IIT-JAM MATHEMATICS
 Test : Differential Calculus

Time: 60 Minutes
Date : 06-08-2017
M.M. : 40

INSTRUCTION:

1. Attempt all the questions.
2. Section-A contains 5 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q. 1 to Q. 5 carries 1 Mark each. For each incorrect answer $\mathbf{1} / 4^{\text {th }}$ mark will be deducted.
3. Section-B contains 5 Multiple Select Questions (MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. Q. 6 to Q. 10 for each correct answer you will be awarded 3 marks. There is no negative marking in this section.
4. Section-C contains 5 Numerical Answer Type (NAT) questions. Q. 11 to Q. 15 carries 2 Marks each. There is no negative marking in this section.
5. Section-D contains 5 True \& False Questions. $\mathbf{Q} .16$ to $\mathbf{Q} .20$ carries $\mathbf{2}$ Marks each. For each incorrect answer-1 mark will be deducted.

SECTION-A [Multiple Choice Questions]

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=\left\{\begin{array}{cc}
\left|x^{2}-2 x\right| & ; \\
x \in Q^{c} \\
x ; & x \in Q
\end{array}\right.
$$

Then f is continuous at
(a) $x=0, x=1, x=3$
(b) $x=0, x=1$
(c) $x=0, x=3$
(d) $x=3, x=1$
2. Let f be a function that is continuous everywhere and let
$F(x)=\left\{\begin{array}{ccc}\frac{f(x) \sin ^{2} x}{x} & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$
Then, $F^{\prime}(0)=$
(a) 0
(b) $f(0)$
(c) $f^{\prime}(0)$
(d) does not exist
3. The domain of the function $f(x)=\frac{\ln (\ln (\ln x))}{x-3}+\sin x$ is
(a) $(0,3)$
(b) $(e, 3)$
(c) $(0,3) \cup(3, \infty)$
(d) $(e, 3) \cup(3, \infty)$
4. Suppose $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} f(x) g(x)$ are exist then $\lim _{x \rightarrow a} g(x)$ is
(a) exists
(b) does not exist
(c) always exist
(d) none of these
5. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows
$f(x)=\left\{\begin{array}{ccc}1 & \text { if } & x \in Q \\ \frac{\sin x}{x} & \text { if } & x \in Q^{c}\end{array}\right.$
Then,
(a) f is continuous everywhere
(b) f is continuous only at $x=0$
(c) f is continuous all rational points
(d) f is continuous at all irrational points

SECTION-B [Multiple Select Questions]

6. If $y=a \log x+b x^{2}+x$ has its extremum value at $x=-1$ and $x=2$, then
(a) $a=2, b=-1$
(b) $a=2, b=-1 / 2$
(c) $a=-1 / 2, b=1 / 2$
(d) none of these
7. Consider $f(x)=|x|^{3}$, then which of the following is TRUE ?
(a) $f(x)$ is continuous but not differentiable at 0
(b) $f(x)$ is differentiable at 0 and $f^{\prime}(0)=0$
(c) $f^{\prime}(x)$ is also differentiable at $x=0$
(d) $f^{\prime \prime}(x)$ is also differentiable at $x=0$
8. Let $A=\{x \in \mathbb{R}: x>0\}$
$h(x)=\left\{\begin{array}{lll}0 & \text { if } & x \in A \cap Q^{c} \\ \frac{1}{n} & \text { where } & x=\frac{m}{n}(m \text { and } n \text { have no common factor other than 1) and } x \in A \cap Q\end{array}\right.$
Then,
(a) h is continuous everywhere
(b) h is discontinuous everywhere
(c) h is continuous for rationals in A and discontinuous for irrationals in A
(d) h is continuous for irrationals in A and discontinuous for rationals in A
9. Consider the statement :
$\mathrm{S}_{1}:$ Let $f(x)=x$ and $g(x)=\sin x$, then both f and g are uniformly continuous on \mathbb{R}
$\mathrm{S}_{2}:$ Define $h(x)=x \sin x$, then $h(x)$ is also uniformly continuous on \mathbb{R}
(a) Only S_{1} is true
(b) Only S_{2} is true
(c) Both are true
(d) Both are false
10. Which of the following maps are differentiable everywhere ?
(a) $f(x)=|x|^{3} x, x \in R$
(b) $f: R \rightarrow R$ such that $|f(x)-f(y)| \leq|x-y|^{\sqrt{2}} \forall x \in \mathbb{R}$
(c) $f(x)=x^{3} \sin \frac{1}{\sqrt{|x|}} ; x \neq 0$ and $f(0)=0$
(d) none of these

SECTION-C [Numerical Answer Type]

11. The value of $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$ is \qquad
12. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=|\sin x|+|\cos x| \forall x \in \mathbb{R}$, then the point(s) where f is not differentiable is/are \qquad
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(x)=x+x^{2}+|x-1| \forall x \in \mathbb{R}$, then f is not differentiable at $x=$ \qquad
14. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be continuous function such that $\int_{0}^{x} f(t) d t=-2+\frac{x^{2}}{2}+4 x \sin 2 x+3 \cos 2 x$, then the value of $\frac{1}{(\pi-8)} f\left(\frac{\pi}{4}\right)$ is \qquad
15. If f be a real valued differentiable function on $[a, \infty)$ where $a \geq 1$ such that $f(1)=3$, if $2 \int_{2}^{x} f(t) d t=x f(x)+x^{3} \forall x \geq 1$, then $f(2)=$ \qquad

SECTION-D [True \& False]

16. The function $f(x)=|x|^{1 / 2} x$ is differentiable at $x=0$
17. Let $f(x)=x \sin \left(\frac{1}{x}\right): \forall x \in(0,1]$, then f is not uniformly continuous on $(0,1]$.
18. Let $I \subseteq \mathbb{R}$ be an interval and a function $f: I \rightarrow \mathbb{R}$ is differentiable on I such that f^{\prime} is monotonic on I, then f^{\prime} is continuous on I.
19. Let $f:[a, b] \rightarrow[a, b]$ be differentiable and assume that $f^{\prime}(x) \neq 1$ for $x \in(a, b)$, then f has a unique fixed point in $[a, b]$.
20. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and bijective, then f^{-1} is also differentiable.

IIT-JAM MATHEMATICS
 Test : Differential Calculus

Date : 06-08-2017

ANSWER KEY

SECTION-A [Multiple Choice Questions]

1. (a)
2. (b)
3. (d)
4. (b)
5. (b)

SECTION-B [Multiple Select Questions]
6. (b)
10. (a, b, c)
11. (-0.33)
13. (1)
16. (True)
20. (False)
7. (b, c)
8. (d)
9. (a)

SECTION-C [Numerical Answer Type]

SECTION-D [True \& False]

12. $x=n \pi, n \pi+\frac{\pi}{2}$, where $n \in \mathbb{Z}$
13. (0.25)
14. (0)
(0)
15. (False)
16. (True)
17. (True)
