

D.U. M.Sc. Entrance - 2014 (Mathematics) (Code - A)

PART-I

For each correct answer 3 marks will be given and for an incorrect answer one mark will be deducted. The symbols $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} respectively denote the sets of integers, rational numbers, real numbers and complex numbers.

1. How many elements are there in $\mathbb{Z}[i]/\langle 3+i\rangle$?

(a) infinite(b) 3(c) 10(d) finite but not 3 or 102.Let P be the set of all $n \times n$ complex Hermitian matrices. Then P is a vector space over the field of
(a) \mathbb{C} (b) \mathbb{R} but not \mathbb{C} (c) both \mathbb{R} and \mathbb{C} (d) \mathbb{C} but not \mathbb{R}

- 3. Which one of the following is true?
 - (a) There are infinitely many one-one linear transformations from \mathbb{R}^4 to \mathbb{R}^3
 - (b) The dimension of the vector space of all 3×3 skew-symmetric matrices over the field of real numbers is 6

(c) Let F be a field and A a fixed $n \times n$ matrix over F. If $T : M_n(F) \to M_n(F)$ is a linear transformation such that T(B) = AB for every $B \in M_n(F)$, then the characteristic polynomial for A is the same as the characteristic polynomial for T.

(d) A two-dimensional vector space over a field with 2 elements has exactly 3 different basis.

- Let V and W be vector spaces over a field F. Let S : V \rightarrow W and T : W \rightarrow V be linear transformations. Then which one of the following is true?
 - (a) If ST is one-to-one, then S is one-to-one
 - (b) If V = W and V is finite-dimensional such that TS = I, then T is invertible
 - (c) If dim V = 2 and dim W = 3, then ST is invertible
 - (d) If TS is onto, then S is onto
- 5. The order of the automorphism group of Klein's group is
 - (c) 6

(d) 24

- 6. Which one of the following group is cyclic?
 - (a) The group of positive rational numbers under multiplication

(b) 4

- (b) The dihedral group of order 30
- (c) $\mathbb{Z}_3 \oplus \mathbb{Z}_{15}$

(a) 3

- (d) Automorphism group of \mathbb{Z}_{10}
- 7. Which one of the following is a field?
 - (a) An infinite integral domain (b) $\mathbb{R}[x]/\langle x^2-2\rangle$
 - (c) $\mathbb{Z}_3 \oplus \mathbb{Z}_{15}$

4.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

(d) $\mathbb{Q}[x]/\langle x^2-2\rangle$

8.	Which one of the following is true for the transformation $T : P_2(\mathbb{R})$	$\mathbb{P} \to \mathbb{P} (\mathbb{R})$ defined by $T(f) - f + f' + f''$?	
0.	(a) T is one-to-one but not onto	$(1-j)^{-j} (1-j)^{-j} (1-j)^{-j$	
	(b) T is onto but not one-to-one		
	(c) T is invertible		
	(d) the matrix of T with respect to the basis $\{1, x, x^2\}$ is upper triangular		
9.	In $\mathbb{Z}[x]$, the ideal of $\langle x \rangle$ is		
	(a) maximal but not prime (b) prime	e but not maximal	
	(c) both prime and maximal (d) neith	er prime not maximal	
10.	Which one of the following is true for the transformation $T: M_n \to \mathbb{C}$ defined by $T(A) = \text{tr } A = \sum_{i=1}^n A_{ii}$?		
	(a) Nullity of T is $n^2 - 1$ (b) Rank	s of T is <i>n</i>	
	(c) T is one-to-one (d) T(Al	$\mathbf{B}) = \mathbf{T}(\mathbf{A})\mathbf{T}(\mathbf{B}) \text{ for all } \mathbf{A}, \mathbf{B} \in \mathbf{M}_{n \times n}$	
11.	Let $W_1 = \{A \in M_n(\mathbb{C}) : A_{ij} = 0 \forall i \le j\}$ and W_2 is the set of s dimension of $W_1 + W_2$ is	symmetric matrices of order <i>n</i> . Then the	
	(a) n (b) $2n$ (c) n^2	(d) $n^2 - n$	
12.	The logarithmic map from the multiplicative group of positive number is	real numbers to the additive group of real	
		nto but not a one-to-one homomorphism	
	-	omorphism	
13.			
14	(a) 81 (b) 1/81 (c) 1/27	(d) 27	
14.	The quotient group $\mathbb{Q}_8 / \{1, -1\}$ is isomorphic to		
	(a) (\mathbb{Q}_8, \cdot) (b) $(\{1, -1\}, \cdot)$ (c) (V_4, \cdot)	+) (d) $(\mathbb{Z}_4, +)$	
15.	The converse of Lagrange's theorem does not hold in		
	 (a) A₄, the alternating group of degree 4 (b) A₄ × ℤ₂ (c) the additive group of integers modulo 4 (d) Klein's four group 		
16.	The ring $(R, +, \cdot)$ is an integral domain when R is		
	(a) $M_2(\mathbb{Z})$ (b) \mathbb{Z}_7		
	(c) \mathbb{Z}_6		
	(d) C[0, 1] of all continuous functions from [0, 1] to \mathbb{R}		
17.			
	(a) a field (b) a prin	ncipal ideal domain	
	(c) unique factorization domain (d) Eucli	dian domain	
18.	An algebraic number is a root of a polynomial whose coefficients is	s are rational. The set of algebraic numbers	
		tably infinite	
	(c) uncountable (d) none	of these	

2

9.	Let $f : A \rightarrow A$ and $B \subset A$. Then which one of the formula $f \in A$.	llowing is always true?		
	(a) $\mathbf{B} \subset f^{-1}(f(\mathbf{B}))$	(b) $B = f^{-1}(f(B))$		
	(c) $\mathbf{B} \subset f(f^{-1}(\mathbf{B}))$	(d) $B = f(f^{-1}(B))$		
0.	Which one of the following does not imply $a = 0$?			
	(a) For all $\in > 0, 0 \le a \le a$	(b) For all $\in > 0, - \in < a < \in$		
	(c) For all $\in > 0, a \le 0$	(d) For all $\in > 0, 0 \le a \le \in$		
1.	Let X and Y be metric spaces and $f: X \to Y$ be continuous. Then f maps			
	(a) open sets to open sets and closed sets to closed sets			
	(b) compact sets to bounded sets			
	(c) connected sets to compact sets(d) bounded sets to compact sets			
2.	Suppose $f:[0,1] \to \mathbb{R}$ is bounded. Then			
	(a) <i>f</i> is Riemann integrable on [0, 1]			
	(b) f is continuous on [0, 1] except for finitely many points implies f is Riemann integrable on [0, 1]			
	(c) f is Riemann integrable on [0, 1] implies f is continuous on [0, 1]			
	(d) f is Riemann integrable on [0, 1] implies f is monotone function			
3.	Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sin x^3$, then	f is		
	(a) uniformly continuous	(b) not differentiable		
	(c) continuous but not uniformly continuous	(d) not continuous		
4.	Consider the sequence $\langle f_n \rangle$ defined by $f_n(x) = 1/(1)$	$(+x^n)$ for $x \in [0,1]$. Let $f(x) = \lim_{n \to \infty} f_n(x)$. The		
	(a) For $0 < a < 1, \langle f_n \rangle$ converges uniformly to f on $[0, a]$			
	(b) the sequence $\langle f_n \rangle$ converges uniformly to <i>f</i> on [0, 1]			
	(c) the sequence $\langle f_n \rangle$ converges uniformly to f on [1/2, 1]			
	(d) the sequence $\langle f_n \rangle$ converges uniformly to f on [0, 1]			
5.	The open unit ball $B((0, 0), 1)$ in the metric s	space (\mathbb{R}^2, d) where the metric d is defined b		
	$d((x_1, y_1), (x_2, y_2)) = x_1 - x_2 + y_1 - y_2 $ is the inside			
	(a) the circle centered at the origin and radius 1			
	(b) the rectangle with vertices at (0, 1), (1, 0), (-1	(0), (0, -1)		
	(c) the rectangle with vertices at $(1, 1)$, $(1, -1)$, $(-1, 1)$, $(-1, -1)$			
	(d) the triangle with vertices $(0, 1), (-1, -1), (1, -1)$			
6.	Let $\langle a_n \rangle$ and $\langle b_n \rangle$ be two sequences of real num	bers such that $a_n = b_n - b_{n+1}$ for $n \in \mathbb{N}$. If $\sum b_n$		
	convergent, then which of the following is true?			
	(a) $\sum a_n$ may not converge	(b) $\sum a_n$ is convergent and $\sum a_n = b_1$		
	(c) $\sum a_n$ is convergent and $\sum a_n = 0$	(d) $\sum a_n$ is convergent and $\sum a_n = a_1 - b_1$		

3

27.	27. Let <i>f</i> be a real-valued function on [0, 1] such that $f(0) = -1$ and $f(1) = 1/2$, then there always			
	a $t \in (0,1)$ such that			
	(a) $f'(t) = -2$ ((b) $f'(t) = 1$		
	(c) $f'(t) = 3/2$ (e)	d) $f'(t) = -1/2$		
28.	28. Let S and T be subsets of \mathbb{R} . Select the incorrect statement:			
	(a) (int S) \cap (int T) = int (S \cap T) ((b) (int S) \cup (int T) \subset int (S \cup T)		
	(c) \overline{S} is closed in \mathbb{R} (c)	d) \overline{T} is the largest closed set containing <i>T</i> .		
29.	The number of solutions of the equation $3^x + 4^x = 5^x$ in	the set of positive real numbers is exactly		
	(a) 1 (b) 2 (e)	(d) 5		
30.	30. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable and f' be bounded. Then			
	(a) f has a local maximum at exactly one point of \mathbb{R}			
	(b) f has a local maximum at exactly two point of \mathbb{R}			
	(c) f is uniformly continuous on \mathbb{R}			
	(d) $f + f'$ is uniformly continuous on \mathbb{R}			
31.	31. Let $a_n = 2^n + n^2$ for $n \le 100$ and $a_n = 3 + (-1)^n \frac{n^2}{2^n + 1}$ for $n > 100$. Then (a) $\langle a_n \rangle$ is a Cauchy sequence			
	(b) $\langle a_n \rangle$ is an unbounded sequence			
	(c) $\langle a_n \rangle$ has exactly three limit points			
(d) $\langle a_n \rangle$ has two convergent subsequences converging to two different points				
32.	32. Let the function $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(0,0) = 0$ and $f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$ for $(x, y) \neq (0, 0)$			
	(a) f is continuous on \mathbb{R}^2			
	(b) f is continuous at all points of \mathbb{R}^2 except at (0, 0)			
	(c) $f_x(0, 0) = f_y(0, 0)$			
	(d) f is bounded			
33.	Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1/2 & \text{if } x = 1\\ 1/4 & \text{if } x = 1\\ 0 & \text{if } x \in [0,1] \end{cases}$	/4 /2 0,1]\{1/4,1/2}		
Then				
	(a) f is Riemann integrable and $\int_{0}^{1} f(x) dx = 3/4$ (b)	b) f is Riemann integrable and $\int_{0}^{1} f(x) dx = 1/4$		
	(c) f is Riemann integrable and $\int_{0}^{1} f(x)dx = 0$ (e)	d) f is not Riemann integrable		

4

CAREER ENDEAVOUR

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

Let $f:[0,\pi/2] \to \mathbb{R}$ be continuous and satisfy $\int_{0}^{\sin x} f(t)dt = \sqrt{3}x/2$ for $0 \le x \le \pi/2$. Then f(1/2)34. equals (b) $1/\sqrt{2}$ (c) $1/\sqrt{3}$ (a) 1/2(d) 1 For $n \in \mathbb{N}$, let $f_n(x) = \frac{\sin x}{x} + \frac{\cos x}{\sqrt{n}}$ for $x \in (0, \pi/2]$. Then 35. (a) $\langle f_n \rangle$ converges uniformly on $(0, \pi/2)$ but not on $(0, \pi/2]$ (b) $\langle f_n \rangle$ converges uniformly on $(0, \pi/2]$ (c) $\langle f_n \rangle$ converges uniformly on $(0, \pi/4)$ but not on $(0, \pi/4]$ (d) none of these Define a metric d on \mathbb{R} by d(x, x) = 0 for any x and d(x, y) = 1 for any x, y with $x \neq y$. Let $\langle a_n \rangle$ be 36. a Cauchy sequence in $\langle \mathbb{R}, d \rangle$. Then (a) $\langle a_n \rangle$ is a constant sequence (b) $\langle a_n \rangle$ contains infinitely many points (c) $\langle a_n \rangle$ contains at most finite number of distinct points (d) none of these The singular solution of $y = px + p^3$, p = dy / dx is 37. (b) $4x^2 + 27y^3 = 0$ (a) $4v^3 + 27x^2 = 0$ (d) $4x^3 + 27y^2 = 0$ (c) $4v^2 - 27x^3 = 0$ Consider the following initial value problem: $(x+1)^2 y'' - 2(x+1)y' + 2y = 1$ subject to the condition y(0) = 038. and y'(0) = 1. Given that x+1 and $(x+1)^2$ are linearly independent solutions of the corresponding homogeneous equation, the value of y(1/2) is equal to (a) 5/16 (b) 7/8 (c) 0(d) 1/24 Assume that all the roots of the polynomial equation $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ have negative real 39. parts. If u(t) is any solution to the differential equation: $a_n u^{(n)} + a_{n-1} u^{(n-1)} + \dots + a_1 u' + a_1 u = 0$, the value of the limit $\lim_{t\to\infty} u(t)$ is (a) 0 (b) *n* (c) ∞ (d) 1 The initial value problem $y' = y^{2/3}$ with $0 \le x \le a$ for any positive real number a and y(0) = 0 has 40. (a) infinitely many solutions (b) more than one but finitely many solutions (c) unique solution (d) no solution 41. One of the particular integrals of the partial differential equation r - 2s + t = cos(2x + 3y) is (b) $\cos(2x+3y)$ (c) $\sin(2x+3y)$ (a) $-\cos(2x+3y)$ (d) none of these

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

	(a) the whole plane \mathbb{R}	(b) the half plane $x > 0$		
	(c) the half plane $y > 0$	(d) the half plane $x < 0$		
43.	The solution of Cauchy problem $u_t + uu_s = x, u(x, 0) = 1$ is $u(x, t) =$			
	(a) $x \tan h t + \operatorname{sec} h t$	(b) $\tanh h t + \operatorname{sec} h t$		
	(c) $(x^2 + t^2) \sin t$	(d) none of these		
44.	The integral surface that satisfies the first order partial differential equation:			
	$(x^{2} - y^{2} - z^{2})\frac{\partial z}{\partial x} + 2xy\frac{\partial z}{\partial y} = 2xz$			
	is given by			
	(a) $\phi(xy/z, y^2/(x^2+z^2)) = 0$	(b) $\phi(y/z, (x^2 + y^2 + z^2)/x) = 0$		
	(c) $\phi(y/z, (x^2 + y^2 + z^2)/z) = 0$	(d) $\phi(y/(zx), x^2/(y^2+z^2)) = 0$		
45.	Consider the diffusion equation $u_{xx} = u_t$ with $0 < x < \pi$ and $t > 0$, subject to the initial and boundar			
	conditions: $u(x,0) = 4 \sin 2x$ for $0 < x < \pi$ and	d $u(0,t) = 0 = u(\pi,t)$ for $t > 0$. Then, $u(\pi/8, 1)$ is equal		
	to:			
	(a) $4e^{-4}/\sqrt{2}$ (b) $4e^{-9}/\sqrt{2}$	(c) $4/e^2$ (d) $4/\sqrt{e}$		
46.	The general solution to the second order partial	differential equation $u_{xx} + u_{xy} - 2u_{yy} = (y+1)e^x$ is given by		
	(a) $\phi_1(y-x) + \phi_2(y+2x) + xe^y$	(b) $\phi_1(y+x) + \phi_2(y-2x) + ye^x$		
	(c) $\phi_1(y+x) + \phi_2(y-2x) + xe^{-y}$	(d) $\phi_1(y-x) + \phi_2(y+2x) + ye^{-x}$		
47.	The trajectories of the system of differential eq	puttions $dx / dt = y$ and $dy / dt = -x$ are		
	(a) ellipses (b) hyperbolas	(d) spirals		
48.	The backward Euler method for solving the dif	ferential equation $y' = f(x, y)$ is		
	(a) $y_{n+1} = y_n + hf(x_n, y_n)$	(b) $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$		
	(c) $y_{n+1} = y_{n-1} + 2hf(x_n, y_n)$	(d) $y_{n+1} = (1+h)f(x_{n+1}, y_{n+1})$		
49.	The Newton-Raphson formula for finding appr	oximate root of the equation $f(x) = 0$ is		
	(a) $x_{n+1} = f(x_n) / f'(x_n), f'(x_n) \neq 0$	(b) $x_{n+1} = x_n + f(x_n) / f'(x_n), f'(x_n) \neq 0$		
	(c) $x_{n+1} = x_{n-1} - f(x_n) / f'(x_n), f'(x_n) \neq 0$	(d) $x_{n+1} = x_n - f(x_n) / f'(x_n), f'(x_n) \neq 0$		
50.	If Euler's method is used to solve the initial value	ue problem $y' = -2ty^2$, $y(0) = 1$ numerically with step size		
	h = -0.2, the approximate value of $y(0.6)$ is			
	(a) 0.7845 (b) 0.8745	(c) 0.8754 (d) 0.7875		

(b) the half plane x > 0

The region in which the equation $xu_{xx} + u_{yy} = x^2$ is hyperbolic is

42.

(a) the whole plane \mathbb{R}^2

Questions may have multiple correct answers and carry five marks. Five marks will be given only if all correct choices are marked. There will be no negative marks. There exists a finite field of order 51. (a) 6 (b) 12 (c) 81 (d) 121 52. If S₃ and A₃ respectively denote the permutation group and alternating group, then (a) A_3 is the Sylow 3-subgroup of S_3 (b) Sylow 2-subgroup of S_3 is unique (c) $\{I,(12)\},\{I,(12)\},\{I,(23)\}\$ are Sylow 2-subgroup of S₃ (d) A_3 is not a normal subgroup of S_3 53. Let G be a group of order 105 and H be its subgroup of order 35. Then (a) H is a normal subgroup of G (b) H is cyclic (c) G is simple (d) H has a normal subgroup K of order 5 and K is normal in G. 54. The quotient group \mathbb{R}/\mathbb{Z} is (a) an infinite Abelian group (b) cyclic (c) the same as $\{r + \mathbb{Z} : 0 \le r < 1\}$ (d) isomorphic to the multiplicative group of all complex numbers of unit modulus 55. Which of the following pairs of groups are isomorphic to each other? (b) $\langle \mathbb{Q}, + \rangle, \langle \mathbb{R}^+, \cdot \rangle$ (a) $\langle \mathbb{Z}, + \rangle, \langle \mathbb{Q}, + \rangle$ (c) $\langle \mathbb{R}, + \rangle, \langle \mathbb{R}^+, \cdot \rangle$ (d) Aut(\mathbb{Z}_3), Aut(\mathbb{Z}_4) Let V and W be finite-dimensional vector spaces and $T: V \rightarrow W$ be a linear transformation. Then 56. (b) dim V > dim W \Rightarrow T cannot be one-to-one (a) dim V < dim W \Rightarrow T cannot be onto (c) dim V + null T = rank T (d) dim V = dim W \Rightarrow T is invertible Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformations given by the formula $T(x, y, z) = A(x y z)^t$ where A is a 3×3 57. real orthogonal matrix of determinant 1. Then (a) T is an isometry of \mathbb{R}^3 (b) the matrix of T with respect to the usual basis of \mathbb{R}^3 is A^t (c) the eigenvalues of T are either 1 or -1(d) T is surjective 58. Choose the correct statements (a) $\bigcup_{n=1}^{\infty} [1/n, 2] = [0, 2]$ (b) $\bigcup_{n=1}^{\infty} (1/n, 2] = [0, 2]$

PART-II

7

(c) $\bigcap_{n=1}^{\infty} (1-1/n,2] = (1,2]$ (d) $\bigcap_{n=1}^{\infty} [1-1/n,2] = [1,2]$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455 59. If $\mathbb{Q} \subset A \subset \mathbb{R}$, which of the following must be true? (a) If A is open, then $A = \mathbb{R}$ (b) If A is closed, then $A = \mathbb{R}$ (c) If A is uncountable, then A is closed (d) If A is countable, then A is closed The function $f:[0,1] \rightarrow [0,1]$ defined by f(0) = 0 and $f(x) = x^2 \sin(1/x)$ for $x \neq 0$, is 60. (a) differentiable on (0, 1)(b) is continuous on [0, 1](c) is continuous on [0, 1] but not differentiable at 0 (d) is uniformly continuous Let $f:[a,b] \rightarrow [a,b]$ be a continuous function. Then 61. (a) $\lim_{n\to\infty} \int_{a}^{b} f(x) \sin nx dx = \pi$ (b) $\lim_{n\to\infty} \int_{a}^{b} f(x) \cos nx dx = \pi$ (c) $\lim_{n\to\infty}\int_a^b f(x)\sin nxdx = 0$ (d) $\lim_{n\to\infty} \int_{-\infty}^{b} f(x) \cos nx dx = 0$ 62. Which of the following statements about a sequence of real numbers are true? (a) Every bounded sequence has a convergent subsequence (b) Every sequence has a monotonic subsequence (c) Every sequence has a limit point (d) Every sequence has a countable number of terms Let $\langle a_n \rangle = \langle 1, 1, 1/2, 1, 1/2, 1/3, 1, 1/2, 1/3, 1/4, ... \rangle$ be a sequence of real numbers. Then 63. (a) $\langle a_n \rangle$ has infinite number of limit points (b) $\limsup_{n\to\infty} a_n = 1$ (c) $\liminf_{n\to\infty} a_n = 0$ (d) $\langle a_n \rangle$ has infinite number of convergent subsequences Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \min\{x, x+1, |x-2|\}$. Then 64. (a) f is continuous on \mathbb{R} (b) f is not differentiable at exactly two points (c) f increases on the interval $(-\infty, 1]$ (d) f decreases on the interval [1,2] Let $F_n = [-1/n, 1/n]$ for each $n \in \mathbb{N}$ and let $F = \bigcap_{n=1}^{\infty} F_n$. Then 65. (a) F contains finite number of points (b) $\sup\{|x - y|: x, y \in F\} = 0$ (c) $\inf\{|x-y|: x, y \in F\} = 0$ (d) F is a closed set

8

66. Let $d_1, d_2, d_3, d_4 : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$d_1(x, y) = \sqrt{|x - y|},$$
$$d_2(x, y) = |x^2 - y^2|,$$

 $d_{2}(x, y) = |\sin x - \sin y|,$

$$d_4(x, y) = |\tan^{-1} x - \tan^{-1} y|.$$

Then which of the following is/are metric on \mathbb{R} ?

(a)
$$d_1$$
 (b) d_2 (c) d_3 (d) d

- 67. Which of the following is/are true for the initial value problem: xy' = 2y, y(a) = b
 - (a) there is unique solution near (a,b) if $b \neq 0$
 - (b) there is no solution if a = 0 but $b \neq 0$
 - (c) there are infinitely many solutions if a = b = 0
 - (d) the function $y = x^2$ if $y \le 0$ and $y = cx^2$ if $x \ge 0$ is one of the solutions
- 68. The solution of the partial differential equation z = pq where $p = \partial z / \partial x$ and $q = \partial z / \partial y$ is
 - (a) z = (x+a)(x+b) (b) $4z = (ax + y/a + b)^2$

(c)
$$z = ax + a^2 + by$$
 (d) none of these

- 69. Consider the second order Sturm-Liouville problem: $x^2y'' + xy' + \lambda y = 0$ where $\lambda \ge 0$, subject to the conditions: $y'(1) = y'(e^{2\pi}) = 0$. Pick out the true statements
 - (a) For $\lambda = 1$, the given problem has infinitely many solutions
 - (b) For $\lambda = 0$, only solution to the given problem is the trivial solution
 - (c) The characteristic values λ_n of the given problem can be arranged in a monotonically increasing sequence **CARER ENDEAVOUR**
 - (d) For $\lambda = 1/16$, a non-trivial solution exists.
- 70. For any integer $n \ge 2$, let $S_n = \{(x, y) \in \mathbb{R}^2 : (x \frac{1}{2})^2 + y^2 = \frac{1}{n^2}\}$ and $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$. The second order partial differential equation: $(x^2 1)u_{xx} + 2yu_{xy} u_{yy} = 0$ is
 - (a) elliptic on $\bigcup_{n=2}^{\infty} S_n$ (b) elliptic on $\bigcup_{n=3}^{\infty} S_n$ and parabolic on S_2
 - (c) hyperbolic in $\mathbb{R}^2 S$ (d) parabolic on $S \cap \left(\bigcup_{n=2}^{\infty} S_n \right)$

D.U. M.Sc. Entrance - 2014 (Mathematics) (Code - A)

ANSWER KEY								
1. (c)	2. (b)	3. (d)	4. (b)	5. (c)				
6. (d)	7. (d)	8. (d)	9. (b)	10. (a)				
11. (c)	12. (d)	13. (a)	14. (c)	15. (a)				
16. (b)	17. (c)	18. (b)	19. (a)	20. (c)				
21. (b)	22. (b)	23. (c)	24. (a)	25. (b)				
26. (b)	27. (c)	28. (d)	29. (a)	30. (c)				
31. (a)	32. (a)	33. (c)	34. (d)	35. (b)				
36. (c)	37. (d)	38. (b)	39. (a)	40. (a)				
41. (a)	42. (d)	43. (a)	44. (c)	45. (b)				
46. (b)	47. (c)	48. (b)	49. (d)	50. (a)				
51. (c, d)	52. (a, c)	53. (a, b, d)	54. (a, c, d)	55. (c, d)				
56. (a, b)	57. (a, c, d)	58. (b, d)	59. (b)	60. (a , b , d)				
61. (c, d)	62. (a, b, d)	63. (a, b, c, d)	64. (a, b, c, d)					
65. (a, b, c, d)	66. (a, d)	67. (b, c, d)	68. (a, c)					
69. (a, c)	70. (c, d)							

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455