(CODE-A)

Q.1-Q.15: Only one option is correct for each question. Each question carries (+6) marks for correct answer and (-2) marks for incorrect answer.

Let $a_n = \sum_{i=1}^n \frac{n}{n^2 + k}$, for $n \in \mathbb{N}$. Then the sequence $\{a_n\}$ is 1. (b) Bounded but not convergent (a) Convergent (c) Diverges to ∞ (d) Neither bounded nor diverges to ∞ The number of real roots of the equation $x^3 + x - 1 = 0$ is 2. (b) 1 (a) 0(c) 2(d) 3The value of $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + kn}}$ is 3. (a) $2(\sqrt{2}-1)$ (b) $2\sqrt{2}-1$ (c) $2-\sqrt{2}$ (d) $\frac{1}{2}(\sqrt{2}-1)$ Let V be the region bounded by the planes x = 0, x = 2, y = 0, z = 0 and y + z = 1. Then the value of 4. integral $\iiint y \, dx \, dy \, dz$ is (d) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{4}{2}$ (c) 1 The solution y(x) of the differential equation $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$ satisfying the conditions 5. CAREER $y(0) = 4, \frac{dy}{dx}(0) = 8$ is (a) $4e^{2x}$ (b) $(16x+4)e^{-2x}$ (d) $4e^{-2x} + 16xe^{2x}$ (c) $4e^{-2x} + 16x$ If y^a is the integrating factor of the differential equation $2xydx - (3x^2 - y^2)dy = 0$, then the 6. value of *a* is (a) -4 (b) 4 (c) -1(d) 1 Let $\vec{F} = ay\hat{i} + z\hat{j} + x\hat{k}$ and C be the positively oriented closed curve given by $x^2 + y^2 = 1$, z = 0. 7. If $\oint \vec{F} dr = \pi$, then the value of *a* is

(a) -1 (b) 0 (c) $\frac{1}{2}$ (d) 1

Consider the vector field $\vec{F} = (ax + y + a)\hat{i} + \hat{j} - (x + y)\hat{k}$, where *a* is a constant. If \vec{F} .curl $\vec{F} = 0$, 8. then the value of a is (d) $\frac{3}{2}$ (c) 1 (a) - 1(b) 09. Let G denote the group of all 2×2 invertible matrices with entries from \mathbb{R} . Let $H_1 = \{A \in G : \det(A) = 1\}$ and $H_2 = \{A \in G : A \text{ is upper triangular}\}.$ Consider the following statements: $P: H_1$ is a normal subgroup of G; $Q: H_2$ is normal subgroup of GThen (a) Both P and Q are true (b) P is true and Q is false (d) Both P and Q are false. (c) P is false and Q is true 10. For $n \in \mathbb{N}$, let $n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}$. Then the number of units of $\mathbb{Z}/11\mathbb{Z}$ and $\mathbb{Z}/12\mathbb{Z}$, respectively are (a) 11, 12 (b) 10, 11 (c) 10, 4 (d) 10, 8 11. Let A be a 3×3 matrix with trace (A) = 3 and det (A) = 2. If 1 is an eigenvalue of A, then the eigen-values of the matrix $A^2 - 2I$ are (a) 1, 2(i-1), -2(i+1)(b) -1, 2(i-1), 2(i+1)(d) -1, 2(i-1), -2(i+1)(c) 1, 2(i+1), -2(i+1)Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation, where $n \ge 2$. For $k \le n$, let $E = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$ 12. and $F = \{Tv_1, Tv_2, ..., Tv_k\}$. Then (a) If E is linearly independent, then F is linearly independent (b) If F is linearly independent, then E is linearly independent (c) If E is linearly independent, then F is linearly dependent (d) If F is linearly independent, then E is linearly dependent For $n \neq m$ let $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^m \to \mathbb{R}^n$ be two linear transformations such that T_1T_2 is 13. bijective. Then (a) rank $(T_1) = n$ and rank $(T_2) = m$ (b) rank $(T_1) = m$ and rank $(T_2) = n$ (c) rank $(T_1) = n$ and rank $(T_2) = n$ (d) rank $(T_1) = m$ and rank $(T_2) = m$ The set of all x at which the power series $\sum_{n=1}^{\infty} \frac{n}{(2n+1)^2} (x-2)^{3n}$ converges is 14. (a) [-1, 1)(b) [-1, 1] (c)[1,3)(d) [1, 3] 15. Consider the following subsets of \mathbb{R} :

$$E = \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\}, F = \left\{ \frac{1}{1-x} : 0 \le x < 1 \right\}$$

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

Then

((a)	Both E	E and F a	are close	ed	
((c)	E is NO	OT close	ed and <i>H</i>	7 is clo	sed

- (b) *E* is closed and *F* is NOT closed
- (d) Neither E nor F is closed

16. (a) Let $\{a_n\}$ be a sequence of non-negative real numbers such that $\sum_{n=1}^{\infty} a_n$ converges, and let $\{k_n\}$ be

a strictly increasing sequence of positive integers. Show that $\sum_{n=1}^{\infty} a_{k_n}$ also converges. (9)

(b) Suppose $f:[0,1] \to \mathbb{R}$ is differentiable and $f'(x) \le 1$ at every $x \in (0,1)$. If f(0) = 0 and f(1) = 1, show that f(x) = x for all $x \in [0,1]$. (6)

- (a) Suppose f is a real valued function defined on an open interval I and differentiable at every x ∈ I. If [a,b]⊂I and f'(a) < 0 < f'(b), then show that there exists c∈(a,b) such that f(c) = min f(x).
 - (b) Let $f:(a,b) \to \mathbb{R}$ be a twice differentiable function such that f'' is continuous at every point in (a,b). Prove that

$$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x) \text{ for every } x \in (a,b).$$
(9+6)

18. Find all the critical points of the following function and check whether the function attains maximum or minimum at each of these points. (15)

$$u(x, y) = x^{4} + y^{4} - 2x^{2} - 2y^{2} + 4xy, (x, y) \in \mathbb{R}^{2}.$$

19. (a) Let $\varphi:[a,b] \to \mathbb{R}$ be differentiable and $[c,d] = \{\varphi(x): a \le x \le b\}$, and let $f:[c,d] \to \mathbb{R}$ be continuous. Let $g:[a,b] \to \mathbb{R}$ be defined by $g(x) = \int_{c}^{\varphi(x)} f(t) dt$ for $x \in [a,b]$. Then show that g is differentiable and $g'(x) = f(\varphi(x))\varphi'(x)$ for all $x \in [a,b]$. (9)

(b) If
$$f:[0,1] \to \mathbb{R}$$
 is such that $\int_{0}^{\sin x} f(t) dt = \frac{\sqrt{3}}{2}x$ for all $x \in \mathbb{R}$, then find $f\left(\frac{1}{2}\right)$. (6)

20. Find the area of the surface of the solid bounded by the cone $z = 3 - \sqrt{x^2 + y^2}$ and the paraboloid $z = 1 + x^2 + y^2$. (15)

21. Obtain the general solution of each of the following differential equations:

(a)
$$y - x \frac{dy}{dx} = \frac{dy}{dx} y^2 e^y$$
 (6)

(**b**)
$$\frac{dy}{dx} = \frac{x+2y+8}{2x+y+7}$$
 (9)

22. (a) Determine the value of b > 1 such that the differential equation

$$x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} + y = 0, 1 < x < b$$

satisfying the conditions y(1) = 0 = y(b) has a nontrivial solution. (9)

4

(6)

(b) Find v(x) such that $y(x) = e^{4x}v(x)$ is a particular solution of the differential equation

$$\frac{d^2 y}{dx^2} - 8\frac{dy}{dx} + 16y = (2x + 11x^{10} + 21x^{20})e^{4x}$$
(6)

23. (a) Change the order of integration in the double integral $\int_{-1}^{2} \left(\int_{-x}^{2-x^2} f(x, y) dy \right) dx.$ (6)

(b) Let $\vec{F} = (x^2 - xy^2)\hat{i} + y^2\hat{j}$. Using Green's theorem, evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where *C* is the positively oriented closed curved which is the boundary of the region enclosed by the *x*-axis and the semi-circle $y = \sqrt{1 - x^2}$ in the upper half plane. (9)

24. (a) If
$$\vec{F} = (x^2 + y - 4)\hat{i} + 3xy\hat{j} + (2xz + z^2)\hat{k}$$
, then evaluate the surface integral $\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} dS$

where S is the surface of the cone $z = 1 - \sqrt{x^2 + y^2}$ lying above the xy-plane and \hat{n} is the unit normal to S making an acute angle with \hat{k} . (9)

- (b) Show that the series $\sum_{n=1}^{\infty} \frac{x}{\sqrt{n}(1+n^p x^2)}$ converges uniformly on \mathbb{R} for p > 1. (6)
- 25. (a) Find a value of c such that the following system of linear equations has no solution: x+2y+3z=1, 3x+7y+cz=2, 2x+cy+12z=3.

(b) Let *V* be a vector space of all polynomials with real coefficients of degree at most *n*, where $n \ge 2$. Considering element of *V* as functions from \mathbb{R} to \mathbb{R} , define $W = \left\{ p \in V : \int_{0}^{1} p(x) dx = 0 \right\}$. Show that *W* is a subspace of *V* and dim(*W*) = *n*. (9)

- 26. (a) Let A be a 3 × 3 real matrix with det (A) = 6. Then find det (adj A). (6)
 (b) Let v₁ and v₂ be non-zero vectors in ℝⁿ, n≥3, such that v₂ is not a scalar multiple of v₁. Prove that there exists a linear transformation T: ℝⁿ → ℝⁿ such that T³ = T, Tv₁ = v₂ and T has at least three distinct eigenvalues. (9)
- (a) If E is a subset of R that does not contain any of its limit points, then prove that E is a countable set. (9)
 (b) Let f:(a,b)→R be a continuous function. If f is uniformly continuous, then prove that there exists a continuous function g:[a,b]→R such that g(x) = f(x) for all x ∈ (a,b). (6)
- **28.** (a) On \mathbb{R}^3 , define a binary operation * as follows: For (x, y, t), (x', y', t') in \mathbb{R}^3 ,

$$(x, y, t)^*(x', y', t') = \left(x + x', y + y', t + t' + \frac{1}{2}(x'y - xy')\right)$$

Then show that $(\mathbb{R}^3, *)$ is a group, and find its centre.

(b) $k \in \mathbb{N}$ let $k\mathbb{Z} = \{kn : n \in \mathbb{Z}\}$. For any $m, n \in \mathbb{N}$ show that $I = m\mathbb{Z} \cap n\mathbb{Z}$ is an ideal of \mathbb{Z} . Further, find the generators of I. (6)

29. Let G be a group of order p^2 , where p is a prime number. Let $x \in G$. Prove that $\{y \in G : xy = yx\} = G$.

**** END ****

5

(9)

 $\leq \frac{S_0}{N_0}$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009