PAPER : IIT-JAM 2005 CHEMISTRY-CY

NOTE: Attempt ALL the $\mathbf{4 4}$ questions. Questions 1-30 (Objective questions) carry three marks each and questions 31-44 (Subjective questions) carry fifteen marks each.

1. Arrange the following in the decreasing order of acidity of the hydrogen indicated in italic
(i) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(ii) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$
(iii) $\mathrm{CH}_{3} \mathrm{OOCCH}_{2} \mathrm{COOCH}_{3}$
(iv) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{NO}_{2}$
(a) (ii) $>$ (iii) $>$ (i) $>$ (iv)
(b) (iv) $>$ (ii) $>$ (iii) $>$ (i)
(c) (iv) $>$ (iii) $>$ (ii) $>$ (i)
(d) (ii) $>$ (iv) $>$ (iii) $>$ (i)
2. For the reaction shown below if the concentration of KCN is increased four times, the rate of the reaction will be

(a) doubled
(c) unaffected
(d) halved.

3. Benzyl chloride is reacted with different nucleophiles shown below. Arrange them in decreasing order of reactivity.

Nucleophilies: $\mathrm{HO}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{PhO}^{-}, \mathrm{CH}_{3} \mathrm{O}^{-}$
(a) $\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{HO}^{-}>\mathrm{PhO}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}$
(b) $\mathrm{HO}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{PhO}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}$
(c) $\mathrm{HO}^{-}>\mathrm{PhO}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}$
(d) $\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{HO}^{-}>\mathrm{PhO}^{-}$
4. The rate of nitration of the following aromatic compounds decreases in the order
(i) benzene
(ii) pyridine
(iii) thiophene
(iv) toluene
(a) (iv) $>$ (i) $>$ (iii) $>$ (ii)
(b) (iii) $>$ (iv) $>$ (i) $>$ (ii)
(c) (iii) $>$ (ii) $>$ (i) $>$ (iv)
(d) (ii) $>$ (i) $>$ (iv) $>$ (iii)
5. The major product formed in the reaction of 1,3-butadiene with bromine is
(a) $\mathrm{BrCH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}=\mathrm{CH}_{2}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
(c) $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Br})-\mathrm{C}(\mathrm{Br})=\mathrm{CH}_{2}$
(d) $\mathrm{BrCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Br}$
6. The reaction of (+) 2-iodobutane and NaI* (I* is radioactive isotope of iodine) in acetone was studied by measuring the rate of racemization $\left(k_{r}\right)$ and the rate of incorporation of $I^{*}\left(k_{i}\right)$.
$(+) \mathrm{CH}_{3} \mathrm{CH}(\mathrm{I}) \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{NaI} * \longrightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{I}^{*}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{NaI}$
For this reaction, the relationship between k_{r} and k_{i} is:
(a) $k_{i}=2 \times k_{r}$
(b) $k_{i}=(1 / 2) \times k_{r}$
(c) $k_{i}=k_{r}$
(d) $k_{i}=(1 / 3) \times k_{r}$
7. DNA $\xrightarrow{\mathrm{Ba}(\mathrm{OH})_{2}}(\mathrm{P})$

In the scheme shown above $(\mathrm{P}),(\mathrm{Q}),(\mathrm{R})$ and (S) are
(a) $(\mathrm{P})=$ purine bases, (Q) pyrimidine bases, $(\mathrm{R})=$ nucleotides, $(\mathrm{S})=$ nucleosides
(b) $(\mathrm{P})=(\mathrm{Q})=$ nucleotides, $(\mathrm{R})=$ pyrimidine bases, $(\mathrm{S})=$ purine bases.
(c) $(\mathrm{P})=$ nucleosides, $(\mathrm{Q})=$ nucleotides, $(\mathrm{R})=(\mathrm{S})=$ purine bases.
(d) $(\mathrm{P})=$ nucleotides, $(\mathrm{Q})=$ nucleosides, $(\mathrm{R})=$ pyrimidine base, $(\mathrm{S})=$ purine base.
8. The products obtained from the following reaction are:

(a)

(b)

(c)

(d)

9. The product(s) obtained in the following reaction is (are)

(a)

(b)

(c)

(d)

10. Match the isoelectric point with the amino acids.

Amino acid

(X) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$
(Y) $\mathrm{HOOCCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$
(Z) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$
(a) (X)-(II), (Y)-(III), (Z)-(I)
(c) (X)-(I), (Y)-(II), (Z)-(III)

Isoelectric point

(I) 9.5
(II) 6.0
(III) 3.1
(b) (X)-(III), (Y)-(I), (Z)-(II)
(d) (X)-(II), (Y)-(I), (Z)-(III)
11. The compound having the highest melting point is:
(a) LiCl
(b) LiF
(c) LiI
(d) LiBr
12. The shape of SF_{4} is:
(a) tetrahedral
(b) trigonal bipyramidal
(c) square planer
(d) octahedral.
13. The degree of hydration is expected to be maximum for
(a) Mg^{2+}
(b) Na^{+}
(c) $B a^{2+}$
(d) K^{+}
14. The decreasing order of the first ionization energy of the following elements is:
(a) $\mathrm{Xe}>\mathrm{Be}>\mathrm{As}>\mathrm{Al}$
(b) $\mathrm{Xe}>\mathrm{As}>\mathrm{Al}>\mathrm{Be}$
(c) $\mathrm{Xe}>\mathrm{As}>\mathrm{Be}>\mathrm{Al}$
(d) $\mathrm{Xe}>\mathrm{Be}>\mathrm{Al}>\mathrm{As}$
15. The radioactive isotope used to locate brain tumors is:
(a) ${ }_{1}^{2} D$
(b) ${ }_{7}^{15} \mathrm{~N}$
(c) ${ }_{53}^{131} I$
(d) ${ }_{6}^{13} \mathrm{C}$
16. The crystal field stabilization energy of high spin d^{7} octahedral complex is:
(a) $-\frac{4}{5} \Delta_{0}+2 P$
(b) $-\frac{4}{5} \Delta_{0}+3 P$
(c) $-\frac{9}{5} \Delta_{0}+2 P$
(d) $-\frac{9}{5} \Delta_{0}+3 P$
17. The complex with the most intense colour among the following is:
(a) $\left[\mathrm{FeF}_{6}\right]^{3-}$
(b) $\left[\mathrm{MnCl}_{4}\right]^{2-}$
(c) $\left[\mathrm{CoCl}_{4}\right]^{2-}$
(d) $\left[\mathrm{CoF}_{6}\right]^{3-}$
18. On addition of a solution of AgNO_{3} to a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, it turns black on standing due to the formation of :
(a) Ag
(b) $\mathrm{Ag}_{2} \mathrm{~S}$
(c) $\mathrm{Ag}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(d) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$.

19 Among the following complexes,
(i) $\left[R u(\text { bipyridyl })_{3}\right]^{+}$
(ii) $[\operatorname{Cr}(E D T A)]^{-}$
(iii) trans $-\left[\mathrm{CrCl}_{2}(\text { oxalate })_{2}\right]^{3-}$
(iv) cis $-\left[\mathrm{CrCl}_{2}(\text { oxalate })_{2}\right]^{3-}$
the ones that show chirality are
(a) (i), (ii), (iv)
(b) (i), (ii), (iii)
(c) (ii), (iii), (iv)
(d) (i), (iii), (iv)
20. The electronic configurations that have orbital angular momentum contribution in octahedral environment are
(a) d^{1} and high spin d^{4}
(b) d^{1} and d^{2}
(c) d^{2} and high spin d^{6}
(d) high spin d^{4} and high spin d^{6}.
21. For an ideal solution formed by mixing of pure liquids A and B .
(a) $\Delta H_{\text {mixing }}=0$
(b) $\Delta H_{\text {mixing }}<0$
(c) $\Delta H_{\text {mixing }}>0$
(d) $\Delta S_{\text {mixing }}=0$
22. The relationship between the equilibrium constant K_{1} for the reaction:

$$
\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})
$$

and the equilibrium constant K_{2} for the reaction:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g}) \text { is: }
$$

(a) $2 K_{1}=K_{2}$
(b) $K_{1}=K_{2}^{2}$
(c) $K_{1}=K_{2}$
(d) $K_{1}^{2}=K_{2}$
23. For H -like atoms, the ground state energy is proportional to
(a) $\frac{\mu}{Z^{2}}$
(b) $\frac{Z^{2}}{\mu}$
(c) μZ^{2}
(d) $\frac{1}{\mu Z^{2}}$

Where μ is the reduced mass and Z is the nuclear charge.
24. The value of integral $\int e^{-x} x^{2} d x$ is
(a) $x^{2} e^{-x}+2 x e^{-x}+2 e^{-x}$
(b) $\frac{-1}{2}\left(x^{2} e^{-x}+2 x e^{-x}+2 e^{-x}\right)$
(c) $\frac{1}{2}\left(x^{2} e^{-x}+2 x e^{-x}+2 e^{-x}\right)$
(d) $-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}$
25. For the reaction $a A \rightarrow$ products, the plot of $\frac{1}{[A]}$ versus time (t) gives a straight line. Order of the reaction is:
(a) 0
(b) 1
(c) 2
(d) 3
26. The pH of a solution prepared from 0.005 mole of $\mathrm{Ba}(\mathrm{OH})_{2}$ in 100 cc water is:
(a) 10
(b) 12
(c) 11
(d) 13
27. For an electron whose x -positional uncertainity is $1 \times 10^{10} \mathrm{~m}$, the uncertainity in x -component of the velocity in ms^{-1} will be of the order of (Data: $m_{e}=9 \times 10^{-31} \mathrm{~kg}, h=6.6 \times 10^{-34} \mathrm{Js}$)
(a) 10^{6}
(b) 10^{9}
(c) 10^{12}
(d) 10^{15}.
28. For the following system in equilibrium, $\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$ the number of components, (C), phases (P) and degrees of freedom (F), respectively, are
(a) $2,2,2$
(b) $1,3,0$
(c) $3,3,2$
(d) 2, 3, 1
29. For the distribution of molecular velocities of gases, identify the correct order from following (where $\mathrm{v}_{\mathrm{mp}}, \mathrm{v}_{\mathrm{av}}, \mathrm{v}_{\mathrm{rms}}$ are the most probable velocity, average velocity root mean square velocity, respectively):
(a) $\mathrm{v}_{\mathrm{rms}}>\mathrm{v}_{\mathrm{av}}>\mathrm{v}_{\mathrm{mp}}$
(b) $\mathrm{v}_{\mathrm{mp}}>\mathrm{v}_{\mathrm{rms}}>\mathrm{v}_{\mathrm{av}}$
(c) $\mathrm{v}_{\mathrm{av}}>\mathrm{v}_{\mathrm{rms}}>\mathrm{v}_{\mathrm{mp}}$
(d) $\mathrm{v}_{\mathrm{mp}}>\mathrm{v}_{\mathrm{av}}>\mathrm{v}_{\mathrm{rms}}$
30. Given that $\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.44 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=0.77 \mathrm{~V}$, the $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}^{0}$ is :
(a) 1.21 V
(b) 0.33 V
(c) -0.036 V
(d) 0.036 V
31. Identify the major product(s) formed in the following reactions. Intermediates and reaction mechanisms need not be discussed.

32. How may the following transformations be effected? Indicate the reagents/reaction conditions clearly in each step.
(a) (Not involving any functional group transformation of the COOH group in the starting material)

(b) (Using diethyl malonate as the only source of carbon)

(c)

33. Suggest a suitable mechanism for each of the following reactions.

(b)

34. Rationalize the following observations using suitable mechanism.
(a) Nitration of 4 t-butyltoluene gives 4 -nitrotoluene as one of the products.
(b) cis-4-t-butylcyclohexyltrimethylammonium hydroxide undergoes Hoffmann elimination to yield

4-t-butylcyclohexene whereas the trans isomer does not (use conformations) explain.
(c) $\mathrm{PhMgBr}+2 \mathrm{PhCHO} \xrightarrow[\text { 2. acid workup }]{\text { 1.dry ether }} \mathrm{PhCOPh}+\mathrm{PhCH}_{2} \mathrm{OH}$
35. (a) Suggest a chemical method for the separation of a mixture contain p-N, N-dimethylaminophenol and p-aminobenzoic acid and give a confirmatory test for phenol.
(b) Write the structures of X, Y and Z in the following
(i)

(ii)

(iii)

36. (a) Predict the hybridization and draw the structure of the following molecules based on VSEPR theory
(i) I_{3}^{-}
(ii) SO_{3}^{2-}
(iii) $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~F}_{2}$
(b) Explain why PCl_{5} exists and PH_{5} does not.
37. (a) Write balanced equations for the formation of
(i) $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ from PO_{4}^{-3}
(ii) $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Fe}(\mathrm{OH})_{2} \mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{4}\right]^{4+}$ from $\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{+3}$
(b) Which one of the two solutions has lower pH ? Justify your answer.
(i) $0.1 \mathrm{M} \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}$ or $0.1 \mathrm{M} \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$.
(ii) $0.1 \mathrm{M} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ or $0.1 \mathrm{M} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$.
38. (a) Between $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$ and $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$, which has more distorted structure and why?
(b) Calculate CFSE (in unis of Δ_{0}) and spin only magnetic moment for the following complexes.
(i) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(ii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(iii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
39. (a) The radioactive element $\mathrm{Ra}(\mathrm{Z}=88)$ emits three alpha particles in succession. Deduce in which group the resulting element will be found?
(b) A radioisotope sample has an initial activity of 23 dis $/ \mathrm{min}$. After $1 / 2 \mathrm{~h}$, the activity is 11.5 dis/ min. How many atoms of the radioactive nuclide were present originally? $\left[\alpha t_{1 / 2}=0.69\right]$ [9]
40. (a) Write the products of the following reactions:
(i) $\mathrm{CH}_{3} \mathrm{I}+\mathrm{HO}^{-} \longrightarrow$
(ii) $\mathrm{CF}_{3} \mathrm{I}+\mathrm{HO}^{-} \longrightarrow$
(iii) $2 \mathrm{CF}_{3} \mathrm{I}+\mathrm{Na}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right] \longrightarrow$
(b) Arrange $\mathrm{BF}_{3}, \mathrm{BCl}_{3}$ and BBr_{3} in the increasing order of Lewis acidity and justify.
41. Justify the following:
[15]
(a) Considering CO_{2} as an ideal gas, equipartition theorem predicts its total energy as 6.5 kT .
(b) $\Delta \mathrm{S}$ for a process is the same whether the process takes place reversibly or irreversibly.
(c) The quantity $\Delta \mathrm{G}$ equals the maximum non-expansion work done by a system in a constant temperature-pressure process.
(d) At constant temperature and pressure, $\Delta \mathrm{G}=0$ for a reversible phase change.
(e) Transition states cannot be isolated as independent chemical species.
42. The rate constant k for a second order reaction $\mathrm{P}+\mathrm{Q} \rightarrow$ products is expressed $\log _{10} \mathrm{k}=20-\frac{3000}{\mathrm{~T}}$, where the concentration is in $\mathrm{mol} \mathrm{lit}^{-1}, \mathrm{~T}$ is in absolute temperature and time is in minutes. The initial concentrations of both the reactants are 0.05 M . Calculate the activation energy and half life of the reaction at $27^{\circ} \mathrm{C} . \quad\left(\mathrm{R}=2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$.
43. The equilibrium constant for the reaction.

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{FeO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

at $600^{\circ} \mathrm{C}$ is 1.00 . If a mixture intially consisting of 1 mole of $\mathrm{Fe}_{3} \mathrm{O}_{4}, 2$ moles of $\mathrm{CO}, 0.5$ moles of FeO and 0.3 mole of CO_{2} is heated to $600^{\circ} \mathrm{C}$ at constant total pressure of 5 atmosphere, how many moles of each substance would be present at equilibrium?
44. (a) Use the time-independent Schrodinger equation to calculate the energy of a particle of mass ' m ' with $\mathrm{V}=0$ in the state $\psi=\sqrt{\frac{8}{\mathrm{a}^{3}}} \sin \frac{\pi \mathrm{x}}{\mathrm{a}} \sin \frac{\pi \mathrm{y}}{\mathrm{a}} \sin \frac{\pi \mathrm{z}}{\mathrm{a}}$ in a cubical box of length ' a '.
(b) At $20^{\circ} \mathrm{C}$, the vapour pressure of two pure liquids X and Y which form an ideal solution are 70 torr and 20 torr respectively. If the mole fraction of X in solution is 0.5 , find the mole fraction of X and Y in the vapor phase in equilibrium with the solution.

CAREER ENDEAVOUR

