1. Section-A contains 30 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q. 1 to Q. 10 carries 1 Marks and Q. 11 to Q. 30 carries 2 Marks each.
2. Section-B contains 10 Multiple Select Questions(MSQ). Each question has $\mathbf{4}$ choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. For each correct answer you will be awarded 2 marks.
3. Section-C contains 20 Numerical Answer Type (NAT) questions. From Q. 1 to Q. 10 carries 1 Mark each and Q. 11 to Q. 20 carries 2 Marks each. For each NAT type question, the value of answer in between 0 to 9.
4. In all sections, questions not attempted will result in zero mark. In Section-A (MCQ), wrong answer will result in negative marks. For all 1 mark questions, 1/3 marks will be deducted for each wrong answer. For all 2 marks questions, 2/3 marks will be deducted for each wrong answer. In Section-B (MSQ),there is no negative and no partial marking provisions. There is no negative marking in Section-C (NAT) as well.

SECTION-A

Multiple Choice Questions (MCQ)
Q. 1 - Q. 10 carry ONE mark each.

1. The number of crystal systems and the number of Bravais lattices are, respectively
(A) 14 and 7
(B) 7 and 32
(C) 32 and 14
(D) 7 and 14
2. $\mathrm{NaF}, \mathrm{KF}, \mathrm{MgO}$ and CaO are crystalline solids. They have NaCl structure. Their lattice energies vary in the order
(A) $\mathrm{NaF}<\mathrm{KF}<\mathrm{MgO}<\mathrm{CaO}$
(B) $\mathrm{KF}<\mathrm{NaF}<\mathrm{CaO}<\mathrm{MgO}$
(C) $\mathrm{MgO}<\mathrm{CaO}<\mathrm{NaF}<\mathrm{KF}$
(D) $\mathrm{CaO}<\mathrm{MgO}<\mathrm{KF}<\mathrm{NaF}$
3. On hydrolysis, aluminium carbide produces
(A) CH_{4}
(b) $\mathrm{C}_{2} \mathrm{H}_{6}$
(C) $\mathrm{C}_{2} \mathrm{H}_{4}$
(D) $\mathrm{C}_{2} \mathrm{H}_{2}$
4. The value of integral $\int_{-2}^{+2} x e^{-2 x^{2}} d x$ is
(a) 0
(b) $\frac{1}{2}$
(c) 1
(d) 2
5. For adsoption of a gas on a solid surface, the plot that represents Freundlich isotherm is $(x=$ mass of gas, $\mathrm{m}=$ mass of adsorbent, $\mathrm{P}=$ pressure)
(A)

(B)

(C)

(D)

6. The C-2 epimer of D-glucose is
(A) D-Mannose
(B) D-Fructose
(C) D-Galactose
(D) D-Gulose
7. Carbonic anhydrase is an example of
(A) Hydrolysis enzyme
(B) Redox enzyme
(C) O_{2} transport protein
(D) Heme protein
8. The compound that contains the most acidic hydrogen is
(A) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
(B) $\mathrm{HC} \equiv \mathrm{CH}$
(C) $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
(D) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
9. The major product formed in the following reaction is

(A)

(B)

(C)

(D)

10. The CORRECT order of melting points of group 15 trifluorides is
(A) $\mathrm{PF}_{3}<\mathrm{AsF}_{3}<\mathrm{SbF}_{3}<\mathrm{BiF}_{3}$
(B) $\mathrm{BiF}_{3}<\mathrm{SbF}_{3}<\mathrm{PF}_{3}<\mathrm{AsF}_{3}$
(C) $\mathrm{PF}_{3}<\mathrm{SbF}_{3}<\mathrm{AsF}_{3}<\mathrm{BiF}_{3}$
(D) $\mathrm{BiF}_{3}<\mathrm{AsF}_{3}<\mathrm{SbF}_{3}<\mathrm{PF}_{3}$

Q. 11 - Q. 30 carry TWO marks each.

11. The major products Y and Z in the following reaction sequence are

(A) $(\mathrm{Y})=$
$(\mathrm{Z})=$

(B) $(\mathrm{Y})=$

(C) $(\mathrm{Y})=$

$(\mathrm{Z})=$

(D) $(\mathrm{Y})=$

12. The behavior of Cl_{2} is closest to ideal gas behavior at
(A) $100^{\circ} \mathrm{C}$ and 10.0 atm
(B) $0^{\circ} \mathrm{C}$ and 0.50 atm
(C) $200^{\circ} \mathrm{C}$ and 0.50 atm
(D) $-100^{\circ} \mathrm{C}$ and 10.0 atm
13. With respect to periodic properties, the CORRECT statement is
(a) Electron affinity order is $\mathrm{F}>\mathrm{O}>\mathrm{Cl}$
(B) First ionisation energy order is $\mathrm{Al}>\mathrm{Mg}>\mathrm{K}$
(C) Atomic radius order is $\mathrm{N}>\mathrm{P}>\mathrm{As}$
(D) Ionic radius order is $\mathrm{K}^{+}>\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}$
14. With reference to the variation of molar conductivity $\left(\Lambda_{m}\right)$ with concentration for a strong electrolyte in an aqueous solution, the CORRECT statement is
(A) The asymmetry effect contributes to decrease Λ_{m} whereas the electrophoretic effect contribution to increase Λ_{m}
(B) The asymmetry effect contributes to increase Λ_{m} whereas the electrophoretic contributes to decrease Λ_{m}
(C) Both asymmetry effect and electrophoretic effect contribute to decrease Λ_{m}
(D) Both asymmetry effect and electrophoretic effect contribute to increase Λ_{m}
15. A vector $\vec{A}=\vec{i}+x \vec{j}+3 \vec{k}$-is rotated through an angle and is also doubled in magnitude resulting in $\vec{B}=4 \vec{i}+(4 x-2) \vec{j}+2 \vec{k}$. An acceptable value of x is
(A) 1
(B) 2
(C) 3
(D) $4 / 3$
16. The sequence of three steps involved in the following conversion is

(A) (i) Friedel-Crafts alkylation; (ii) Reduction; (iii) Friedel-Crafts acylation
(B) (i) Friedel-Crafts acylation; (ii) Friedel-Crafts alkylation; (iii) Reduction
(C) (i) Friedel-Crafts acylation; (ii) Reduction; (iii) Friedel-Crafts alkylation
(D) (i) Friedel-Crafts alkylation; (ii) Friedel-Crafts acylation; (iii) Reduction
17. The reaction $\mathrm{A} \longrightarrow$ Products, follows first-order kinetics. If $[\mathrm{A}]$ represents the concentration of reactant at time t, the INCORRECT variation is the shown in
(A)

(B) $-\mathrm{d}[\mathrm{A}] / \mathrm{dt}$

(C)

(D)

18. The CORRECT order of stability for the following carbocations is

(I)

(III)

(IV)
(a) I < III $<$ IV < II
(b) III < II $<$ IV $<$ I
(c) II $<$ IV $<$ III $<$ I
(d) IV $<$ III $<$ I $<$ II
19. The decay modes of ${ }^{14} \mathrm{C}$ and ${ }^{14} \mathrm{O}$ are
(A) β^{-}decay
(B) Positron emission
(C) β^{-}decay and positron emission, respectively
(D) Positron emission and β^{-}decay, respectively
20. Which plot represents a spectrophotometric titration, where the titrant alone absorbs, light in the visible region?
(A)

(B)

(C)

(D)

21. The CORRECT order of Δ_{0} (the octahedral crystal field splitting of d-orbitals) values for the following anionic metal complexes is
(A) $\left[\operatorname{Ir}\left(\mathrm{CN}_{6}\right)\right]^{3-}<\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{RhI}_{6}\right]^{3-}<\left[\mathrm{CoI}_{6}\right]^{3-}$
(B) $\left[\mathrm{CoI}_{6}\right]^{3-}<\left[\mathrm{RhI}_{6}\right]^{3-}<\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]^{3-}<\left[\operatorname{Ir}(\mathrm{CN})_{6}\right]^{3-}$
(C) $\left[\mathrm{CoI}_{6}\right]^{3-}<\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{RhI}_{6}\right]^{3-}<\left[\operatorname{Ir}(\mathrm{CN})_{6}\right]^{3-}$
(D) $\left[\operatorname{Ir}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{CoI}_{6}\right]^{3-}<\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{RhI}_{6}\right]^{3-}$
22. The electrolyte AB_{2} ionises in water as

$$
\mathrm{AB}_{2} \rightleftharpoons \mathrm{~A}^{2+}+2 \mathrm{~B}^{-}
$$

The mean ionic activity coefficient $\left(\gamma_{ \pm}\right)$
(A) $\gamma_{\mathrm{A}^{2+}}^{\frac{1}{2}} \gamma_{\mathrm{B}^{-}}$
(B) $\gamma_{\mathrm{A}^{2+}}^{\frac{1}{2}} \gamma_{\mathrm{B}^{-}}^{\frac{2}{3}}$
(C) $\gamma_{\mathrm{A}^{2+}}^{\frac{2}{3}} \gamma_{\mathrm{B}}^{\frac{1}{3}}$
(D) $\left(\gamma_{\mathrm{A}^{2+}}+2 \gamma_{\mathrm{B}^{-}}\right)^{1 / 2}$
23. Among the dimethylcyclohexanes, which one can be obtained in enantiopure form?
(A)

(B)

(C)

(D)

24. The CORRECT order of carbonyl stretching frequencies for the following compounds is

(I)

(II)

(IV)
(A) II $<$ I $<$ III $<$ IV
(B) I $<$ III $<$ II $<$ IV
(C) IV < II < III < I
(D) III < IV < II < I
25. The CORRECT expression that corresponds to reversible and adiabatic expansion of an ideal gas is
(A) $\Delta \mathrm{U}=0$
(B) $\Delta \mathrm{H}=0$
(C) $\Delta \mathrm{S}=0$
(D) $\Delta \mathrm{G}=0$
26. The major product formed in the following reaction is

(A)

(B)
 CAREER ENDEAVOUR
(C)

(D)

27. Among the following metal carbonyl species, the one with the highest metal-carbon back bonding is
(A) $\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}$
(B) $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}$
(C) $\mathrm{Cr}(\mathrm{CO})_{6}$
(D) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
28. The product (X) in the following reaction sequence is

(A)

(B)

(C)

(D)

29. The major product formed in the following reaction is

(A)

(B)

(C)

(D)

30. Consider the following four xenon compounds: $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}, \mathrm{XeF}_{6}$ and XeO_{3}. The pair of xenon compounds expected to have non-zero dipole moment is
(A) XeF_{4} and XeF_{6}
(B) XeF_{2} and XeF_{4}
(C) XeF_{2} and XeO_{3}
(D) XeF_{6} and XeO_{3}

SECTION-B

Multiple Select Questions (MSQ)

Q. 1 - Q. 10 carry TWO marks each.

1. The CORRECT statement(s) about carbene is(are)
(A) Carbene is neutral species
(B) Carbene is an intermediate in the Curtius rearrangement
(C) Carbene can insert into both σ and π-bonds
(D) Carbene is generated from amines on reaction with ntirous acid
2. The CORRECT expression(s) for isothermal expansion of 1 mol of an ideal gas is(are)
(A) $\Delta \mathrm{A}=\mathrm{RT} \ell \mathrm{n} \frac{\mathrm{V}_{\text {initial }}}{\mathrm{V}_{\text {final }}}$
(B) $\Delta G=R T \ell n \frac{V_{\text {initial }}}{V_{\text {final }}}$
(C) $\Delta \mathrm{H}=\mathrm{RT} \ell \mathrm{n} \frac{\mathrm{V}_{\text {final }}}{\mathrm{V}_{\text {initial }}}$
(D) $\Delta \mathrm{S}=\mathrm{R} \ell \mathrm{n} \frac{\mathrm{V}_{\text {final }}}{\mathrm{V}_{\text {initial }}}$
3. Which of the following metal(s) is(are) extracted from its (their) sulfide ore(s) by self-reduction/ air reduction method?
(A) Cu
(B) Al
(C) Au
(D) Pb
4. Choose the CORRECT answer(s) with respect to the magnesium-EDTA titration carried out in the pH range $7-10.5$, using Solochrome black as indicator
(A) Magnesium-indicator complex is more stable than the magnesium-EDTA complex
(B) At the end point, the colour changes from red to blue
(C) After the end point, the colour of the solution is due to the indicator
(D) pH range of $7-10.5$ is necessary for observing the specific colour change
5. Consider the following six solid binary oxides $\mathrm{CaO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{PbO}, \mathrm{Cs}_{2} \mathrm{O}, \mathrm{SiO}_{2}$ and $\mathrm{Sb}_{2} \mathrm{O}_{3}$. The pair(s) of ionic oxides is(are)
(A) CaO and $\mathrm{Al}_{2} \mathrm{O}_{3}$
(B) CaO and PbO
(C) $\mathrm{Cs}_{2} \mathrm{O}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$
(D) SiO_{2} and $\mathrm{Sb}_{2} \mathrm{O}_{3}$
6. In a saturated calomel electrode, the saturation is with respect to
(A) KCl
(B) $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
(C) HgCl_{2}
(D) AgCl
7. Which of the following set(s) of quantum numbers is(are) NOT allowed?
(A) $n=3, \ell=2, m_{\ell}=-1$
(B) $n=4, \ell=0, m_{\ell}=-1$
(C) $n=3, \ell=3, m_{\ell}=-3$
(D) $n=5, \ell=3, m_{\ell}=+2$
8. Tetrapeptide(s) that gives (give) the following product on reaction with Sanger's reagent followed by hydrolysis is(are)

(A) Ala-Gly-Leu-Phe
(B) Asp-Phe-Leu-Pro
(C) Asp-Gly-Tyr-Phe
(D) Ala-Phe-Tyr-Pro
9. One reaction with NaNO_{2} and HCl , which of the following amino alcohol(s) will yield compound P ?
(P)
(A)

(B)

(C)

(D)

10. The compound(s) that shows (show) positive haloform test is(are)
(A)

(B)

(C)

(D)

SECTION-C

Numerical Answer Type (NAT)

Q. 1 - Q. 10 carry ONE mark each.

1. Consider the reaction, $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$

The value of ΔU for the reaction at 300 K is $-281.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of ΔH at same temperature is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ (rounded upto the first decimal place)

$$
\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)
$$

2. The value of C_{v} for 1 mole of N_{2} gas predicted from the principle of equipartition of energy, ignoring vibrational contribution, is \qquad $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ (rounded up to two decimal places)
3. The nuclear spin quantum number (I) of a nucleus is $\frac{3}{2}$. When placed in an external magnetic field, the number of possible spin energy states it can occupy is \qquad
4. The time for 50% completion of a zero order reaction is 30 min . Time for 80% completion of this reaction is \qquad min.
5. The number of possible isomers for $\left[\mathrm{Pt}(\mathrm{py})\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ is \qquad (py is pyridine).
6. The volume of 0.3 M ferrous ammonium sulphate solution required for the completion of redox titration with 20 mL of 0.1 M potassium dichromate solution is \qquad mL
7. The number of hydrogen bond(s) present in a gaunine-cytosine base pair is \qquad
8. Assuming ideal gas behaviour, the density of O_{2} gas at 300 K and 1.0 atm is $\overline{\left.\text { mass of } \mathrm{O}_{2}=32\right]} \mathrm{gL}^{-1}$ (rounded up to two decimal places) $\left[\mathrm{R}=0.082 \mathrm{Latmmol}^{-1} \mathrm{~K}^{-1}\right.$, molar mass of $\mathrm{O}_{2}=32$]
9. The number of stereoisomers possible for the following compounds is \qquad

10. Among the following hydrocarbon(s), how many of them would give rise to three groups of proton NMR peaks with $2: 2: 3$ untegration ratio?

Q. 11 - Q. 20 carry TWO marks each.

11. For H_{2} molecule, the fundamental vibrational frequency $\left(\bar{v}_{e}\right)$ in wave numbers can be taken as $4400 \mathrm{~cm}^{-1}$. The zero-point energy of the molecule is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ (rounded up to two decimal places) $\left[\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^{3} \mathrm{~ms}^{-1}, \overline{\mathrm{~N}_{\mathrm{A}}}=6 \times 10^{23} \mathrm{~mol}^{-1}\right]$
12. The electron of a hydrogen atom is in its $n^{\text {th }}$ Bohr orbit having de-Broglie wavelength of $13.4 \AA$. The value of n is \qquad (rounded upto the nearest integer)
[Radius of $\mathrm{n}^{\text {th }}$ Bohr orbit $=0.53 \mathrm{n}^{2} \AA, \pi=3.14$]
13. How many of the following interhalogen species have 2 lone pairs of electrons on the central atom?

$$
\mathrm{ClF}_{3}, \mathrm{ClF}_{2}^{-}, \mathrm{ClF}_{5} \text { and } \mathrm{ICl}_{2}^{+}
$$

14. The magnitude of crystal field stabilization energy (CFSE) of octahedral $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex is $7680 \mathrm{~cm}^{-1}$. The wavelength at the maximum absorption ($\lambda_{\max }$) of this complex is
\qquad nm(rounded up to the nearest integer)
15. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$, the following information is given $\mathrm{T}=300 \mathrm{~K}$
$\Delta \overline{\mathrm{H}}^{0}=-285 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \overline{\mathrm{~S}}_{\mathrm{H}_{2} \mathrm{O}}^{0}(\ell)=70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\overline{\mathrm{S}}_{\mathrm{O}_{2}}^{0}(\mathrm{~g})=204 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \quad \overline{\mathrm{~S}}_{\mathrm{H}_{2}}^{0}(\ell)=130 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\Delta \overline{\mathrm{S}}_{\text {universe }}^{0}$ for the reaction is $\quad \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$.
16. ${ }^{24} \mathrm{Na}$ decays to one-fourth of its initial amoount in 29.8 hours. Its decay constant is
\qquad hour ${ }^{-1}$ (rounded up to the four decimal places).
17. Elemental analysis of an organic compound containing C, H and O gives percentage composition $\mathrm{C}: 39.9 \%$ and $\mathrm{H}: 6.7 \%$. If the molecular weight of the compound is 180 , the number of carbon atoms present in the molecule is \qquad
18. The emf of a standard cadmium cell is 1.02 V at 300 K . The temperature coefficient of the cell is $-5.0 \times 10^{-3} \mathrm{VK}^{-1}$. The value of $\Delta \mathrm{H}^{0}$ for the cell is \qquad kJ mol-1 (rounded up to two decimal places)
$\left[1 \mathrm{~F}=96500 \mathrm{C} \mathrm{mol}^{-1}\right.$]
19. The number of compounds having S-configuration among the following is \qquad

20. The solubility of PbI_{2} in 0.10 M KI (aq) is \qquad $\times 10^{-7} \mathrm{M}$ (rounded up to two decimal places) (The solubility product $\mathrm{K}_{\mathrm{sp}}=7.1 \times 10^{-9}$]
