IIT-JAM MATHEMATICS
 Test : Modern Algebra

Time : 60 Minutes
Date : 08-10-2017
M.M. : 45

INSTRUCTION:

1. Section-A contains $\mathbf{1 0}$ Multiple Choice Questions (MCQ). Each question has $\mathbf{4}$ choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q. 1 to Q. 10 carries 2 Marks each. For each incorrect answered 0.5 mark will be deducted.
2. Section-B contains 5 Multiple Select Questions (MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. Q. 11 to Q. 15 for each correct answer you will be awarded 3 marks. There is no negative marking in this section.
3. Section-C contains 5 Numerical Answer Type (NAT) questions. Q. 16 to Q. 20 carries $\mathbf{2}$ Marks each. There is no negative marking in this section.

SECTION-A [Multiple Choice Questions]

1. Assume that the equation $x y z=1$ holds in a group. Then
A) $y z x=1$
B) $y x z=1$
C) $x z y=1$
D) None
2. If every element of a group G is its own inverse, then G is
A) Cyclic group
B) Finite group
C) Infinite group
D) Abelian group
3. A Relation R is defined on the set of integers as $a R b$ if and only if a^{2} and b^{2} is not prime to each other, then Relation does not satisfy the property
A) Reflexive
B) Symmetric
C) Transitive
D) None
4. If p is a prime number and G is a non-abelian group of order p^{3} then the centre of has exactly
A) $(p+1)$ elements
B) p^{2} elements
C) p elements
D) $(p-1)$ elements
5. Let G be a Group and let H and K be two subgroup of G . If both H and K have 12 elements then which of the following numbers cannot be the cardinality of the set

$$
H K=\{h k ; h \in H, k \in K\} ?
$$

A) 72
B) 60
C) 48
D) 36
6. $\quad \ln U(40)$, the cyclic subgroup of order 4 are
A) 4
B) only one
C) at most equal to the order of the group
D) exactly two
7. The elements of order 5 in S_{7} are
A) 120
B) 21
C) 504
D) 24
8. Consider the following statements:

Statement A: All cyclic group are Abelian.
Statement B: The order of a cyclic group is same as the order of its generator.

Choose the correct option,
A) Both A and B are false
B) A is true, B is false
C) B is true, A is false
D) A and B are true
9. If $14=172(\bmod x)$, then x can take the value
A) 38
B) 54
C) 66
D) 79
10. The order of permutation
$\rho=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 9 & 6 & 5 & 4 & 2 & 3 & 1\end{array}\right)$ is
A) 3
B) 9
C) 6
D) 4

SECTION-B [Multiple Select Questions]

11. An example of an infinite group in which every element has finite order is
A) Non- singular 2×2 matrices with integer entries
B) $\left(\frac{\mathbb{Q}}{\mathbb{Z}},+\right)=\{r+\mathbb{Z}: r \in \mathbb{Q}\}$ Under addition defined as

$$
\left(\left(r_{1}+\mathbb{Z}\right)+\left(r_{2}+\mathbb{Z}\right)\right)=\left(r_{1}+r_{2}\right)+\mathbb{Z}
$$

C) The invertible elements in \mathbb{Z} under addition
D) The Quaternion group
12. Let a_{n} denote the number of those permutations σ on $\{1,2, \ldots \ldots \ldots n\}$ such that σ is a product of exactly two disjoint cycles. Then
A) $a_{5}=5$
B) $a_{4}=14$
C) $a_{5}=40$
D) $a_{4}=11$
13. Let G be a finite group of order n. Pick each correct statements from below-
A) if d divides n, there exist a subgroup of G of order d.
B) if d divides n, there exist an element of order d in G.
C) if every proper subgroup of G is cyclic, then G is cyclic.
D) None of these
14. Which of the following prime satisfy the congruence

$$
a^{24}=6 a+2
$$

A) 41
B) 47
C) 67
D) 83
15. The following table defines a cyclic group

	A	B	C	D
A	C	A	D	B
B	A	B	C	D
C	D	C	B	A
D	B	D	A	C

The generators are
A) D
B) C
C) B
D) A

SECTION-C [Numerical Answer Type]

16. If $7 x=13(\bmod 11)$, then the value of x is
17. Let $o(G)=24$ and G is cyclic. If $a \in G$ such that $a^{8} \neq$ $e, a^{12} \neq e$ then order of a is------------------.
18. In A_{4} number of elements satisfying $x^{4}=e$ are -------------.
19. The last two digit of the number $37^{37^{21}}$ is
20. The number of cyclic subgroup of D_{8} are----------------

IIT-JAM MATHEMATICS
Test : Modern Algebra
Time : 60 Minutes
Date : 08-10-2017
M.M. : 45

ANSWER KEY

SECTION-A [Multiple Choice Questions]

1. (a)
2. (d)
3. (a, c)
4. (c)
5. (b)
6. (a)
7. (c)
8. (d)
9. (d)
10. (c)

SECTION-B [Multiple Select Questions]
11. (b)
12. (d)
13. (d)
14. (a, c)
15. (a, d)

SECTION-C [Numerical Answer Type]
16. (5)
17. (24)
18. (4)
19. (17)
20. (12)

