D.U. M.Sc. Entrance - 2014 (Mathematics) (Code - A)

PART-I

For each correct answer 3 marks will be given and for an incorrect answer one mark will be deducted. The symbols $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} respectively denote the sets of integers, rational numbers, real numbers and complex numbers.

1. How many elements are there in $\mathbb{Z}[i] /\langle 3+i\rangle$?
(a) infinite
(b) 3
(c) 10
(d) finite but not 3 or 10
2. Let P be the set of all $n \times n$ complex Hermitian matrices. Then P is a vector space over the field of
(a) \mathbb{C}
(b) \mathbb{R} but not \mathbb{C}
(c) both \mathbb{R} and \mathbb{C}
(d) \mathbb{C} but not \mathbb{R}
3. Which one of the following is true?
(a) There are infinitely many one-one linear transformations from \mathbb{R}^{4} to \mathbb{R}^{3}
(b) The dimension of the vector space of all 3×3 skew-symmetric matrices over the field of real numbers is 6
(c) Let F be a field and A a fixed $n \times n$ matrix over F . If $\mathrm{T}: \mathrm{M}_{n}(\mathrm{~F}) \rightarrow \mathrm{M}_{n}(\mathrm{~F})$ is a linear transformation such that $T(B)=A B$ for every $B \in M_{n}(F)$, then the characteristic polynomial for A is the same as the characteristic polynomial for T .
(d) A two-dimensional vector space over a field with 2 elements has exactly 3 different basis.
4. Let V and W be vector spaces over a field E Let $\mathrm{S}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{T}: \mathrm{W} \rightarrow \mathrm{V}$ be linear transformations. Then which one of the following is true?
(a) If ST is one-to-one, then S is one-to-one
(b) If $\mathrm{V}=\mathrm{W}$ and V is finite-dimensional such that $\mathrm{TS}=\mathrm{I}$, then T is invertible
(c) If $\operatorname{dim} \mathrm{V}=2$ and $\operatorname{dim} \mathrm{W}=3$, then ST is invertible
(d) If TS is onto, then S is onto
5. The order of the automorphism group of Klein's group is
(a) 3
(b) 4
(c) 6
(d) 24
6. Which one of the following group is cyclic?
(a) The group of positive rational numbers under multiplication
(b) The dihedral group of order 30
(c) $\mathbb{Z}_{3} \oplus \mathbb{Z}_{15}$
(d) Automorphism group of \mathbb{Z}_{10}
7. Which one of the following is a field?
(a) An infinite integral domain
(b) $\mathbb{R}[x] /\left\langle x^{2}-2\right\rangle$
(c) $\mathbb{Z}_{3} \oplus \mathbb{Z}_{15}$
(d) $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$
8. Which one of the following is true for the transformation $\mathrm{T}: \mathrm{P}_{2}(\mathbb{R}) \rightarrow \mathrm{P}_{2}(\mathbb{R})$ defined by $\mathrm{T}(f)=f+f^{\prime}+f^{\prime \prime}$?
(a) T is one-to-one but not onto
(b) T is onto but not one-to-one
(c) T is invertible
(d) the matrix of T with respect to the basis $\left\{1, x, x^{2}\right\}$ is upper triangular
9. In $\mathbb{Z}[x]$, the ideal of $\langle x\rangle$ is
(a) maximal but not prime
(b) prime but not maximal
(c) both prime and maximal
(d) neither prime not maximal
10. Which one of the following is true for the transformation $\mathrm{T}: \mathrm{M}_{n} \rightarrow \mathbb{C}$ defined by $\mathrm{T}(\mathrm{A})=\operatorname{tr} \mathrm{A}=\sum_{i=1}^{n} A_{i i}$?
(a) Nullity of T is $n^{2}-1$
(b) Rank of T is n
(c) T is one-to-one
(d) $\mathrm{T}(\mathrm{AB})=\mathrm{T}(\mathrm{A}) \mathrm{T}(\mathrm{B})$ for all $\mathrm{A}, \mathrm{B} \in \mathrm{M}_{n \times n}$
11. Let $\mathrm{W}_{1}=\left\{\mathrm{A} \in \mathrm{M}_{n}(\mathbb{C}): \mathrm{A}_{i j}=0 \forall i \leq j\right\}$ and W_{2} is the set of symmetric matrices of order n. Then the dimension of $\mathrm{W}_{1}+\mathrm{W}_{2}$ is
(a) n
(b) $2 n$
(c) n^{2}
(d) $n^{2}-n$
12. The logarithmic map from the multiplicative group of positive real numbers to the additive group of real number is
(a) a one-to-one but not an onto homomorphism
(b) an onto but not a one-to-one homomorphism
(c) not a homomorphism
(d) an isomorphism
13. If f is a group homomorphism from $(\mathbb{Z},+)$ to $(\mathbb{Q}-\{0\}, \cdot)$ such that $f(2)=1 / 3$, then the value $f(-8)$ is
(a) 81
(b) $1 / 81$
(c) $1 / 27$
(d) 27
14. The quotient group $\mathbb{Q}_{8} /\{1,-1\}$ is isomorphic to
(a) $\left(\mathbb{Q}_{8}, \cdot\right)$
(b) $(\{1,-1\}, \cdot)$
(c) $\left(V_{4},+\right)$
(d) $\left(\mathbb{Z}_{4},+\right)$
15. The converse of Lagrange's theorem does not hold in
(a) A_{4}, the alternating group of degree 4
(b) $A_{4} \times \mathbb{Z}_{2}$
(c) the additive group of integers modulo 4
(d) Klein's four group
16. The ring $(R,+, \cdot)$ is an integral domain when R is
(a) $\mathrm{M}_{2}(\mathbb{Z})$
(b) \mathbb{Z}_{7}
(c) \mathbb{Z}_{6}
(d) $\mathrm{C}[0,1]$ of all continuous functions from $[0,1]$ to \mathbb{R}
17. The polynomial ring $\mathbb{Z}[x]$ is
(a) a field
(b) a principal ideal domain
(c) unique factorization domain
(d) Euclidian domain
18. An algebraic number is a root of a polynomial whose coefficients are rational. The set of algebraic numbers is
(a) finite
(b) countably infinite
(c) uncountable
(d) none of these
19. Let $f: \mathrm{A} \rightarrow \mathrm{A}$ and $\mathrm{B} \subset \mathrm{A}$. Then which one of the following is always true?
(a) $\mathrm{B} \subset f^{-1}(f(\mathrm{~B}))$
(b) $\mathrm{B}=f^{-1}(f(\mathrm{~B}))$
(c) $\mathrm{B} \subset f\left(f^{-1}(\mathrm{~B})\right)$
(d) $\mathrm{B}=f\left(f^{-1}(\mathrm{~B})\right)$
20. Which one of the following does not imply $a=0$?
(a) For all $\in>0,0 \leq a<\epsilon$
(b) For all $\in>0,-\epsilon<a<\epsilon$
(c) For all $\in>0, a<\epsilon$
(d) For all $\in>0,0 \leq a \leq \epsilon$
21. Let X and Y be metric spaces and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be continuous. Then f maps
(a) open sets to open sets and closed sets to closed sets
(b) compact sets to bounded sets
(c) connected sets to compact sets
(d) bounded sets to compact sets
22. Suppose $f:[0,1] \rightarrow \mathbb{R}$ is bounded. Then
(a) f is Riemann integrable on $[0,1]$
(b) f is continuous on $[0,1]$ except for finitely many points implies f is Riemann integrable on $[0,1]$
(c) f is Riemann integrable on $[0,1]$ implies f is continuous on $[0,1]$
(d) f is Riemann integrable on $[0,1]$ implies f is monotone function
23. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\sin x^{3}$, then f is
(a) uniformly continuous
(b) not differentiable
(c) continuous but not uniformly continuous
(d) not continuous
24. Consider the sequence $\left\langle f_{n}\right\rangle$ defined by $f_{n}(x)=1 /\left(1+x^{n}\right)$ for $x \in[0,1]$. Let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Then
(a) For $0<a<1,\left\langle f_{n}\right\rangle$ converges uniformly to f on $[0, a]$
(b) the sequence $\left\langle f_{n}\right\rangle$ converges uniformly to f on $[0,1]$
(c) the sequence $\left\langle f_{n}\right\rangle$ converges uniformly to f on $[1 / 2,1]$
(d) the sequence $\left\langle f_{n}\right\rangle$ converges uniformly to f on $[0,1]$
25. The open unit ball $\mathrm{B}((0,0), 1)$ in the metric space $\left(\mathbb{R}^{2}, d\right)$ where the metric d is defined by $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ is the inside portion of
(a) the circle centered at the origin and radius 1
(b) the rectangle with vertices at $(0,1),(1,0),(-1,0),(0,-1)$
(c) the rectangle with vertices at $(1,1),(1,-1),(-1,1),(-1,-1)$
(d) the triangle with vertices $(0,1),(-1,-1),(1,-1)$
26. Let $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ be two sequences of real numbers such that $a_{n}=b_{n}-b_{n+1}$ for $n \in \mathbb{N}$. If $\sum b_{n}$ is convergent, then which of the following is true?
(a) $\sum a_{n}$ may not converge
(b) $\sum a_{n}$ is convergent and $\sum a_{n}=b_{1}$
(c) $\sum a_{n}$ is convergent and $\sum a_{n}=0$
(d) $\sum a_{n}$ is convergent and $\sum a_{n}=a_{1}-b_{1}$
27. Let f be a real-valued function on $[0,1]$ such that $f(0)=-1$ and $f(1)=1 / 2$, then there always exists a $t \in(0,1)$ such that
(a) $f^{\prime}(t)=-2$
(b) $f^{\prime}(t)=1$
(c) $f^{\prime}(t)=3 / 2$
(d) $f^{\prime}(t)=-1 / 2$
28. Let S and T be subsets of \mathbb{R}. Select the incorrect statement:
(a) $($ int $S) \cap($ int $T)=\operatorname{int}(S \cap T)$
(b) $($ int $S) \cup($ int $T) \subset \operatorname{int}(S \cup T)$
(c) \bar{S} is closed in \mathbb{R}
(d) \bar{T} is the largest closed set containing T.
29. The number of solutions of the equation $3^{x}+4^{x}=5^{x}$ in the set of positive real numbers is exactly
(a) 1
(b) 2
(c) 3
(d) 5
30. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and f^{\prime} be bounded. Then
(a) f has a local maximum at exactly one point of \mathbb{R}
(b) f has a local maximum at exactly two point of \mathbb{R}
(c) f is uniformly continuous on \mathbb{R}
(d) $f+f^{\prime}$ is uniformly continuous on \mathbb{R}
31. Let $a_{n}=2^{n}+n^{2}$ for $n \leq 100$ and $a_{n}=3+(-1)^{n} \frac{n^{2}}{2^{n}+1}$ for $n>100$. Then
(a) $\left\langle a_{n}\right\rangle$ is a Cauchy sequence
(b) $\left\langle a_{n}\right\rangle$ is an unbounded sequence
(c) $\left\langle a_{n}\right\rangle$ has exactly three limit points
(d) $\left\langle a_{n}\right\rangle$ has two convergent subsequences converging to two different points
32. Let the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(0,0)=0$ and $f(x, y)=\frac{x^{3}-y^{3}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$. Then
(a) f is continuous on \mathbb{R}^{2}
(b) f is continuous at all points of \mathbb{R}^{2} except at $(0,0)$
(c) $f_{x}(0,0)=f_{y}(0,0)$
(d) f is bounded
33. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{cl}1 / 2 & \text { if } x=1 / 4 \\ 1 / 4 & \text { if } x=1 / 2 \\ 0 & \text { if } x \in[0,1] \backslash\{1 / 4,1 / 2\}\end{array}\right.$ Then
(a) f is Riemann integrable and $\int_{0}^{1} f(x) d x=3 / 4$
(b) f is Riemann integrable and $\int_{0}^{1} f(x) d x=1 / 4$
(c) f is Riemann integrable and $\int_{0}^{1} f(x) d x=0$
(d) f is not Riemann integrable
34. Let $f:[0, \pi / 2] \rightarrow \mathbb{R}$ be continuous and satisfy $\int_{0}^{\sin x} f(t) d t=\sqrt{3} x / 2$ for $0 \leq x \leq \pi / 2$. Then $f(1 / 2)$ equals
(a) $1 / 2$
(b) $1 / \sqrt{2}$
(c) $1 / \sqrt{3}$
(d) 1
35. For $n \in \mathbb{N}$, let $f_{n}(x)=\frac{\sin x}{x}+\frac{\cos x}{\sqrt{n}}$ for $x \in(0, \pi / 2]$. Then
(a) $\left\langle f_{n}\right\rangle$ converges uniformly on $(0, \pi / 2)$ but not on $(0, \pi / 2]$
(b) $\left\langle f_{n}\right\rangle$ converges uniformly on $(0, \pi / 2$]
(c) $\left\langle f_{n}\right\rangle$ converges uniformly on $(0, \pi / 4)$ but not on $(0, \pi / 4]$
(d) none of these
36. Define a metric d on \mathbb{R} by $d(x, x)=0$ for any x and $d(x, y)=1$ for any x, y with $x \neq y$. Let $\left\langle a_{n}\right\rangle$ be a Cauchy sequence in $\langle\mathbb{R}, d\rangle$. Then
(a) $\left\langle a_{n}\right\rangle$ is a constant sequence
(b) $\left\langle a_{n}\right\rangle$ contains infinitely many points
(c) $\left\langle a_{n}\right\rangle$ contains at most finite number of distinct points
(d) none of these
37. The singular solution of $y=p x+p^{3}, p=d y / d x$ is
(a) $4 y^{3}+27 x^{2}=0$
(b) $4 x^{2}+27 y^{3}=0$
(c) $4 y^{2}-27 x^{3}=0$
(d) $4 x^{3}+27 y^{2}=0$
38. Consider the following initial value problem: $(x+1)^{2} y^{\prime \prime}-2(x+1) y^{\prime}+2 y=1$ subject to the condition $y(0)=0$ and $y^{\prime}(0)=1$. Given that $x+1$ and $(x+1)^{2}$ are linearly independent solutions of the corresponding homogeneous equation, the value of $y(1 / 2)$ is equal to
(a) $5 / 16$
(b) $7 / 8$
(c) 0
(d) $1 / 24$
39. Assume that all the roots of the polynomial equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{1} x+a_{0}=0$ have negative real parts. If $u(t)$ is any solution to the differential equation: $a_{n} u^{(n)}+a_{n-1} u^{(n-1)}+\ldots .+a_{1} u^{\prime}+a_{1} u=0$, the value of the limit $\lim _{t \rightarrow \infty} u(t)$ is
(a) 0
(b) n
(c) ∞
(d) 1
40. The initial value problem $y^{\prime}=y^{2 / 3}$ with $0 \leq x \leq a$ for any positive real number a and $y(0)=0$ has
(a) infinitely many solutions
(b) more than one but finitely many solutions
(c) unique solution
(d) no solution
41. One of the particular integrals of the partial differential equation $r-2 s+t=\cos (2 x+3 y)$ is
(a) $-\cos (2 x+3 y)$
(b) $\cos (2 x+3 y)$
(c) $\sin (2 x+3 y)$
(d) none of these
42. The region in which the equation $x u_{x x}+u_{y y}=x^{2}$ is hyperbolic is
(a) the whole plane \mathbb{R}^{2}
(b) the half plane $x>0$
(c) the half plane $y>0$
(d) the half plane $x<0$
43. The solution of Cauchy problem $u_{t}+u u_{s}=x, u(x, 0)=1$ is $u(x, t)=$
(a) $x \tanh t+\operatorname{sech} t$
(b) $\tan \mathrm{h} t+\sec \mathrm{h} t$
(c) $\left(x^{2}+t^{2}\right) \sin t$
(d) none of these
44. The integral surface that satisfies the first order partial differential equation:

$$
\left(x^{2}-y^{2}-z^{2}\right) \frac{\partial z}{\partial x}+2 x y \frac{\partial z}{\partial y}=2 x z
$$

is given by
(a) $\phi\left(x y / z, y^{2} /\left(x^{2}+z^{2}\right)\right)=0$
(b) $\phi\left(y / z,\left(x^{2}+y^{2}+z^{2}\right) / x\right)=0$
(c) $\phi\left(y / z,\left(x^{2}+y^{2}+z^{2}\right) / z\right)=0$
(d) $\phi\left(y /(z x), x^{2} /\left(y^{2}+z^{2}\right)\right)=0$
45. Consider the diffusion equation $u_{x x}=u_{t}$ with $0<x<\pi$ and $t>0$, subject to the initial and boundary conditions: $u(x, 0)=4 \sin 2 x$ for $0<x<\pi$ and $u(0, t)=0=u(\pi, t)$ for $t>0$. Then, $u(\pi / 8,1)$ is equal to:
(a) $4 e^{-4} / \sqrt{2}$
(b) $4 e^{-9} / \sqrt{2}$
(c) $4 / e^{2}$
(d) $4 / \sqrt{e}$
46. The general solution to the second order partial differential equation $u_{x x}+u_{x y}-2 u_{y y}=(y+1) e^{x}$ is given by
(a) $\phi_{1}(y-x)+\phi_{2}(y+2 x)+x e^{y}$
(b) $\phi_{1}(y+x)+\phi_{2}(y-2 x)+y e^{x}$
(c) $\phi_{1}(y+x)+\phi_{2}(y-2 x)+x e^{-y}$
(d) $\phi_{1}(y-x)+\phi_{2}(y+2 x)+y e^{-x}$
47. The trajectories of the system of differential equations $d x / d t=y$ and $d y / d t=-x$ are
(a) ellipses
(b) hyperbolas
(c) circles
(d) spirals
48. The backward Euler method for solving the differential equation $y^{\prime}=f(x, y)$ is
(a) $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$
(b) $y_{n+1}=y_{n}+h f\left(x_{n+1}, y_{n+1}\right)$
(c) $y_{n+1}=y_{n-1}+2 h f\left(x_{n}, y_{n}\right)$
(d) $y_{n+1}=(1+h) f\left(x_{n+1}, y_{n+1}\right)$
49. The Newton-Raphson formula for finding approximate root of the equation $f(x)=0$ is
(a) $x_{n+1}=f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right), f^{\prime}\left(x_{n}\right) \neq 0$
(b) $x_{n+1}=x_{n}+f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right), f^{\prime}\left(x_{n}\right) \neq 0$
(c) $x_{n+1}=x_{n-1}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right), f^{\prime}\left(x_{n}\right) \neq 0$
(d) $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right), f^{\prime}\left(x_{n}\right) \neq 0$
50. If Euler's method is used to solve the initial value problem $y^{\prime}=-2 t y^{2}, y(0)=1$ numerically with step size $h=-0.2$, the approximate value of $y(0.6)$ is
(a) 0.7845
(b) 0.8745
(c) 0.8754
(d) 0.7875

PART-II

Questions may have multiple correct answers and carry five marks. Five marks will be given only if all correct choices are marked. There will be no negative marks.
51. There exists a finite field of order
(a) 6
(b) 12
(c) 81
(d) 121
52. If S_{3} and A_{3} respectively denote the permutation group and alternating group, then
(a) A_{3} is the Sylow 3-subgroup of S_{3}
(b) Sylow 2-subgroup of S_{3} is unique
(c) $\{I,(12)\},\{I,(12)\},\{I,(23)\}$ are Sylow 2-subgroup of S_{3}
(d) A_{3} is not a normal subgroup of S_{3}
53. Let G be a group of order 105 and H be its subgroup of order 35 . Then
(a) H is a normal subgroup of G
(b) H is cyclic
(c) G is simple
(d) H has a normal subgroup K of order 5 and K is normal in G .
54. The quotient group \mathbb{R} / \mathbb{Z} is
(a) an infinite Abelian group
(b) cyclic
(c) the same as $\{r+\mathbb{Z}: 0 \leq r<1\}$
(d) isomorphic to the multiplicative group of all complex numbers of unit modulus
55. Which of the following pairs of groups are isomorphic to each other?
(a) $\langle\mathbb{Z},+\rangle,\langle\mathbb{Q},+\rangle$
(b) $\langle\mathbb{Q},+\rangle,\left\langle\mathbb{R}^{+}, \cdot\right\rangle$
(c) $\langle\mathbb{R},+\rangle,\left\langle\mathbb{R}^{+}, \cdot\right\rangle$
(d) $\operatorname{Aut}\left(\mathbb{Z}_{3}\right), \operatorname{Aut}\left(\mathbb{Z}_{4}\right)$
56. Let V and W be finite-dimensional vector spaces and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then
(a) $\operatorname{dim} \mathrm{V}<\operatorname{dim} \mathrm{W} \Rightarrow \mathrm{T}$ cannot be onto
(b) $\operatorname{dim} \mathrm{V}>\operatorname{dim} \mathrm{W} \Rightarrow \mathrm{T}$ cannot be one-to-one
(c) $\operatorname{dim} \mathrm{V}+$ null $\mathrm{T}=\operatorname{rank} \mathrm{T}$
(d) $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{W} \Rightarrow \mathrm{T}$ is invertible
57. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformations given by the formula $T(x, y, z)=A(x y z)^{t}$ where A is a 3×3 real orthogonal matrix of determinant 1 . Then
(a) T is an isometry of \mathbb{R}^{3}
(b) the matrix of T with respect to the usual basis of \mathbb{R}^{3} is A^{t}
(c) the eigenvalues of T are either 1 or -1
(d) T is surjective
58. Choose the correct statements
(a) $\bigcup_{n=1}^{\infty}[1 / n, 2]=[0,2]$
(b) $\bigcup_{n=1}^{\infty}(1 / n, 2]=[0,2]$
(c) $\bigcap_{n=1}^{\infty}(1-1 / n, 2]=(1,2]$
(d) $\bigcap_{n=1}^{\infty}[1-1 / n, 2]=[1,2]$
59. If $\mathbb{Q} \subset A \subset \mathbb{R}$, which of the following must be true?
(a) If A is open, then $A=\mathbb{R}$
(b) If A is closed, then $A=\mathbb{R}$
(c) If A is uncountable, then A is closed
(d) If A is countable, then A is closed
60. The function $f:[0,1] \rightarrow[0,1]$ defined by $f(0)=0$ and $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0$, is
(a) differentiable on $(0,1)$
(b) is continuous on $[0,1]$
(c) is continuous on $[0,1]$ but not differentiable at 0
(d) is uniformly continuous
61. Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Then
(a) $\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) \sin n x d x=\pi$
(b) $\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) \cos n x d x=\pi$
(c) $\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) \sin n x d x=0$
(d) $\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) \cos n x d x=0$
62. Which of the following statements about a sequence of real numbers are true?
(a) Every bounded sequence has a convergent subsequence
(b) Every sequence has a monotonic subsequence
(c) Every sequence has a limit point
(d) Every sequence has a countable number of terms
63. Let $\left\langle a_{n}\right\rangle=\langle 1,1,1 / 2,1,1 / 2,1 / 3,1,1 / 2,1 / 3,1 / 4, \ldots\rangle$ be a sequence of real numbers. Then
(a) $\left\langle a_{n}\right\rangle$ has infinite number of limit points
(b) $\limsup \sin _{n \rightarrow \infty} a_{n}=1$
(c) $\liminf _{n \rightarrow \infty} a_{n}=0$
(d) $\left\langle a_{n}\right\rangle$ has infinite number of convergent subsequences
64. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\min \{x, x+1,|x-2|\}$. Then
(a) f is continuous on \mathbb{R}
(b) f is not differentiable at exactly two points
(c) f increases on the interval $(-\infty, 1]$
(d) f decreases on the interval $[1,2]$
65. Let $F_{n}=[-1 / n, 1 / n]$ for each $n \in \mathbb{N}$ and let $F=\bigcap_{n=1}^{\infty} F_{n}$. Then
(a) F contains finite number of points
(b) $\sup \{|x-y|: x, y \in F\}=0$
(c) $\inf \{|x-y|: x, y \in F\}=0$
(d) F is a closed set
66. Let $d_{1}, d_{2}, d_{3}, d_{4}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
& d_{1}(x, y)=\sqrt{|x-y|}, \\
& d_{2}(x, y)=\left|x^{2}-y^{2}\right|, \\
& d_{3}(x, y)=|\sin x-\sin y|, \\
& d_{4}(x, y)=\left|\tan ^{-1} x-\tan ^{-1} y\right| .
\end{aligned}
$$

Then which of the following is/are metric on \mathbb{R} ?
(a) d_{1}
(b) d_{2}
(c) d_{3}
(d) d_{4}
67. Which of the following is/are true for the initial value problem: $x y^{\prime}=2 y, y(a)=b$
(a) there is unique solution near (a, b) if $b \neq 0$
(b) there is no solution if $a=0$ but $b \neq 0$
(c) there are infinitely many solutions if $a=b=0$
(d) the function $y=x^{2}$ if $y \leq 0$ and $y=c x^{2}$ if $x \geq 0$ is one of the solutions
68. The solution of the partial differential equation $z=p q$ where $p=\partial z / \partial x$ and $q=\partial z / \partial y$ is
(a) $z=(x+a)(x+b)$
(b) $4 z=(a x+y / a+b)^{2}$
(c) $z=a x+a^{2}+b y$
(d) none of these
69. Consider the second order Sturm-Liouville problem: $x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0$ where $\lambda \geq 0$, subject to the conditions: $y^{\prime}(1)=y^{\prime}\left(e^{2 \pi}\right)=0$. Pick out the true statements
(a) For $\lambda=1$, the given problem has infinitely many solutions
(b) For $\lambda=0$, only solution to the given problem is the trivial solution
(c) The characteristic values λ_{n} of the given problem can be arranged in a monotonically increasing sequence
(d) For $\lambda=1 / 16$, a non-trivial solution exists.
70. For any integer $n \geq 2$, let $S_{n}=\left\{(x, y) \in \mathbb{R}^{2}:\left(x-\frac{1}{2}\right)^{2}+y^{2}=\frac{1}{n^{2}}\right\}$ and $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$. The second order partial differential equation: $\left(x^{2}-1\right) u_{x x}+2 y u_{x y}-u_{y y}=0$ is
(a) elliptic on $\bigcup_{n=2}^{\infty} S_{n}$
(b) elliptic on $\bigcup_{n=3}^{\infty} S_{n}$ and parabolic on S_{2}
(c) hyperbolic in $\mathbb{R}^{2}-S$
(d) parabolic on $S \cap\left(\bigcup_{n=2}^{\infty} S_{n}\right)$

D.U. M.Sc. Entrance - 2014 (Mathematics) (Code - A)

ANSWER KEY

1. (c)	2. (b)	3. (d)	4. (b)	5. (c)
6. (d)	7. (d)	8. (d)	9. (b)	10. (a)
11. (c)	12. (d)	13. (a)	14. (c)	15. (a)
16. (b)	17. (c)	18. (b)	19. (a)	20. (c)
21. (b)	22. (b)	23. (c)	24. (a)	25. (b)
26. (b)	27. (c)	28. (d)	29. (a)	30. (c)
31. (a)	32. (a)	33. (c)	34. (d)	35. (b)
36. (c)	37. (d)	38. (b)	39. (a)	40. (a)
41. (a)	42. (d)	43. (a)	44. (c)	45. (b)
46. (b)	47. (c)	48. (b)	49. (d)	50. (a)
51. (c, d)	52. (a, c)	53. (a, b, d)	54. (a, c, d)	55. (c, d)
56. (a, b)	57. (a, c, d)	58. (b, d)	59. (b)	60. (a, b, d)
61. (c, d)	62. (a, b, d)	63. (a, b, c, d)	64. (a, b, c, d)	
65. (a, b, c, d)	66. (a, d)	67. (b, c, d)	68. (a, c)	
69. (a, c)	70. (c, d)			

