(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

1. Let $a_{n}=\sum_{k=1}^{n} \frac{n}{n^{2}+k}$, for $n \in \mathbb{N}$. Then the sequence $\left\{a_{n}\right\}$ is
(a) Convergent
(b) Bounded but not convergent
(c) Diverges to ∞
(d) Neither bounded nor diverges to ∞
2. The number of real roots of the equation $x^{3}+x-1=0$ is
(a) 0
(b) 1
(c) 2
(d) 3
3. The value of $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k n}}$ is
(a) $2(\sqrt{2}-1)$
(b) $2 \sqrt{2}-1$
(c) $2-\sqrt{2}$
(d) $\frac{1}{2}(\sqrt{2}-1)$
4. Let V be the region bounded by the planes $x=0, x=2, y=0, z=0$ and $y+z=1$. Then the value of integral $\iiint_{\mathrm{V}} y d x d y d z$ is
(a) $\frac{1}{2}$
(b) $\frac{4}{3}$
(c) 1
(d) $\frac{1}{3}$
5. The solution $y(x)$ of the differential equation $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=0$ satisfying the conditions $y(0)=4, \frac{d y}{d x}(0)=8$ is
(a) $4 e^{2 x}$
(b) $(16 x+4) e^{-2 x}$
(c) $4 e^{-2 x}+16 x$
(d) $4 e^{-2 x}+16 x e^{2 x}$
6. If y^{a} is the integrating factor of the differential equation $2 x y d x-\left(3 x^{2}-y^{2}\right) d y=0$, then the value of a is
(a) -4
(b) 4
(c) -1
(d) 1
7. Let $\vec{F}=a y \hat{i}+z \hat{j}+x \hat{k}$ and C be the positively oriented closed curve given by $x^{2}+y^{2}=1, z=0$. If $\oint_{C} \vec{F} \cdot d r=\pi$, then the value of a is
(a) -1
(b) 0
(c) $\frac{1}{2}$
(d) 1
8. Consider the vector field $\vec{F}=(a x+y+a) \hat{i}+\hat{j}-(x+y) \hat{k}$, where a is a constant. If \vec{F}.curl $\vec{F}=0$, then the value of a is
(a) -1
(b) 0
(c) 1
(d) $\frac{3}{2}$
9. Let G denote the group of all 2×2 invertible matrices with entries from \mathbb{R}. Let

$$
H_{1}=\{A \in G: \operatorname{det}(A)=1\} \text { and } H_{2}=\{A \in G: A \text { is upper triangular }\} .
$$

Consider the following statements:
$P: H_{1}$ is a normal subgroup of $G ; \quad Q: H_{2}$ is normal subgroup of G
Then
(a) Both P and Q are true
(b) P is true and Q is false
(c) P is false and Q is true
(d) Both P and Q are false.
10. For $n \in \mathbb{N}$, let $n \mathbb{Z}=\{n k: k \in \mathbb{Z}\}$. Then the number of units of $\mathbb{Z} / 11 \mathbb{Z}$ and $\mathbb{Z} / 12 \mathbb{Z}$, respectively are
(a) 11,12
(b) 10,11
(c) 10,4
(d) 10,8
11. Let A be a 3×3 matrix with trace $(A)=3$ and $\operatorname{det}(A)=2$. If 1 is an eigenvalue of A, then the eigen-values of the matrix $A^{2}-2 I$ are
(a) $1,2(i-1),-2(i+1)$
(b) $-1,2(i-1), 2(i+1)$
(c) $1,2(i+1),-2(i+1)$
(d) $-1,2(i-1),-2(i+1)$
12. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation, where $n \geq 2$. For $k \leq n$, let $E=\left\{v_{1}, v_{2} \ldots . . v_{k}\right\} \subseteq \mathbb{R}^{n}$ and $F=\left\{T v_{1}, T v_{2} \ldots . . T v_{k}\right\}$.
Then
(a) If E is linearly independent, then F is linearly independent
(b) If F is linearly independent, then E is linearly independent
(c) If E is linearly independent, then F is linearly dependent
(d) If F is linearly independent, then E is linearly dependent
13. For $n \neq m$ let $T_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $T_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be two linear transformations such that $T_{1} T_{2}$ is bijective. Then
(a) $\operatorname{rank}\left(T_{1}\right)=n$ and $\operatorname{rank}\left(T_{2}\right)=m$
(b) rank $\left(T_{1}\right)=m$ and $\operatorname{rank}\left(T_{2}\right)=n$
(c) $\operatorname{rank}\left(T_{1}\right)=n$ and $\operatorname{rank}\left(T_{2}\right)=n$
(d) $\operatorname{rank}\left(T_{1}\right)=m$ and $\operatorname{rank}\left(T_{2}\right)=m$
14. The set of all x at which the power series $\sum_{n=1}^{\infty} \frac{n}{(2 n+1)^{2}}(x-2)^{3 n}$ converges is
(a) $[-1,1)$
(b) $[-1,1]$
(c) $[1,3)$
(d) $[1,3]$
15. Consider the following subsets of \mathbb{R} :

$$
E=\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}, F=\left\{\frac{1}{1-x}: 0 \leq x<1\right\}
$$

Then
(a) Both E and F are closed
(b) E is closed and F is NOT closed
(c) E is NOT closed and F is closed
(d) Neither E nor F is closed
16. (a) Let $\left\{a_{n}\right\}$ be a sequence of non-negative real numbers such that $\sum_{n=1}^{\infty} a_{n}$ converges, and let $\left\{k_{n}\right\}$ be a strictly increasing sequence of positive integers. Show that $\sum_{n=1}^{\infty} a_{k_{n}}$ also converges.
(b) Suppose $f:[0,1] \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x) \leq 1$ at every $x \in(0,1)$. If $f(0)=0$ and $f(1)=1$, show that $f(x)=x$ for all $x \in[0,1]$.
17. (a) Suppose f is a real valued function defined on an open interval I and differentiable at every $x \in I$. If $[a, b] \subset I$ and $f^{\prime}(a)<0<f^{\prime}(b)$, then show that there exists $c \in(a, b)$ such that $f(c)=\min _{a \leq x \leq b} f(x)$.
(b) Let $f:(a, b) \rightarrow \mathbb{R}$ be a twice differentiable function such that $f^{\prime \prime}$ is continuous at every point in (a, b). Prove that
$\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=f^{\prime \prime}(x)$ for every $x \in(a, b)$.
18. Find all the critical points of the following function and check whether the function attains maximum or minimum at each of these points.

$$
\begin{equation*}
u(x, y)=x^{4}+y^{4}-2 x^{2}-2 y^{2}+4 x y,(x, y) \in \mathbb{R}^{2} . \tag{15}
\end{equation*}
$$

19. (a) Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be differentiable and $[c, d]=\{\varphi(x): a \leq x \leq b\}$, and let $f:[c, d] \rightarrow \mathbb{R}$ be continuous. Let $g:[a, b] \rightarrow \mathbb{R}$ be defined by $g(x)=\int_{c} f(t) d t$ for $x \in[a, b]$. Then show that g is differentiable and $g^{\prime}(x)=f(\varphi(x)) \varphi^{\prime}(x)$ for all $x \in[a, b]$.
(b) If $f:[0,1] \rightarrow \mathbb{R}$ is such that $\int_{0}^{\sin x} f(t) d t=\frac{\sqrt{3}}{2} x$ for all $x \in \mathbb{R}$, then find $f\left(\frac{1}{2}\right)$.
20. Find the area of the surface of the solid bounded by the cone $z=3-\sqrt{x^{2}+y^{2}}$ and the paraboloid $z=1+x^{2}+y^{2}$.
21. Obtain the general solution of each of the following differential equations:
(a) $y-x \frac{d y}{d x}=\frac{d y}{d x} y^{2} e^{y}$
(b) $\frac{d y}{d x}=\frac{x+2 y+8}{2 x+y+7}$
22. (a) Determine the value of $b>1$ such that the differential equation
$x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0,1<x<b$
satisfying the conditions $y(1)=0=y(b)$ has a nontrivial solution.
(b) Find $v(x)$ such that $y(x)=e^{4 x} v(x)$ is a particular solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+16 y=\left(2 x+11 x^{10}+21 x^{20}\right) e^{4 x} \tag{6}
\end{equation*}
$$

23. (a) Change the order of integration in the double integral $\int_{-1}^{2}\left(\int_{-x}^{2-x^{2}} f(x, y) d y\right) d x$.
(b) Let $\vec{F}=\left(x^{2}-x y^{2}\right) \hat{i}+y^{2} \hat{j}$. Using Green's theorem, evaluate the line integral $\int_{C} \vec{F} . d \vec{r}$, where C is the positively oriented closed curved which is the boundary of the region enclosed by the x axis and the semi-circle $y=\sqrt{1-x^{2}}$ in the upper half plane.
24. (a) If $\vec{F}=\left(x^{2}+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x z+z^{2}\right) \hat{k}$, then evaluate the surface integral $\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S$, where S is the surface of the cone $z=1-\sqrt{x^{2}+y^{2}}$ lying above the $x y$-plane and \hat{n} is the unit normal to S making an acute angle with \hat{k}.
(b) Show that the series $\sum_{n=1}^{\infty} \frac{x}{\sqrt{n}\left(1+n^{p} x^{2}\right)}$ converges uniformly on \mathbb{R} for $p>1$.
25. (a) Find a value of c such that the following system of linear equations has no solution:

$$
\begin{align*}
& x+2 y+3 z=1, \\
& 3 x+7 y+c z=2, \\
& 2 x+c y+12 z=3 . \tag{6}
\end{align*}
$$

(b) Let V be a vector space of all polynomials with real coefficients of degree at most n, where $n \geq 2$. Considering element of V as functions from \mathbb{R} to \mathbb{R}, define $W=\left\{p \in V: \int_{0}^{1} p(x) d x=0\right\}$. Show that W is a subspace of V and $\operatorname{dim}(W)=n$.
26. (a) Let A be a 3×3 real matrix with $\operatorname{det}(A)=6$. Then find $\operatorname{det}(\operatorname{adj} A)$.
(b) Let v_{1} and v_{2} be non-zero vectors in $\mathbb{R}^{n}, n \geq 3$, such that v_{2} is not a scalar multiple of v_{1}. Prove that there exists a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T^{3}=T, T v_{1}=v_{2}$ and T has at least three distinct eigenvalues.
27. (a) If E is a subset of \mathbb{R} that does not contain any of its limit points, then prove that E is a countable set.
(b) Let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous function. If f is uniformly continuous, then prove that there exists a continuous function $g:[a, b] \rightarrow \mathbb{R}$ such that $g(x)=f(x)$ for all $x \in(a, b)$.
28. (a) On \mathbb{R}^{3}, define a binary operation * as follows: For $(x, y, t),\left(x^{\prime}, y^{\prime}, t^{\prime}\right)$ in \mathbb{R}^{3},

$$
(x, y, t) *\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+\frac{1}{2}\left(x^{\prime} y-x y^{\prime}\right)\right) .
$$

Then show that $\left(\mathbb{R}^{3},{ }^{*}\right)$ is a group, and find its centre.
(b) $k \in \mathbb{N}$ let $k \mathbb{Z}=\{k n: n \in \mathbb{Z}\}$. For any $m, n \in \mathbb{N}$ show that $I=m \mathbb{Z} \cap n \mathbb{Z}$ is an ideal of \mathbb{Z}. Further, find the generators of I.
29. Let G be a group of order p^{2}, where p is a prime number. Let $x \in G$. Prove that $\{y \in G: x y=y x\}=G$.

