

D.U. M.Sc. CHEMISTRY ENTRANCE - 2017 (SET-A)

1.	The oxidation states $(a) +1$	of oxygen in O_2F_2 is (b) +2	(c) +4	(d) -2	
1	` '	` '	• •	(u) 2	
2.	(a) F ₂	owing is a powerful oxide (b) Cl ₂	(c) Br ₃	(d) I ₂	
2	2	2	3	(u) 1 ₂	
3.	(a) CsClO ₄	vater among the following (b) KClO ₄	ng is (c) NaClO ₄	(d) LiClO ₄	
4.	Dental filling is done to (a) Portland cement (c) Calcia	py	(b) Sorrel cement(d) Double salt		
5.	The polymeric nature (a) its acidic nature (c) presence of hydro	of boric acid is due to gen bonds	(b) its gemetry (d) monobasic nature		
6.	Alkali metals form hig (a) Cryptand-222	hly stable complexes w (b) Diethyl ether	ith (c) Cyclopentadiene	(d) Butadiene	
7.	Of the following, whi	ch is a low expands one (b) Quartz	e? (c) Vycor	(d) Borosilicate	
8.	Which of the followin (A) CO ₂ (a) A and B only	g has centre of inversio (B) C ₂ H ₂ (b) A and C only	(C) BF ₃	(D) SO ₄ ³⁻ (d) B and C only	
9.	"Yellow when hot and white and cold is one of the characteristics observed for ZnO. It is due to (a) Distortions (b) Cation defects (c) Anion defects (d) Deformations				
10.	Which is a superconde (a) Bi ₂ CaSr ₂ Cu ₂ O ₈ (c) Bi ₂ CdSr ₂ Cu ₂ O ₈	uctor?	(b) $Bi_2CaSr_2Co_2O_8$ (d) $Bi_2CaSn_2Cu_2O_8$		
11.	Electrophoresis refers (a) Separation	to (b) Identification	(c) Digestion	(d) Amalgamation	
12. 13.	Find the amphoteric of (a) CO ₂ The reaction of O ₃ with	(b) Mn_2O_2	(c) MgO	(d) Sb ₃ O ₃	
1	(a) HI	(b) HIO ₈	(c) I ₈	(d) I ₃ ⁺	

14.	Which one of the fo (a) NO ₃ ⁻	llowing cannot show li (b) SCN	nkage isomerism? (c) CN ⁻	(d) NH ₃		
	3	, ,	. ,	5		
15.		A metal X on heating in nitrogen gas gives Y. Y on treatment with H ₂ O gives a colourless gas which when passed through CuSO ₄ solution gives blue colour. Y is				
	(a) $Mg(NO_3)_2$	(b) Mg_2N_3	(c) MgCl ₂	(d) MgO		
1.0	~ ~	_ 5	(c) 111g=12	(d) MgO		
16.	Hydrogen as fuel is	(b) semi liquid	(c) liquid	(d) solid		
	(a) gas		· · · · •	(d) solid		
17.		•	r scattering of X-rays?	0		
	(a) $F < O < Cl < I$		(b) $F < Cl < Na <$			
	(c) $O < CI < F < I$	(c) $O < Cl < F < Na < Tl$ (d) $O < F < Na < Cl < Tl$				
18.		nfiguration is equivalen				
	(a) ^{3}P	(b) ^{2}P	(c) 3 F	(d) 4P		
19.	The anticancer drug	cisplatin is				
	(a) $Pt(NH_3)_2Cl_2$	(b) $Pt(H_2O)_2Cl_2$	(c) $Pt(NH_3)_3Cl$	(d) Pt(NH ₃)Cl ₃		
20.	Wilson's disease aris	ses from:				
		ation of calcium in the	body			
		ation of copper in the	· ·			
		ation of selenium in the	· ·			
	(d) Excess accumul	ation of vanadium in th	ne body			
21.	The structure shown by a tetra nuclear metal cluster having 62 electrons is					
	(a) square plane	(b) butterfly	(c) tetrahedron	(d) bicapped tetrahedron		
22.	· / 1 1	•	• •			
<i>LL</i> .	(a) first order		ler (c) second order	y which one of the following rate law:		
	(a) first order	(b) pseudo inst orc	iei (c) second order	(d) zero order		
23.	$[Zr(CH_3)_6]$ exists in					
	(a) Octahedral geon	=	(b) Trigonal prismat	•		
	(c) Square pyramida	al geometry	(d) Distorted trigon	al bipyramidal geometry		
24.	Which one of the fo	llowing pair shows var	riable valence?			
	(a) Zr, Ti	(b) Bi, In	(c) Lu, Gd	(d) Pd, Cd		
25.	Which one of the fo	llowing plays a major i	role in EDTA complexo	ometric titrations?		
	(a) concentration of metal ion		(b) concentration of	(b) concentration of ligand		
	(c) nature of buffer (d) temperature of the reaction					
26.	Monochromatic X-rays having a wave length of 10.4Å are preferentially diffracted by a crystal at an angle					
	_	25.5°, assuming that this is the first order diffraction with a d-spacing between crystalline planes equal to				
			angle for the second of			
77	(a) 0.959	(b) 0.759	(c) 0.859	(d) 0.659		
27.	Addition of bismuth	chloride to excess of	water produces			

(a) clear solution

(c) white precipitate

(d) orange red precipitate

(b) yellow solution

28. Oxidation state of nitrogen is correctly given for

(a)
$$\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{5}\operatorname{Cl}\right]\operatorname{Cl}_{2}\left(0\right)$$

(b)
$$NH_2OH(-1)$$

(c)
$$(N_2H_5)_2 SO_4(-2)$$

(d)
$$Mg_3N_2(+3)$$

29. The equilibrium $Cr_2O_7^{2-} \rightleftharpoons 2CrO_4^{2-}$

(a) exists in acidic medium

(b) exists in basic medium

(c) exists in neutral medium

(d) does not exist

30. Of the following, which is acidic in nature?

- (a) MnO
- (b) Mn_2O_7
- (c) Mn_2O_3
- (d) MnO₂

31. Among pivaladehyde, furfural, formaldehyde and p-tolualdehyde, the aldehydes that undergo Cannizaro reaction are

(a) Formaldehyde only

- (b) p-tolualdehyde
- (c) furfural and formaldehye
- (d) all four aldehyde
- 32. Product of the following reaction is

$$\begin{array}{c|c} \text{OH} & \text{H}_2\text{O}_2, \text{OH} \\ \hline \\ \text{CHO} & \end{array}$$

- (a) Catechol
- (b) Salicylic acid
- (c) o-benzoquinone
- (d) Salicyl alcohol

33. Which one of the following reagents are used as laboratory reagent for the identification of carbonyl group

(b)
$$C_6H_5$$
-NH-NH₂/OH⁻

(c)
$$O_2N$$
 NHNH₂/H⁻¹

(d)
$$O_2N$$
 NHNH₂/H⁻

34. What is the major product alkene formed in the following reaction

$$\begin{array}{c|c} & & Ag_2O \\ & & & H_2O \end{array} ?$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

35. The suitable reagent(s) to bring about the given transformation

(a) KCN

- (b) LiAlH₄ followed by Tollens reagents
- (c) Tollens reagents followed by NaBH₄
- (d) 50% NaOH solution

36. Complete the following reaction,

$$CO_2CH_3 + PhCH_2Cl$$
 $NaOEt$?

$$(c) \begin{picture}(60,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$$

$$CO_2CH_3$$
 CH_2Ph

37. What is the product of this reaction?

$$CO_2H$$
 $Ph(OAc)_2, I_2$ $Ph(OAc)_2$ $Ph(OAc)_3$ $Ph(OAc)_2$ $Ph(OAc)_3$ $Ph($

38. Which one is the correct answer?

Me
$$\frac{\text{AcOH/H}_2\text{O}}{\text{1h, 75}^{\circ}\text{C}}$$
?

- $(d) \begin{picture}(60,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$
- 39. Match List-(II) with List-(II)

List-(I)

- (P) Claisen condensation
- (Q) Friedal craft
- (R) Holfmann
- (S) Allylic bromination

	P	Q	R	S
(a)	3	4	2	1
(b)	2	3	4	1
(c)	2	3	1	4
(d)	3	4	1	2

List-(II)

- (1) Nitrene
- (2) Free radical
- (3) Carbanion
- (4) Arenium ion

40. Match List-(II) with List-(II)

List-(I)

- $(P) S_N 2$
- $(Q) S_N 1$
- (R) E₂
- (S) E_{1CB}

	ICD			
	P	Q	R	S
(a)	1	4	2	3
(b)	1	4	3	2
(c)	4	1	3	2
(d)	4	1	2	3

List-(II)

- (1) Walden inversion
- (2) Carbanion intermediate
- (3) Antiperiplanar configurations
- (4) Carbocation intermediate

- 41. The configuration description of C₂ epimer of D-glucose is:
 - (a) 2R, 3S, 4R, 5R

(b) 2S, 3S, 4R, 5R

(c) 2S, 3R, 4S, 5R

(d) 2R, 3S, 4R, 5S

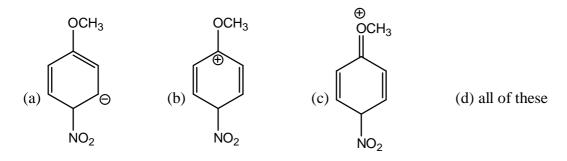
The above reaction is an example of

- (a) Hofmann's rule
- (b) Saytzeff's rule
- (c) Cope reaction
- (d) Curtius reaction
- 43. What is/are the product (s) of the following reaction?

$$\begin{array}{c|c} \hline & \text{(i) } \text{CH}_3\text{MgBr} \\ \hline & \text{(ii) } \text{H}_3\text{O}^+ \\ \end{array} ?$$

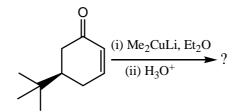
$$(P) \begin{picture}(c){c} CH_3 \\ (Q) \begin{picture}(c){c} CH_3 \\ (R) \begin{picture}(c){c} CH_3$$

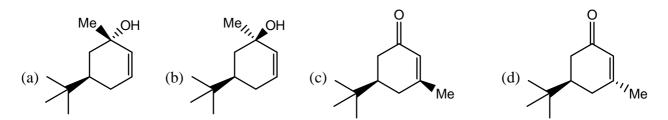
44. The structural formula of aspirin is


45. The compound that gives precipitate on warming with aqueous AgNO₃ is

46. In the given reaction, name and the intermediate via which it is known to proceed are

- (a) Hunsdieecker and benzyne
- (b) Sandmeyer and free radical
- (c) Meerwein and a free radical
- (d) Sandmeyer and carbanion
- 47. In the Cannizzaro reaction given below


The slower step is


- (a) the attack of OH– at carbonyl group
- (b) The transfer of hydride ion to the carbonyl group
- (c) Deprotonation of -COOH group
- (d) The deprotonation of -CH₂OH group
- 48. In the given reaction, the structure of the σ complex is

- 49. How many non-equivalent protons are present in CH₃CHClCH₂CONH₂?
 - (a) 6
- (b) 5
- (c) 4

- (d) 3
- 50. To check that a secondary alcohol has been completely oxidized to a ketone you can
 - (a) check that the IR spectrum has absorption at 3500 cm⁻¹ and 1650 cm⁻¹
 - (b) check that the IR spectrum has no absorption around 3500 cm⁻¹
 - (c) check that the IR spectrum has no absorption around 1650 cm⁻¹
 - (d) check that the IR spectrum no absorptions at 3500 cm⁻¹ and 1650 cm⁻¹
- 51. The major product formed in the reaction given below is

52. The major product formed in the reaction given below is

NH₂ NaNO₂, aq. HCl
$$0-5^{\circ}$$
C

(a) NO₂
(b) OH

NO₂
(c) OH

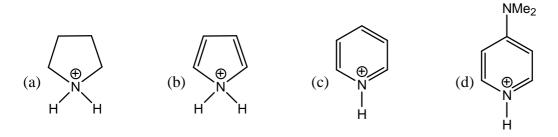
Ph₃P=CHCOOEt [X]

53. In the reaction, Ph the major product X is:

$$(a) \underset{\mathsf{Ph}}{\overset{\mathsf{H}}{\longrightarrow}} \mathsf{CHO}$$

$$(b) \underset{\mathsf{Ph}}{\overset{\mathsf{EtOOC}}{\longrightarrow}} \mathsf{H}$$

$$(c) \underset{\mathsf{Ph}}{\overset{\mathsf{COOEt}}{\longrightarrow}} \mathsf{CHO}$$


54. The major product (X) of the monobromination reaction is

- 55. Aniline can be distinguished from methylamine by its reaction with:
 - (a) p-toluene sulphonyl chloride/KOH
- (b) (i) NaNO₂/HCl (ii) alkaline β -naphthol

(c) Sn/HCl

(d) acetyl chloride

56. The most acidic species is

57. The major product of the following reactions is

58. In the following reaction,

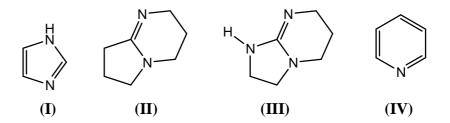
The major product (X) is

- 59. Correct statement about cis and transtilbene is
 - (a) Trans-stibene has higher coupling constant than cis-stilbene
 - (b) Cis-stibene has higher coupling constant than trans-stilbene
 - (c) Vinylic protons of cis-stilbene are more deshielded than trans-stilbene
 - (d) Vinylic protons of trans-stilbene are more deshielded than cis-stilbene
- 60. Victor Meyer test is used for the confirmation of
 - (a) 1°, 2°, 3°, Amines

(b) 1°, 2°, 3° Alcohols

(c) Carbonyl group

(d) 2° and 3° Alcohols only

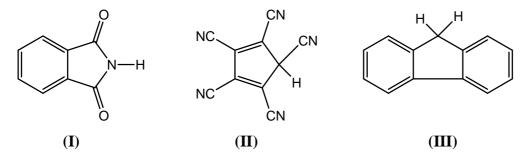

61. The major product formed in the dinitration of 4-bromotoluene is

$$(a) \bigvee_{\mathsf{NO}_2}^{\mathsf{NO}_2} \qquad (b) \bigvee_{\mathsf{Br}}^{\mathsf{NO}_2} \qquad (c) \bigcap_{\mathsf{O}_2\mathsf{N}} \bigvee_{\mathsf{Br}}^{\mathsf{NO}_2} \qquad (d) \bigcap_{\mathsf{O}_2\mathsf{N}} \bigvee_{\mathsf{Br}}^{\mathsf{NO}_2} \qquad (d) \bigcap_{\mathsf{D}_2\mathsf{N}} \bigvee_{\mathsf{Br}}^{\mathsf{NO}_2} \qquad (d) \bigcap_{\mathsf{D}_2\mathsf{N}} \bigvee_{\mathsf{D}_2\mathsf{N}}^{\mathsf{NO}_2} \qquad (d) \bigcap_{\mathsf{D}_2\mathsf{N}}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2\mathsf{N}}^{\mathsf{D}_2} \qquad (d) \bigcap_{\mathsf{D}_2\mathsf{N}}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2\mathsf{N}}^{\mathsf{D}_2} \qquad (d) \bigcap_{\mathsf{D}_2\mathsf{N}}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2\mathsf{N}}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2\mathsf{N}^{\mathsf{D}_2}}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2\mathsf{N}^{\mathsf{D}_2}}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2}^{\mathsf{D}_2}^{\mathsf{D}_2} \bigvee_{\mathsf{D}_2$$

62. The major product in the following reaction is

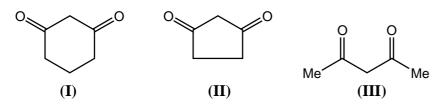
$$\begin{array}{c} \text{Me} \\ \text{Br} \end{array} \begin{array}{c} \text{NaOMe} \\ \text{Et}_2\text{O} \end{array} ?$$

63. The decreasing order of basicity of the following compounds is

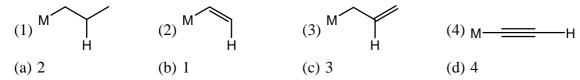

(a) I > II > III > IV

(b) IV > I > II > III

(c) III > II > I > IV


(d) IV > III > II > I

64. The correct order of pKa values for compounds I, II and III is


- (a) I > II > III
- (b) II > III > I
- (c) III > I > II
- (d) II > I > III

The correct order of the acidity for the following compounds is 65.

- (a) II > III > I
- (b) III > II > I
- (c) II > I > III
- (d) III > I > II

66. The H-hydrogen elimination will be facile in:

- 67. What is the degeneracy and corresponding energy for the second excited level of a particle of mass min a cubic box of edge L?
 - (a) Degeneracy = 3 and $E = 9\pi^2 h^2 / 2mL^2$ (b) Degeneracy = 3 and $E = 4\pi^2 h^2 / 2mL^2$
 - (c) Degeneracy = 2 and $E = 4\pi^2 h^2 / 2mL^2$ (d) Degeneracy = 2 and $E = 9\pi^2 h^2 / 2mL^2$
- 68. Which of the following statements is NOT true in relation to the triple point on a single component phase diagram?
 - (a) The point at which the solid, liquid and gaseous phases for a substance co-exist
 - (b) The triple point exists at a single temperature and is independent of pressure
 - (c) The triple point exists for a substance occurs at a specific temperature and pressure
 - (d) The system must be enclosed so that no vapour can escape
- The relative ratio of at a given temperature is 69.
 - (a) $\sqrt{3}:\sqrt{56/22}:\sqrt{2}$

(b) $\sqrt{56/22}:\sqrt{2}:\sqrt{3}$

(c) $\sqrt{3}:\sqrt{2}:\sqrt{56/22}$

- (d) $\sqrt{2} \cdot \sqrt{56/22} \cdot \sqrt{3}$
- 70. The standard potential at 25°C for the half reactions given against them below

$$Zn \to Zn^{2+} + 2e^{-}$$
 $E^{0} = 0.762$

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$
 $E^{0} = 2.37$

When zinc dust is added to a solution of MgCl₂

- (a) Magnesium is precipitated
- (b) Zinc dissolves in the solution

(c) Zinc chloride is formed

- (d) No reaction takes place
- 71. Rate constant for the substitution reaction,

$$C_4H_9Cl + H_2O \longrightarrow C_4H_9OH + HCl$$

increases by a factor of 10.6 when the temperature is increased from 298K to 308K. Calculate the activation energy of the reaction,

- (a) 78.2 kJ mol⁻¹
- (b) 180 kJ mol⁻¹
- (c) 809 kJ mol^{-1} (d) 2.14 kJ mol^{-1}
- At 20°C, Ag ion concentration in a saturated solution Ag₂CrO₄ in water is 1.5×10⁻⁴ M. At 20°C, the 72.

solubility product of Ag₂CrO₄ will be

- (a) 3.3750×10^{-12}
- (b) 1.6875×10^{-16}
- (c) 1.6875×10^{-12}
- (d) 1.6875×10^{-12}
- 73. Use the following data to calculate the lattice enthalpy at 298K of potassium iodide, KI(s). All values refer to a temperature of 298K.

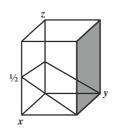
Enthalpy of sublimation of K(s): + 81 kJ mol⁻¹

Ionization of enthalpy of K(g): +418 kJ mol⁻¹

Enthalpy of atomization of $I_2(g)$: +214 kJ mol⁻¹

Enthalpy of electron attachment to I(g): -295 kJ mol^{-1}

Enthalpy of formation of KI(s) from K(s) and $\frac{1}{2}I_2(g) : -328$ kJ mol-1


- (a) 746 kJ mol^{-1}
- (b) 680 kJ mol^{-1} (c) 573 kJ mol^{-1} (d) 639 kJ mol^{-1}

- Which of the following functions are acceptable as a wave function over the indicated intervals? 74.
 - (a) $e^{-|x|}(-\infty,\infty)$ (b) $e^{-x^2}(-\infty,\infty)$ (c) $e^{-x}(0,\infty)$ (d) $\sin^{-1}x(-1,1)$

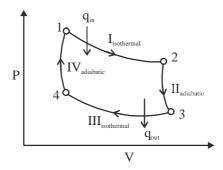
- The thermodynamics Gibb's function G in an isothermal, isobaric, reversible process: 75.
 - (a) varies linearly
- (b) varies non-linearly (c) is zero
- (d) remains constant but not zero
- 76. The electrical conductivity of a new material was measured at different temperatures and found to vary as below. What is the best description of the conduction properties of the material?

T/K	300	400	500	600
Conductivity/Sm ⁻¹	0.004	0.047	0.202	0.535

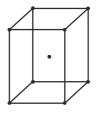
- (a) insulator
- (b) semiconductor
- (c) conductor
- (d) it is not possible to inter anything about the properties of the material
- 77. What miller index plane is shown below?

- (a) (0 2 1)
- (b) (0 4 1)
- (c) (0 1 2)
- (d) (0 0 0)
- If uncertainties in the measurement of position and momentum are equal, calculate uncertainty in the 78. measurement of velocity
 - (a) 6.96×10^8 m/s

- (b) 7.98×10^{12} m/s (c) 7.98×10^{14} m/s (d) 7.98×10^{-12} m/s s
- 79. Following are the terms about activity and selectivity:
 - (I) Activity is the ability of catalyst to accelerate chemical reaction and selectivity is the ability of the catalysts to direct to reaction to yield particular products
 - (II) Activity is the ability of catalyst to direct reaction to yield particular products and selectivity is the ability of the catalysts to accelerate chemical reaction.


Select correct term:

- (a) I
- (b) II
- (c) I and II both
- (d) None of these


- 80. Which statement is incorrect about CO₂?
 - (a) CO₂ is linear

- (b) CO₂ has two degenerate bending modes of vibration
- (c) The IR spectrum of CO₂ shows four absorptions
- (d) CO₂ has two stretching modes of vibration
- 81. From the Carnot cycle (given below) undergoes by an ideal gas, identify the processes in which the change in internal energy is non-zero

- (a) II and III
- (b) I and II
- (c) II and IV
- (d) I and IV
- 82. For a liquid, which is rising in a capillary tube, the angle of contact is:
 - (a) 90°
- (b) Acute
- (c) 180°
- (d) Obtuse
- 83. Assign the Bravais lattice type for the following unit-cell structure

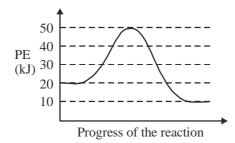
- (a) Tetragonal I
- (b) Cubic I
- (c) Orthorhombic I
- (d) Monoclinic
- 84. Given the following reaction at equilibrium $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$. Some inert gas is added at constant volume. Predict which of the following facts will be affected?
 - (a) Less of 2NH₃(g) is produced
 - (b) No affect on the degree of advancement of the reaction at equilibrium
 - (c) More of the $2NH_3(g)$ is produced
 - (d) K_p of the reaction is increased.
- 85. On what factor fluidity of a liquid is depending
 - (a) size of molecules

(b) Shape of the molecules

(c) impurities

- (d) all of these
- 86. Which of the following statements is correct about the principal moments of inertia of an XY molecules that lies on the A-axis?
 - (a) $I_A = 0$ and $I_B = I_C$

(b) $I_A > I_B$ and $I_B = I_C$


(c) $I_A > I_B$ and $I_C = 0$

- (d) $I_A = I_B = I_C$
- 87. Two van der Waals gases have the same value of b but different a values. (i) Which of these would occupy greater volume under identical conditions? If the gases have the same a value but different values of b, (ii)

which would be more compressible?

- (a) (i) gas with smaller a value (ii) gas with smaller b vlaue
- (b) (i) gas with smaller a value (ii) gas with larger b value
- (c) (i) gas with smaller a value (ii) gas with smaller b value
- (d) (i) gas with larger a value (ii) gas with larger b value
- 88. Consider the following Potential energy diagram for a reversible reaction

Which of the following describes this reaction:

	Directions	Activation energy (kJ)	$\Delta H(kJ)$
(a)	Reverse	30	-10
(b)	Forward	40	-10
(c)	Forward	30	+10
(d)	Reverse	40	+10

- 89. Which of the following statements are true about the Eutectic point on a two component (components A and B) phase diagram?
 - (a) Both compounds are solid
 - (b) The melting point of the mixture is lower than the melting points of either of the individual compounds
 - (c) One compound is in the liquid phase while the other is in the solid phase
 - (d) It always occurs when the ratio of compound A to compound B is 50.50
- 90. The reference potential of a silver-silver chloride electrode is determined by the
 - (a) Concentration of potassium chloride filling solution
 - (b) Surface area of the electrode
 - (c) Activity of total anion in the paste covering electrode
 - (d) Concentration of silver in the paste covering electrode
- 91. Which statement is not correct about three equilibrium constants, K_c , K_p and K_x

(a)
$$K_p = K_x (P)^{\Delta n} = K_c (RT)^{\Delta n}$$

- (b) K_c and K_p are independent of pressure and K_x is dependent on pressure.
- (c) All constants are temperature dependent
- (d) Catalysts change the equilibrium
- 92. pH of the solution produced by mixing equal volumes of 2.0×10^{-3} M HClO $_4$ and 1.0×10^{-3} M KClO $_4$ is :
 - (a) 3.0
- (b) 2.7
- (c) 2.3
- (d) 1.0
- 93. The degree of dissociation (α) of a weak electrolyte, $A_x B_x$ is related to van't Hof factor (s) by the expressionns:

(a)
$$\alpha = \frac{i-1}{(x+y+1)}$$

(a)
$$\alpha = \frac{i-1}{(x+y+1)}$$
 (b) $\alpha = \frac{i-1}{(x+y-1)}$ (c) $\alpha = \frac{x+y-1}{i-1}$ (d) $\alpha = \frac{x+y+1}{i-1}$

(c)
$$\alpha = \frac{x+y-1}{i-1}$$

(d)
$$\alpha = \frac{x + y + 1}{i - 1}$$

94. For a reaction involving two steps given below

First step:

$$G \Longrightarrow 2H$$

Second step:
$$G + H \longrightarrow P$$

Assume that the first step attains equilibrium rapidly. The rate of formation of P is proportional to

- (a) $[G]^{1/2}$
- (b) $[G]^2$
- (c) $[G]^{3/2}$
- (d) [G]
- 1g of ⁸⁶Sr gets converted to 0.953g after 2 year. The half life of ⁹⁰Sr and the amount of ⁸⁵Sr remainingafter 95. 5 years are
 - (a) 28.8 yr and 0.887 g

(b) 1.44 yr and 0.75g

(c) 57.6 yr and 0.75 g

- (d) 100 yr and 0.982 g
- 96. The normality of 0.3 M phosphorons acid (H₂PO₂) is
- (b) 0.6
- (c) 0.3
- (d) 0.1

- Lattice energy is decreased when size of anion is 97.
 - (a) decreased
- (b) increased
- (c) remains same
- (d) no change

- 98. One of angle in monoclinic crystal system is
 - (a) less than 90 degree

(b) greater than 90 degree

(c) less than 30 degree

- (d) less than 10 degree
- An oxidation number can be 99.
 - (a) positive
- (b) negative
- (c) zero
- (d) all of the above
- 100. Liquid in an electrolyte cell should always flow towards
 - (a) anode
- (b) cathode
- (c) all around
- (d) nowhere

