

IIT-JAM MATHEMATICS

Test : Modern Algebra

Time : 60 Minutes

Date : 08-10-2017 M.M. : 45

INSTRUCTION:

- 1. Section-A contains 10 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q.1 to Q.10 carries 2 Marks each. For each incorrect answered 0.5 mark will be deducted.
- 2. Section-B contains 5 Multiple Select Questions (MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. Q.11 to Q. 15 for each correct answer you will be awarded 3 marks. There is no negative marking in this section.
- 3. Section-C contains 5 Numerical Answer Type (NAT) questions. Q.16 to Q.20 carries 2 Marks each. There is no negative marking in this section.

SECTION-A [Multiple Choice Questions]

1. Assume that the equation xyz = 1 holds in a group. Then

A)yzx = 1 B) yxz = 1 C) xzy = 1 D) None

- 2. If every element of a group G is its own inverse, then G is
 - A) Cyclic group B) Finite group
 - C) Infinite group D) Abelian group

3. A Relation *R* is defined on the set of integers as aRb if and only if a^2 and b^2 is not prime to each other, then Relation does not satisfy the property

A) Reflexive	B) Symmetric	C) Transitive	D) None
--------------	--------------	---------------	---------

4. If p is a prime number and G is a non-abelian group of order p^3 then the centre of has exactly

A) $(p + 1)$ elements	B) p^2 elements
C) p elements	D) $(p-1)$ elements

5. Let *G* be a Group and let *H* and *K* be two subgroup of G. If both *H* and *K* have 12 elements then which of the following numbers cannot be the cardinality of the set

 $HK = \{hk ; h \in H, k \in K\}?$

A) 72	B) 60	C) 48	D) 36

6. In U (40), the cyclic subgroup of order 4 are

A) 4 B) only one

C) at most equal to the order of the group

D) exactly two

7. The elements of order 5 in S_7 are

A) 120 B) 21 C) 504 D) 24

8. Consider the following statements:

Statement A: All cyclic group are Abelian.

Statement B: The order of a cyclic group is same as the order of its generator.

Choose the correct option,

A) Both A and B are false	B) A is true, B is false
C) B is true, A is false	D) A and B are true

9. If $14 = 172 \pmod{x}$, then x can take the value A) 38 B) 54 C) 66 D) 79 10. The order of permutation $\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 9 & 6 & 5 & 4 & 2 & 3 & 1 \end{pmatrix}$ is A) 3 B) 9 C) 6 D) 4

SECTION-B [Multiple Select Questions]

11. An example of an infinite group in which every element has finite order is

A) Non- singular 2×2 matrices with integer entries

B)
$$\left(\frac{\mathbb{Q}}{\mathbb{Z}}, +\right) = \{r + \mathbb{Z} : r \in \mathbb{Q}\}$$
 Under addition defined as
 $\left((r_1 + \mathbb{Z}) + (r_2 + \mathbb{Z})\right) = (r_1 + r_2) + \mathbb{Z}$

C) The invertible elements in \mathbb{Z} under addition

D) The Quaternion group

12. Let a_n denote the number of those permutations σ on $\{1, 2, \dots, n\}$ such that σ is a product of exactly two disjoint cycles. Then

A)
$$a_5 = 5$$
 B) $a_4 = 14$ C) $a_5 = 40$ D) $a_4 = 11$

13. Let *G* be a finite group of order *n*. Pick each correct statements from below-

A) if *d* divides *n*, there exist a subgroup of *G* of order *d*.
B) if *d* divides *n*, there exist an element of order *d* in *G*.
C) if every proper subgroup of *G* is cyclic, then *G* is cyclic.
D) None of these
Which of the following prime satisfy the congruence

 $a^{24} = 6a + 2$

A) 41 B) 47 C) 67 D) 83

15. The following table defines a cyclic group

14.

		А	В	С	D	
	A	С	А	D	В	
	В	А	В	D C B	D	
	С	D	С	В	А	
	D	В	D	А	С	
The generators are						

A) D B) C C) B

D) A

SECTION-C [Numerical Answer Type]

16. If $7x = 13 \pmod{11}$, then the value of x is ------

17. Let o(G) = 24 and G is cyclic. If $a \in G$ such that $a^8 \neq e, a^{12} \neq e$ then order of a is------.

18. In A_4 number of elements satisfying $x^4 = e$ are -----.

19. The last two digit of the number $37^{37^{21}}$ is ------.

20. The number of cyclic subgroup of D_8 are------

IIT-JAM MATHEMATICS Test : Modern Algebra

Time : 60 Minutes

Date : 08-10-2017 M.M. : 45

ANSWER KEY

SECTION-A [Multiple Choice Questions]

1.	(a)	2. (d)	3.	(a, c)	4.	(c)
5.	(b)	6. (a)	7.	(c)	8.	(d)
9.	(d)	10. (c)				

SECTION-B [Multiple Select Questions]

11. (b)	12. (d)	13. (d)	14. (a, c)
15. (a, d)			

SECTION-C [Numerical Answer Type]

16. (5)	17. (24)	18. (4)	19. (17)
20. (12)			