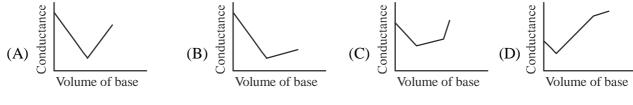

PAPER : IIT-JAM 2017 CHEMISTRY-CY

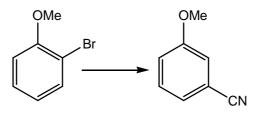

- 1. Section-A contains 30 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q.1 to Q.10 carries 1 Marks and Q.11 to Q.30 carries 2 Marks each.
- Section-B contains 10 Multiple Select Questions(MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. For each correct answer you will be awarded 2 marks.
- 3. Section-C contains 20 Numerical Answer Type (NAT) questions. From Q.41 to Q.50 carries 1 Mark each and Q.51 to Q.60 carries 2 Marks each. For each NAT type question, the value of answer in between 0 to 9.
- 4. In all sections, questions not attempted will result in zero mark. In Section–A (MCQ), wrong answer will result in negative marks. For all 1 mark questions, 1/3 marks will be deducted for each wrong answer. For all 2 marks questions, 2/3 marks will be deducted for each wrong answer. In Section–B (MSQ),there is no negative and no partial marking provisions. There is no negative marking in Section–C (NAT) as well.

SECTION-A

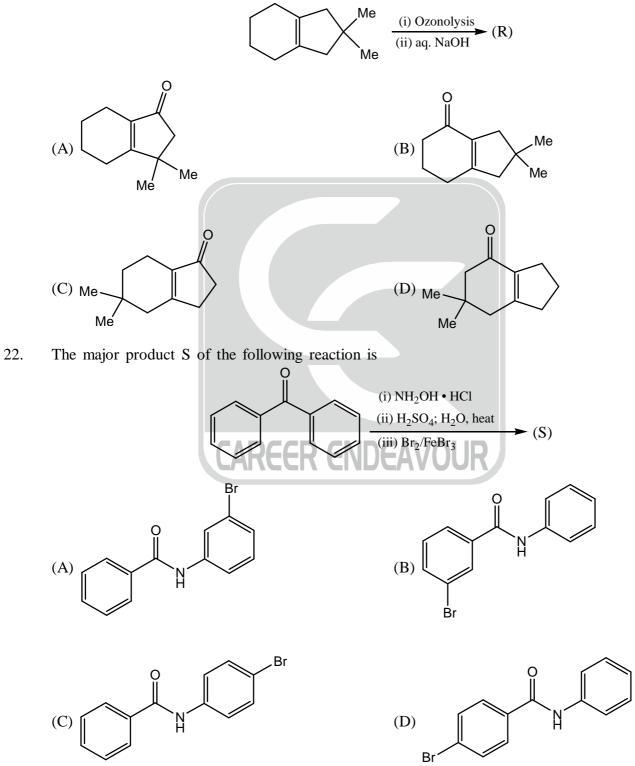
Multiple Choice Questions (MCQ) Q.1 – Q.10 carry ONE mark each. The correct order of the boiling points of the compounds is 1. (B) $SiH_4 > CH_4 > GeH_4 > SnH_4$ (A) $CH_4 > SiH_4 > SnH_4 > GeH_4$ (D) $SnH_4 > GeH_4 > SiH_4 > CH_4$ (C) $SnH_4 > GeH_4 > CH_4 > SiH_4$ In the following Latimer diagram, the species that undergoes disproportionation reaction is 2. $MnO_{4}^{-} \xrightarrow{+0.56} MnO_{4}^{2-} \xrightarrow{+0.27} MnO_{4}^{3-} \xrightarrow{+0.93} MnO_{2} \xrightarrow{+0.15} Mn_{2}O_{3} \xrightarrow{-0.25} Mn(OH)_{2} \xrightarrow{-1.56} Mn$ (B) MnO_4^{3-} (A) MnO_4^{2-} (C) Mn_2O_3 (D) $Mn(OH)_{2}$ A yellow precipitate is formed upon addition of aqueous AgNO₃ to a solution of 3. (A) phosphite (B) pyrophosphate (C) metaphosphate (D) orthophosphate The compounds having C3-axis of symmetry are 4. Br Me Me Me Me^{(///`} ′″Me Br Br Me Me Me Me (III) **(I) (II) (IV)** (A) I, III and IV (B) I, II and III (C) I and III (D) III and IV

12. The coordination number of Al in crystalline AlCl₃ and liquid AlCl₃, respectively, is
(A) 4 and 4
(B) 6 and 6
(C) 6 and 4
(D) 3 and 6
13. The homogeneous catalyst used in water-gas shift reaction is

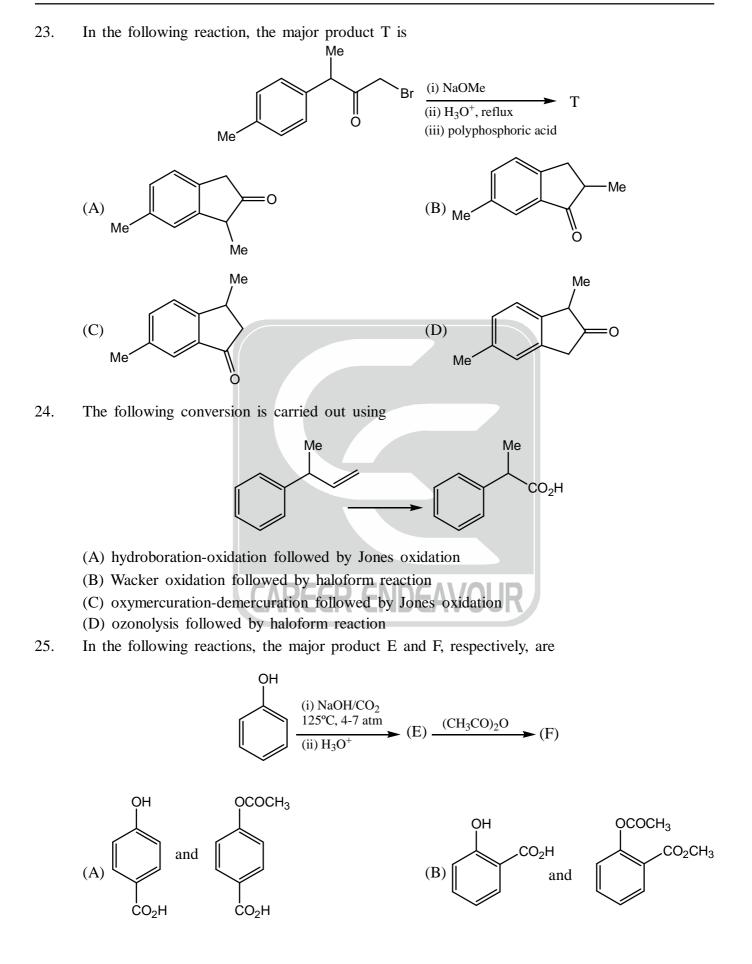
(A) PdCl. (B) Cr.O

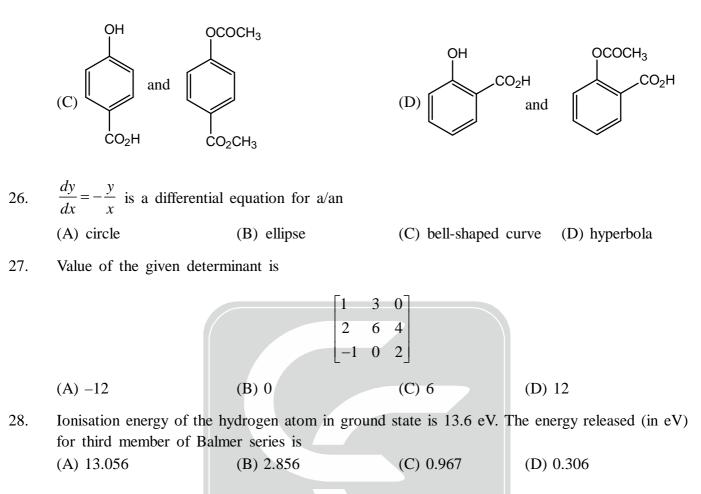

(C)
$$[RhCl(PPh_3)_3]$$
 (D) $[RuCl_2(bipyridyl)_2]$

14.


93

Nitrosyl ligand binds to d-metal atoms in linear and bent fashion and behaves, respectively, as (A) NO⁺ anad NO⁺ (B) NO⁺ and NO⁻ (C) NO⁻ and NO⁻ (D) NO⁻ and NO⁺ The metal ion (M^{2+}) in the following reaction is 15. $M^{2+} + S^{2-} \longrightarrow Black \text{ precipitate} \xrightarrow{\text{hot conc. HNO}_3} White precipitate$ (B) Fe^{2+} (A) Mn^{2+} (C) Cd^{2+} (D) Cu^{2+} The correct order of wavelength of absorption (λ_{max}) of the Cr-complexes is (en = ethylenediamine) 16. (A) $\left[\operatorname{CrF}_{6}\right]^{3-} > \left[\operatorname{Cr}\left(\operatorname{H}_{2}\operatorname{O}\right)_{6}\right]^{3+} > \left[\operatorname{Cr}\left(\operatorname{en}\right)_{3}\right]^{3+} > \left[\operatorname{Cr}\left(\operatorname{CN}\right)_{6}\right]^{3-}$ (B) $\left[\operatorname{Cr}(\operatorname{H}_{2}\operatorname{O})_{6} \right]^{3+} > \left[\operatorname{Cr}F_{6} \right]^{3-} > \left[\operatorname{Cr}(\operatorname{en})_{3} \right]^{3+} > \left[\operatorname{Cr}(\operatorname{CN})_{6} \right]^{3-}$ (C) $\left[\operatorname{Cr}(\operatorname{CN})_{6} \right]^{3-} > \left[\operatorname{Cr}(\operatorname{en})_{3} \right]^{3+} > \left[\operatorname{Cr}(\operatorname{H}_{2}\operatorname{O})_{6} \right]^{3+} > \left[\operatorname{Cr}F_{6} \right]^{3-}$ (D) $\left[\operatorname{Cr}(\operatorname{en})_{3} \right]^{3+} > \left[\operatorname{Cr}(\operatorname{CN})_{6} \right]^{3-} > \left[\operatorname{Cr}(\operatorname{H}_{2}\operatorname{O})_{6} \right]^{3+} > \left[\operatorname{Cr}F_{6} \right]^{3-}$ 17. The correct order of enthalpy of the hydration for the transition metal ions is (A) $Cr^{2+} > Mn^{2+} > Co^{2+} > Ni^{2+}$ (B) $Ni^{2+} > Co^{2+} > Mn^{2+} > Cr^{2+}$ (C) $Ni^{2+} > Co^{2+} > Cr^{2+} > Mn^{2+}$ (D) $Cr^{2+} > Mn^{2+} > Ni^{2+} > Co^{2+}$ Among the following compounds, the pair of enantiomers is 18. CH₂OH CH2OH $H \xrightarrow{H} Br H \xrightarrow{H} Br H_2N \xrightarrow{H} H \xrightarrow{H} CH_2OH$ $H \xrightarrow{H} H \xrightarrow{H} NH_2 H \xrightarrow{H} Br H \xrightarrow{H} CO_2H$ **(IV) (I)** $(\mathbf{H}) =$ **(III)** (A) I and IV (B) I and III (C) II and III (D) III and IV The number of proton NMR signals for the compounds P and Q, respectively, is 19. NO_2 Me $(\mathbf{0})$ **(P)** (B) 3 and 5 (A) 3 and 4 (C) 4 and 3 (D) 5 and 4 20. The correct set of reagents for the following conversion is




- (A) (i) NaNH₂/liq. NH₃; (ii) NaNO₂/dil, HCl; (iii) CuCN, heat
- (B) (i) HNO₃/H₂SO₄; (ii) Zn/HCl; (iii) NaNO₂/dil. HCl; (iv) CuCN, heat
- (C) (i) Mg/ether, H₃O⁺; (ii) (EtO)₂CO; (iii) NH₄OH; (iv) PCl₅
- (D) (i) Mg/ether, H_3O^+ ; (ii) HNO_3/H_2SO_4 ; (iii) $NaNO_2/dil$. HCl; (iv) CuCN, heat
- 21. The product R in the following reaction is

29. For a first order reaction $A(g) \rightarrow 2B(g) + C(g)$, the rate constant in terms of initial pressure (p_0) and pressure at time $t(p_t)$, is given by

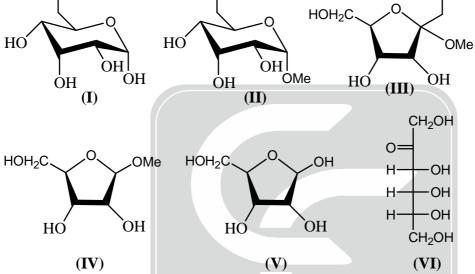
(A)
$$\frac{1}{t} \ell n \frac{p_0}{p_t - p_0}$$
 (B) $\frac{1}{t} \ell n \frac{2p_0}{3p_0 - p_t}$ (C) $\frac{1}{t} \ell n \frac{3p_0}{p_t - p_0}$ (D) $\frac{1}{t} \ell n \frac{3p_0}{3p_t - p_0}$

30. For a particle in one-dimensional box of length L with potential energy V(x) = 0 for L > x > 0and $V(x) = \infty$ for $x \ge L$ and $x \le 0$, an acceptable wave function consistent with the boundary conditions is (A, B, C and D are constants)

(A)
$$A\cos\left(\frac{n\pi x}{L}\right)$$
 (B) $B\left(x+x^2\right)$ (C) $Cx^3\left(x-L\right)$ (D) $\frac{D}{\sin\left(\frac{n\pi x}{L}\right)}$

	SE	TION-B	
	Multiple Sele	t Questions (MSQ)	
-	– Q.40 carry TWO marks each.		
31.	The 'heme' containing protein(s) is/are		
32.	(A) cytochrome C(B) hemocyanAmong the following, the species having		
52.	(A) SF_4 (B) XeF_4	(C) ClF_4^+ (D) ClF_4^-	
33.	The indicator(s) appropriate for the determination of end point in the titration of a weak acid with a strong base is/are		
34.	 (A) phenolphthalein (B) thymol blue (C) bromophenol blue (D) methyl orange Jahn-Teller distortion is/are observed in octahedral complexes with d-electron configuration of (A) d⁵-high spin (B) d⁵-low spin (C) d⁶-high spin (D) d⁶-low spin 		
35.	 Among the following, the correct statement(s) is/are (A) Guanine is a purine nucleobase (B) Glycine and proline are achiral amino acids (C) DNA contains glycosidic bonds and pentose sugars (D) Sucrose is a non-reducing sugar 		
36.	The INCORRECT statement(s) among the	e following is/are	
	(A) $[4\pi + 2\pi]$ cycloaddition reactions are carried out in presence of light		
	(B) $[2\pi+2\pi]$ cycloaddition reaction between a keto group and an alkene is photochemically		
	allowed		
	(C) $[4\pi + 2\pi]$ cycloaddition reactions are thermally allowed		
	(D) Transoid dienes undergo Diels-Alder reactions		
37.	The following conversion(s) is/are example(s) of EAVOUR		
	(A) oxy-Cope rearrangement(C) Claisen rearrangement	(B) sigmatropic rearrangement(D) pericyclic reaction	
38.	IR active molecules(s) is/are (A) CO ₂ (B) CS ₂	(C) OCS (D) N ₂	
39.	Intensive variable(s) is/are (A) temperature (B) Volume	(C) Pressure (D) Density	
40.	Wave nature of electromagnetic radiation (A) diffraction (C) photoelectric effect	is observed in (B) interference (D) Compton scattering	

PAPER : IIT-JAM 2017



SECTION-C

Numerical Answer Type (NAT)

Q.41 - Q.50 carry ONE mark each.

- 41. The number of isomeric structures of di-substituted borazine $[B_3N_3H_4X_2]$ is _____
- 42. The number of S-S bond(s) in tetrathionate ion is _____
- 43. The number of unpaired electron(s) in K₂NiF₆ is _____
- 44. The number of reducing sugars among the following is ______ OMe OH OH

- 45. The maximum number of dipeptides that could be obtained by reaction of phenylalanine with leucine is ______
- 47. At an operating frequency of 350 MHz, the shift (in Hz) of resonance from TMS (tetramethylsilane) of a proton with chemical shift of 2 ppm is _____
- 48. At 298K and 1 atm, the molar enthalpies of combustion of cyclopropane and propene are $-2091 \text{ kJ mol}^{-1}$ and $-2058 \text{ kJ mol}^{-1}$, respectively. The enthalpy change (in kJ mol⁻¹) for the conversion of one mole of propene to one mole of cyclopropane is _____
- 49. For a cell reaction, $Pb(s) + Hg_2Cl_2(s) \rightarrow PbCl_2(s) + 2Hg(\ell)$, $\left(\frac{\partial E^0}{\partial T}\right)_P$ is $1.45 \times 10^{-4} VK^{-1}$. The

entropy change (in J mol⁻¹K⁻¹) for the reaction is _____ [**Given** : $1F = 96500 \text{ C mol}^{-1}$]

50. For a reaction $2A + B \rightarrow C + D$, if rate of consumption of A is 0.1 mol L⁻¹ s⁻¹, the rate of production of C (in mol L⁻¹s⁻¹) is _____

Q.51 - Q.60 carry TWO marks each.

51. The standard reduction potentials of Ce^{4+}/Ce^{3+} and Fe^{3+}/Fe^{2+} are 1.44 and 0.77V, respectively. The log_{10} K (K is the equilibrium constant) value for the following reaction is ______(Final answer should be rounded off to two decimal places)

$$\operatorname{Ce}^{4+} + \operatorname{Fe}^{2+} \longrightarrow \operatorname{Ce}^{3+} + \operatorname{Fe}^{3+}$$

[Given : RT/F = 0.0257 V]

- 52. A radioactive element undergoes 80% radiaoctive decay in 300 min. The half-life for this species in minutes is _____
- 53. Silver crystallizes in a face-centered cubic lattice. The lattice parameter of silver (in picometer) is ______ [Given : Avogadro's number = 6.023×10^{23} mol⁻¹, molar mass of silver = 107.87 g mol⁻¹ and density of crystal = 10.5 g cm⁻³]

54. The amount of bromine (atomic wt. = 80) required (in gram) for the estimation of 42.3 g of phenol (molecular wt. = 94 g mol⁻¹) is ______

- 55. The total number of pair of enantiomers possible with molecular formula $C_5 H_{12} O$ is ______
- 56. In 200 g of water, 0.01 mole of NaCl and 0.02 mole of sucrose are dissolved. Assuming solution to be ideal, the depression in freezing point of water (in °C) will be ______ (final answer should be rounded off to two decimal places)

[Given : $K_f(H_2O) = 1.86 \text{ K kg mol}^{-1}$]

- 57. The adsorption of a gas follows the Langmuir isotherm with $K = 1.25 \text{ kPa}^{-1}$ at 25°C. The pressure (in Pa) at which surface coverage is 0.2 is ______
- 58. The separation of 123 planes (in nm) in an orthorhombic cell with a = 0.25 nm and b = 0.5 nm and c = 0.75 nm is ________(final answer should be rounded off two decimal places)
- 59. A vessel contains a mixture of H_2 and N_2 gas. The density of this gas mixture is 0.2 g L⁻¹ at 300K and 1 atm. Assuming that both the gases behave ideally, the mole fraction of N_2 (g) in the vessel is _____

(Final answer should be rounded off to two decimal places)

[Given : R = 0.082 L atm mol⁻¹ K⁻¹, atomic wt. of hydrogen = 1.0 and atomic wt. of nitrogen = 14.0]

60. Consider an isothermal reversible compression of one mole of an ideal gas in which the pressure of the system is increased from 5 atm to 30 atm at 300K. The entropy change of the surroundings (in J K⁻¹) is ______ (final answer should be rounded off to two decimal places) [Given : $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$]