IIT-JAM MATHEMATICS

Test: Differential Equation

Time: 60 Minutes Date: 08-06-2017

M.M.: 50

INSTRUCTION:

1. Attempt all the questions.

- 2. Section-A contains 15 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q.1 to Q.5 carries 1 Mark and Q.6 to Q.15 carries 2 Marks each. For each incorrect answered 1/4th mark will be deducted.
- Section-B contains 5 Multiple Select Questions (MSQ). Each question has 4 choices (a), (b), (c) 3. and (d) for its answer, out of which ONE or MORE than ONE is/are correct. Q.16 to Q. 20 for each correct answer you will be awarded 3 marks. There is no negative marking in this section.
- Section-C contains 5 Numerical Answer Type (NAT) questions. Q.21 to Q.25 carries 2 Marks each. 4. There is no negative marking in this section.

SECTION-A [Multiple Choice Questions]

1.	Let $y = e^{(y'+y'')}$, then sum of degree and order of given ordinary differential equation is			
	(a) 3	(b) 2	(c) 1	(d) can not determine
2.	The differential equation of	the system of parabolas	$y^2 = 4a(x-b)$ is give	n by

(a)
$$\frac{dy}{dx} = \frac{2a}{y}$$
 (b) $y^2 \frac{d^2y}{dx^2} + 2a \frac{dy}{dx} = 0$ (c) $yy'' + (y')^2 = 0$ (d) $(y')^2 + y'' = 0$

The differential equation $\left(\frac{1}{x^2} + \frac{1}{y^2}\right) dx + \left(\frac{Ax+1}{y^3}\right) dy = 0$ is exact and has the solution.

- 3.
 - (a) A = -2 and $2x^2 2y^2 x = cxy^2$, c is constant
 - (b) A = +2 and $2x^2 2y^2 x = cxy$, c is constant
 - (c) A = -2 and $2x^2 + 2y^2 x = cxy$, c is constant
 - (d) A = 2 and $2x^2 + 2y^2 x = cxy^2$, c is constant
- Let the general solution of a differential equation be $y = ae^{bx+c}$, then order of the differential equation is 4.

(b) 2

- (c) 3
- (d) can not say
- Let $y' = ye^x$ be the differential equation, let y be a solution passing through (0, e), then y(1) is 5.
 - (a) *e*

(b) e^e

- (c) 1
- (d) 0

- 6. The order of the differential equation of all circles of given radius a is
 - (a) 1

(b) 2

- (c) 3
- (d) 4
- 7. The solution of the differential equation $2x \frac{dy}{dx} y = 3$ represents a family of
 - (a) straight line
- (b) circles
- (c) parabolas
- (d) ellipses

- 8. The differential equation $xdy ydx = \sqrt{x^2 + y^2} dx$ is
 - (a) Homogeneous equation

(b) Variable separable equation

(c) Exact differential equation

(d) Linear equation

From Q. No. 9 to Q. No. 13, each question contains, Statement-I (Assertion) and Statement-II (Reason). Each question has 4 choices (a), (b), (c) and (d), out of which only one is correct. So select the correct choices.

Choices are

- (a) If Statement-I is true, Statement-II is correct explanation of Statement-I.
- (b) If Statement-I is true, but Statement-II is not correct explanation of Statement-I.
- (c) If Statement-I is true, Statement-II is false
- (d) If Statement-I is false, Statement-II is true
- 9. Statement-I: The order of the differential equation formed by the family of curve $y = c_1 e^x + (c_2 + c_3) e^{x+c_4}$

is 1. Here c_1, c_2, c_3, c_4 are arbitrary constant.

Statement-II: The order of differential equation formed by any family of curve is equal to the number of arbitrary constants present in it.

10. Statement-I: The degree of differential equation $3\sqrt{1+\left(\frac{dy}{dx}\right)^2} = \log\left(\frac{d^2y}{dx^2}\right)$ is not defined.

Statement-II: The degree of differential equation is the power of highest order derivative when differential equation has expressed as polynomial of derivatives.

- 11. Statement-I: The differential equation $y^3dy + (x + y^2)dx = 0$ becomes homogeneous if we put $y^2 = t$. Statement-II: All differential equation of first order and first degree becomes homogeneous if we put y = tx.
- 12. Statement-I: The differential equation of the family of curves represented by $y = Ae^x$ is given by $\frac{dy}{dx} = y$.

Statement-II: $\frac{dy}{dx} = y$ is valid for every member of the given family.

13. Statement-I: Solution of differential equation $dy(x^2y-1) + dx(y^2x-1) = 0$ is $\frac{x^2y^2}{2} = x + y + c$.

Statement-II: Order of differential equation of family of circle touching the coordinate axis is 1.

14. The solution of
$$\frac{xdx - ydy}{xdy - ydx} = \sqrt{\frac{1 + x^2 - y^2}{x^2 - y^2}}$$
 is

(a)
$$\sqrt{x^2 - y^2} + \sqrt{1 + x^2 - y^2} = \frac{c(x+y)}{\sqrt{x^2 - y^2}}$$

(b)
$$\sqrt{x^2 - y^2} + \sqrt{1 - x^2 + y^2} = \frac{c(x+y)}{\sqrt{x^2 - y^2}}$$

(c)
$$\sqrt{x^2 - y^2} - \sqrt{1 + x^2 - y^2} = \frac{c(x - y)}{\sqrt{x^2 - y^2}}$$

(d)
$$\sqrt{x^2 - y^2} - \sqrt{1 - x^2 + y^2} = \frac{c(x - y)}{\sqrt{x^2 - y^2}}$$

15. The solution of
$$\frac{dy}{dx} + \sin\left(\frac{x+y}{2}\right) = \sin\left(\frac{x-y}{2}\right)$$
 is

(a)
$$\ln \left| \tan \frac{y}{4} \right| = c + 2 \sin \frac{x}{2}$$

(b)
$$\ln \left| \tan \frac{y}{4} \right| = c - 2 \sin \frac{x}{2}$$

(c)
$$\ln \left| \tan \frac{y}{4} \right| = c + 2 \cos \frac{x}{2}$$

(d)
$$\ln \left| \tan \frac{y}{4} \right| = c - 2 \cos \frac{x}{2}$$

SECTION-B [Multiple Select Questions]

16. Consider the family of all circles whose centres lie on the straight line y = x, if this family of circles is represented by the differential equation Py'' + Qy' + 1 = 0, where P, Q are functions of x, y and y', then which of the following statements is / are true?

(a)
$$P = y + x$$

(b)
$$P = y - x$$

(c)
$$P+Q=1-x+y+y'+(y')^2$$

(d)
$$P - Q = x + y - y' - (y')^2$$

- 17. A tangent drawn to the curve, y = f(x) at P(x, y) cuts the x-axis and y-axis at A and B respectively such that BP: AP = 3:1, given that f(1) = 1, then
 - (a) Equation of the curve is $x \frac{dy}{dx} 3y = 0$ (b) Equation of the curve is $x \frac{dy}{dx} + 3y = 0$

(c) Curve passes through (2, 1/8)

- (d) Normal at (1, 1) is x + 3y = y
- The solution of primitive integral equation $(x^2 + y^2)dy = xydx$ is y = y(x). If y(1) = 1 and $y(x_0) = e$ then 18. x_0 is
 - (a) $\sqrt{2(e^2-1)}$
- (b) $\sqrt{2(e^2+1)}$
- (c) $\sqrt{3}e$
- (d) $\sqrt{\frac{e^2+1}{2}}$

- The initial value problem $y' = \sqrt{y}$, $y(0) = \alpha$, $\alpha > 0$ has 19.
 - (a) at least two solutions if $\alpha = 0$

(b) no solution if $\alpha > 0$

(c) at least one solution if $\alpha > 0$

(d) a unique solution if $\alpha = 0$

- 20. A solution of $(x^2y^2 + y^4 + 2x)dx + 2y(x^3 + xy^2 + 1)dy = 0$ is
 - (a) $x^2 + \log |x^2 y^2| = \text{constant}$

(b) $x^2y + \log |x^2 - y^2| = \text{constant}$

(c) $x^2y + \log(x^2 + y^2) = \text{constant}$

(d) $xy^2 + \log(x^2 + y^2) = \text{constant}$

SECTION-C [Numerical Answer Type]

- 21. The order and degree of $\sin\left(\frac{dy}{dx} + \frac{d^2y}{dx^2}\right) = y$ is _____
- 22. The integrating factor of $y(xy+2(xy)^2)dx + x(xy-(xy)^2)dy = 0$ is $(xy)^{\alpha}$, then α is ______
- 23. The solution of the differential equation $\frac{dy}{dx} = e^{x+y}$, y(1) = 1 at x = -1 is ______
- 24. Let $y' = (x+y)^2$ and y(0) = 0, then $y(\frac{\pi}{4}) + \frac{\pi}{4}$ is _____
- 25. The degree of the differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive parameter is _____

CAREER ENDEAVOUR

IIT-JAM MATHEMATICS Test: Differential Equation

Date: 08-06-2017

ANSWER KEY

SECTION-A [Multiple Choice Questions]

 1. (a)
 2. (c)
 3. (a)
 4. (b)
 5. (b)

 6. (b)
 7. (c)
 8. (a)
 9. (c)
 10. (a)

 11. (c)
 12. (a)
 13. (b)
 14. (a)
 15. (b)

SECTION-B [Multiple Select Questions]

16. (b, c) **17.** (b, c) **18.** (c) **19.** (a, c) **20.** (d)

SECTION-C [Numerical Answer Type]

21. (Order 2, Degree 1) **22.** ($\alpha = -3$) **23.** (-1) **24.** (+1) **25.** (3)

CAREER ENDEAVOUR

