Column-II

- 1. Colorless
- 2. Blue
- 3. Pink
- 4. Green
- (b) P-4, Q-2, R-1, S-3
- (d) P-2, Q-4, R-1, S-3
- 97. Considering the acidities of the given molecules, which one of the following orders is NOT CORRECT?
 - (a) $CH_4 < NH_3 < H_2O < HF$

(c) HF < HCl < HBr < HI

- (b) $SiH_4 < PH_3 < H_2S < HCl$ (d) $H_2O < H_2S < H_2Te < H_2Se$
- 98. Which one of the following alcohols undergoes dehydration with rearrangement involving a methyl migration?

(a)
$$H_3C$$
 CH_3 OH

(b)
$$H_3C$$
 OH

(d)
$$H_3C$$
 OH

99. Which one of the following compounds gives acetone as one of the products when treated sequentially with (i) O₃ and (ii) Me₂S?

(a)
$$H_3C$$
 CH_2 CH_3

(d)
$$CH_3$$

The units of rate constant (k) of a reaction are $\left(\frac{\text{liters}}{\text{mole}}\right)^{3} \frac{1}{s}$. If the order of the reaction is $\frac{3}{2}$, the 100.

value of x is

(a) 0

(b) $\frac{1}{2}$

- (c) 1 (d) $\frac{3}{2}$