IIT-JAM MATHEMATICS
 Test : Differential Equation

Time : 60 Minutes
Date : 08-06-2017
M.M. : 50

INSTRUCTION:

1. Attempt all the questions.
2. Section-A contains $\mathbf{1 5}$ Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q. 1 to Q. 5 carries 1 Mark and Q. 6 to Q. 15 carries 2 Marks each. For each incorrect answered $\mathbf{1 / 4}{ }^{\text {th }}$ mark will be deducted.
3. Section-B contains 5 Multiple Select Questions (MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. Q. 16 to Q. 20 for each correct answer you will be awarded $\mathbf{3}$ marks. There is no negative marking in this section.
4. Section-C contains 5 Numerical Answer Type (NAT) questions. Q. 21 to Q. 25 carries 2 Marks each. There is no negative marking in this section.

SECTION-A [Multiple Choice Questions]

1. Let $y=e^{\left(y^{\prime}+y^{\prime}\right)}$, then sum of degree and order of given ordinary differential equation is
(a) 3
(b) 2
(c) 1
(d) can not determine
2. The differential equation of the system of parabolas $y^{2}=4 a(x-b)$ is given by
(a) $\frac{d y}{d x}=\frac{2 a}{y}$
(b) $y^{2} \frac{d^{2} y}{d x^{2}}+2 a \frac{d y}{d x}=0$
(c) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
(d) $\left(y^{\prime}\right)^{2}+y^{\prime \prime}=0$
3. The differential equation $\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right) d x+\left(\frac{A x+1}{y^{3}}\right) d y=0$ is exact and has the solution.
(a) $A=-2$ and $2 x^{2}-2 y^{2}-x=c x y^{2}, c$ is constant
(b) $A=+2$ and $2 x^{2}-2 y^{2}-x=c x y, c$ is constant
(c) $A=-2$ and $2 x^{2}+2 y^{2}-x=c x y, c$ is constant
(d) $A=2$ and $2 x^{2}+2 y^{2}-x=c x y^{2}, c$ is constant
4. Let the general solution of a differential equation be $y=a e^{b x+c}$, then order of the differential equation is
(a) 1
(b) 2
(c) 3
(d) can not say
5. Let $y^{\prime}=y e^{x}$ be the differential equation, let y be a solution passing through $(0, e)$, then $y(1)$ is
(a) e
(b) e^{e}
(c) 1
(d) 0
6. The order of the differential equation of all circles of given radius a is
(a) 1
(b) 2
(c) 3
(d) 4
7. The solution of the differential equation $2 x \frac{d y}{d x}-y=3$ represents a family of
(a) straight line
(b) circles
(c) parabolas
(d) ellipses
8. The differential equation $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$ is
(a) Homogeneous equation
(b) Variable separable equation
(c) Exact differential equation
(d) Linear equation

From Q. No. 9 to Q. No. 13, each question contains, Statement-I (Assertion) and Statement-II (Reason). Each question has 4 choices (a), (b), (c) and (d), out of which only one is correct. So select the correct choices.
Choices are
(a) If Statement-I is true, Statement-II is correct explanation of Statement-I.
(b) If Statement-I is true, but Statement-II is not correct explanation of Statement-I.
(c) If Statement-I is true, Statement-II is false
(d) If Statement-I is false, Statement-II is true
9. Statement-I : The order of the differential equation formed by the family of curve $y=c_{1} e^{x}+\left(c_{2}+c_{3}\right) e^{x+c_{4}}$ is 1 . Here $c_{1}, c_{2}, c_{3}, c_{4}$ are arbitrary constant.
Statement-II : The order of differential equation formed by any family of curve is equal to the number of arbitrary constants present in it.
10. Statement-I : The degree of differential equation $3 \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\log \left(\frac{d^{2} y}{d x^{2}}\right)$ is not defined.

Statement-II : The degree of differential equation is the power of highest order derivative when differential equation has expressed as polynomial of derivatives.
11. Statement-I : The differential equation $y^{3} d y+\left(x+y^{2}\right) d x=0$ becomes homogeneous if we put $y^{2}=t$. Statement-II : All differential equation of first order and first degree becomes homogenous if we put $y=t x$.
12. Statement-I : The differential equation of the family of curves represented by $y=A e^{x}$ is given by $\frac{d y}{d x}=y$.

Statement-II : $\frac{d y}{d x}=y$ is valid for every member of the given family.
13. Statement-I : Solution of differential equation $d y\left(x^{2} y-1\right)+d x\left(y^{2} x-1\right)=0$ is $\frac{x^{2} y^{2}}{2}=x+y+c$.

Statement-II : Order of differential equation of family of circle touching the coordinate axis is 1 .
14. The solution of $\frac{x d x-y d y}{x d y-y d x}=\sqrt{\frac{1+x^{2}-y^{2}}{x^{2}-y^{2}}}$ is
(a) $\sqrt{x^{2}-y^{2}}+\sqrt{1+x^{2}-y^{2}}=\frac{c(x+y)}{\sqrt{x^{2}-y^{2}}}$
(b) $\sqrt{x^{2}-y^{2}}+\sqrt{1-x^{2}+y^{2}}=\frac{c(x+y)}{\sqrt{x^{2}-y^{2}}}$
(c) $\sqrt{x^{2}-y^{2}}-\sqrt{1+x^{2}-y^{2}}=\frac{c(x-y)}{\sqrt{x^{2}-y^{2}}}$
(d) $\sqrt{x^{2}-y^{2}}-\sqrt{1-x^{2}+y^{2}}=\frac{c(x-y)}{\sqrt{x^{2}-y^{2}}}$
15. The solution of $\frac{d y}{d x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right)$ is
(a) $\ln \left|\tan \frac{y}{4}\right|=c+2 \sin \frac{x}{2}$
(b) $\ln \left|\tan \frac{y}{4}\right|=c-2 \sin \frac{x}{2}$
(c) $\ln \left|\tan \frac{y}{4}\right|=c+2 \cos \frac{x}{2}$
(d) $\ln \left|\tan \frac{y}{4}\right|=c-2 \cos \frac{x}{2}$

SECTION-B [Multiple Select Questions]

16. Consider the family of all circles whose centres lie on the straight line $y=x$, if this family of circles is represented by the differential equation $P y^{\prime \prime}+Q y^{\prime}+1=0$, where P, Q are functions of x, y and y^{\prime}, then which of the following statements is / are true?
(a) $P=y+x$
(b) $P=y-x$
(c) $P+Q=1-x+y+y^{\prime}+\left(y^{\prime}\right)^{2}$
(d) $P-Q=x+y-y^{\prime}-\left(y^{\prime}\right)^{2}$
17. A tangent drawn to the curve, $y=f(x)$ at $P(x, y)$ cuts the x-axis and y-axis at A and B respectively such that $B P: A P=3: 1$, given that $f(1)=1$, then
(a) Equation of the curve is $x \frac{d y}{d x}-3 y=0$
(b) Equation of the curve is $x \frac{d y}{d x}+3 y=0$
(c) Curve passes through $(2,1 / 8)$
(d) Normal at $(1,1)$ is $x+3 y=y$
18. The solution of primitive integral equation $\left(x^{2}+y^{2}\right) d y=x y d x$ is $y=y(x)$. If $y(1)=1$ and $y\left(x_{0}\right)=e$ then x_{0} is
(a) $\sqrt{2\left(e^{2}-1\right)}$
(b) $\sqrt{2\left(e^{2}+1\right)}$
(c) $\sqrt{3} e$
(d) $\sqrt{\frac{e^{2}+1}{2}}$
19. The initial value problem $y^{\prime}=\sqrt{y}, y(0)=\alpha, \alpha>0$ has
(a) at least two solutions if $\alpha=0$
(b) no solution if $\alpha>0$
(c) at least one solution if $\alpha>0$
(d) a unique solution if $\alpha=0$
20. A solution of $\left(x^{2} y^{2}+y^{4}+2 x\right) d x+2 y\left(x^{3}+x y^{2}+1\right) d y=0$ is
(a) $x^{2}+\log \left|x^{2}-y^{2}\right|=$ constant
(b) $x^{2} y+\log \left|x^{2}-y^{2}\right|=$ constant
(c) $x^{2} y+\log \left(x^{2}+y^{2}\right)=$ constant
(d) $x y^{2}+\log \left(x^{2}+y^{2}\right)=$ constant

SECTION-C [Numerical Answer Type]

21. The order and degree of $\sin \left(\frac{d y}{d x}+\frac{d^{2} y}{d x^{2}}\right)=y$ is \qquad
22. The integrating factor of $y\left(x y+2(x y)^{2}\right) d x+x\left(x y-(x y)^{2}\right) d y=0$ is $(x y)^{\alpha}$, then α is \qquad
23. The solution of the differential equation $\frac{d y}{d x}=e^{x+y}, y(1)=1$ at $x=-1$ is \qquad
24. Let $y^{\prime}=(x+y)^{2}$ and $y(0)=0$, then $y\left(\frac{\pi}{4}\right)+\frac{\pi}{4}$ is \qquad
25. The degree of the differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{c})$, where c is a positive parameter is \qquad

CAREER ENDEAVOUR

IIT-JAM MATHEMATICS
 Test : Differential Equation

Date : 08-06-2017

ANSWER KEY

SECTION-A [Multiple Choice Questions]

