Multiple Choice Questions (MCQ)

Q.1 – Q.10 carry ONE mark each.

The tangent plane to the surface $z = \sqrt{x^2 + 3y^2}$ at (1, 1, 2) is given by 1.

(a) x-3y+z=0

(b) x + 3y - 2z = 0

(c) 2x + 4y - 3z = 0

(d) 3x-7y+2z=0

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a scalar field, $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ and let $\vec{a} \in \mathbb{R}^3$ be a constant vector. If \vec{r} represents the 2. position vector $x\hat{i} + y\hat{j} + z\hat{k}$, then which one of the following is FALSE?

(a) $curl(f \vec{v}) = grad(f) \times \vec{v} + f curl(\vec{v})$

(b) $\operatorname{div}(\operatorname{grad}(f)) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) f$

(c) $curl(\vec{a} \times \vec{r}) = 2 | \vec{a} | \vec{r}$

(d) $div\left(\frac{\vec{r}}{|\vec{r}|^3}\right) = 0$, for $\vec{r} \neq \vec{0}$

In \mathbb{R}^3 , the cosine of the acute angle between the surfaces $x^2 + y^2 + z^2 - 9 = 0$ and $z - x^2 - y^2 + 3 = 0$ at 3. the point (2, 1, 2) is

(a) $\frac{8}{5\sqrt{21}}$ (b) $\frac{10}{5\sqrt{21}}$ (c) $\frac{8}{3\sqrt{21}}$

Let $s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ for $n \in \mathbb{N}$. Then which one of the following is TRUE for the sequence $\{s_n\}_{n=1}^{\infty}$

(a) $\{s_n\}_{n=1}^{\infty}$ converges in \mathbb{Q} CAREER ENDEAVO

- (b) $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence but does not converge in \mathbb{Q}
- (c) The sub-sequence $\{s_{k^n}\}_{n=1}^{\infty}$ is convergent in \mathbb{R} only when k is even natural number

(d) $\{s_n\}_{n=1}^{\infty}$ is not a Cauchy sequence

5. Consider the vector space V over \mathbb{R} of polynomial functions of degree less than or equal to 3 defined on \mathbb{R} . Let $T: V \to V$ be defined by (Tf)(x) = f(x) - xf'(x). Then the rank of T is

(a) 1

(b) 2

Let a be a positive real number. If f is a continuous and even function defined on the interval [-a, a], then 6.

$$\int_{-a}^{a} \frac{f(x)}{1 + e^{x}} dx$$
 is equal to

- (a) $\int_{0}^{a} f(x)dx$ (b) $2\int_{0}^{a} \frac{f(x)}{1+e^{x}}dx$ (c) $2\int_{0}^{a} f(x)dx$ (d) $2a\int_{0}^{a} \frac{f(x)}{1+e^{x}}dx$
- In \mathbb{R}^2 , the family of trajectories orthogonal to the family of asteroids $x^{2/3} + y^{2/3} = a^{2/3}$ is given by 7.
 - (a) $x^{4/3} + v^{4/3} = c^{4/3}$

(b) $x^{4/3} - y^{4/3} = c^{4/3}$

(c) $x^{5/3} - v^{5/3} = c^{5/3}$

- (d) $x^{2/3} y^{2/3} = c^{2/3}$
- 8. If (v_1, v_2, v_3) is a linearly independent set of vectors in a vector space over \mathbb{R} , then which one of the following sets is also linearly independent?
 - (a) $\{v_1 + v_2 v_3, 2v_1 + v_2 + 3v_3, 5v_1 + 4v_2\}$
 - (b) $\{v_1 v_2, v_2 v_3, v_3 v_1\}$
 - (c) $\{v_1 + v_2 v_3, v_2 + v_3 v_1, v_3 + v_1 v_2, v_1 + v_2 + v_3\}$
 - (d) $\{v_1 + v_2, v_2 + 2v_3, v_3 + 3v_1\}$
- 9. Which one of the following is TRUE?
 - (a) \mathbb{Z}_n is cyclic if and only if n is prime
 - (b) Every proper sub-group of \mathbb{Z}_n is cyclic
 - (c) Every proper sub-group of S₄ is cyclic
 - (d) If every proper sub-group of a group is cyclic, then the group is cyclic
- Let $a_n = \frac{b_{n+1}}{b}$, where $b_1 = 1$, $b_2 = 1$ and $b_{n+2} = b_n + b_{n+1}$, $n \in \mathbb{N}$. Then $\lim_{n \to \infty} a_n$ is 10.

- (a) $\frac{1-\sqrt{5}}{2}$ (b) $\frac{1-\sqrt{3}}{2}$ (c) $\frac{1+\sqrt{3}}{2}$

Q.11 – Q.30 carry TWO marks each.

- For $x \in \mathbb{R}$, let $f(x) = \begin{cases} x^3 \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$. Then which one of the following is FALSE? 11.
 - (a) $\lim_{x \to 0} \frac{f(x)}{x} = 0$

(b)
$$\lim_{x\to 0} \frac{f(x)}{x^2} = 0$$

- (c) $\frac{f(x)}{x^2}$ has infinitely many maxima and minima on the interval (0, 1)
- (d) $\frac{f(x)}{x^4}$ is continuous at x = 0 but not differentiable at x = 0
- 12. If $\vec{F}(x, y) = (3x 8y)\hat{i} + (4y 6xy)\hat{j}$ for $(x, y) \in \mathbb{R}^2$, then $\oint_C \vec{F} d\vec{r}$, where C is the boundary of the triangular region bounded by lines x = 0, y = 0 and x + y = 1 oriented in the anti-clockwise directions, is
 - (a) $\frac{5}{2}$
- (b) 3
- (c) 4
- (d) 5
- 13. Let $f(x, y) = \begin{cases} \frac{xy}{(x^2 + y^2)^a}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$. Then which one of the following is TRUE for f at the point (0, 0).
 - 0)?
 - (a) For $\alpha = 1$, f is continuous but not differentiable
 - (b) For $\alpha = \frac{1}{2}$, f is continuous and differentiable
 - (c) For $\alpha = \frac{1}{4}$, f is continuous and differentiable
 - (d) For $\alpha = \frac{3}{4}$, f is neither continuous nor differentiable
- 14. Let $a,b,c \in \mathbb{R}$. Which of the following values of a,b,c do NOT result in the convergence of the series

$$\sum_{n=3}^{\infty} \frac{a^n}{n^b (\log_e n)^c}?$$

(a) $|a| < 1, b \in \mathbb{R}, c \in \mathbb{R}$

(b) $a = 1, b > 1, c \in \mathbb{R}$

(c) $a = 1, b \ge 0, c < 1$

- (d) $a = -1, b \ge 0, c > 0$
- 15. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and let J be a bounded open interval in \mathbb{R} .

Define $W(f, J) = \sup\{f(x) \mid x \in J\} - \inf\{f(x) \mid x \in J\}$. Which one of the following is FALSE?

- (a) $W(f, J_1) \le W(f, J_2)$ if $J_1 \subset J_2$
- (b) If f is a bounded function in J and $J \supset J_1 \supset J_2 ... \supset J_n \supset ...$ such that the length of the interval J_n tends to 0 as $n \to \infty$, then $\lim_{n \to \infty} W(f, J_n) = 0$

MA-2018 PAPER 4

- (c) If f is discontinuous at a point $a \in J$, then $W(f, J) \neq 0$
- (d) If f is continuous at a point $a \in J$, then for any given $\in > 0$ there exists an interval $I \subset J$ such that $W(f,I) < \in$
- 16. Let U, V and W be finite dimensional real vector spaces, $T:U\to V$, $S:V\to W$ and $P:W\to U$ be linear transformations. If range (ST) = nullspace (P), nullspace (ST) = range (P) and rank (T) = rank (S), then which one of the following is TRUE?
 - (a) nullity of T = nullity of S
 - (b) dimension of $U \neq$ dimension of W
 - (c) If dimension of V = 3, dimension of U = 4, then P is not identically zero
 - (d) If dimension of V = 4, dimension of U = 3, and T is one-one, then P is identically zero
- Let $a_n = \frac{(-1)^n}{\sqrt{1+n}}$ and let $c_n = \sum_{k=0}^n a_{n-k} a_k$, where $n \in \mathbb{N} \cup \{0\}$. Then which one of the following is TRUE? 17.
 - (a) Both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=1}^{\infty} c_n$ are convergent
 - (b) $\sum_{n=0}^{\infty} a_n$ is convergent but $\sum_{n=1}^{\infty} c_n$ is not convergent
 - (c) $\sum_{n=1}^{\infty} c_n$ is convergent but $\sum_{n=0}^{\infty} a_n$ is not convergent
 - (d) Neither $\sum_{n=0}^{\infty} a_n$ nor $\sum_{n=1}^{\infty} c_n$ is convergent
- 18. Let G be a group satisfying the property that $f: G \to \mathbb{Z}_{221}$ is a homomorphism implies $f(g) = 0, \forall g \in G$. Then a possible group G is
 - (a) \mathbb{Z}_{21}
- (b) \mathbb{Z}_{51}
- (c) \mathbb{Z}_{01}
- An integrating factor of the differential equation $\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right)dx + \frac{1}{4}(x + xy^2)dy = 0$ is

 (a) x^2 (b) $3\log_a x$ (c) x^3 (d) $2\log_e x$ 19. (b) $3\log_{-}x$
 - (a) x^2

- 20. Let *H* be the quotient group \mathbb{Q} / \mathbb{Z} . Consider the following statements.
 - I. Every cyclic subgroup of *H* is finite
 - II. Every finite cyclic group is isomorphic to a subgroup of H

Which one of the following holds?

- (a) I is TRUE but II is FALSE
- (b) II is TRUE but I is FALSE
- (c) both I and II are TRUE
- (d) neither I nor II is TRUE

- Let $a_n = \begin{cases} 2 + \frac{(-1)^{\frac{n-1}{2}}}{n}, & \text{if } n \text{ is odd} \\ 1 + \frac{1}{2^n}, & \text{if } n \text{ is even} \end{cases}$, $n \in \mathbb{N}$. Then which one of the following is TRUE? 21.
 - (a) $\sup\{a_n \mid n \in \mathbb{N}\} = 3$ and $\inf\{a_n \mid n \in \mathbb{N}\} = 1$
 - (b) $\liminf(a_n) = \limsup(a_n) = \frac{3}{2}$
 - (c) $\sup\{a_n \mid n \in \mathbb{N}\} = 2 \text{ and } \inf\{a_n \mid n \in \mathbb{N}\} = 1$
 - (d) $\liminf(a_n) = 1$ and $\limsup(a_n) = 3$
- Let $a_n = n + \frac{1}{n}$, $n \in \mathbb{N}$. Then the sum of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{a_{n+1}}{n!}$ is 22.
 - (a) $e^{-1} 1$
- (b) e^{-1}
- (c) $1-e^{-1}$ (d) $1+e^{-1}$
- For $x > \frac{-1}{2}$, let $f_1(x) = \frac{2x}{1+2x}$, $f_2(x) = \log_e(1+2x)$ and $f_3(x) = 2x$. Then which one of the following 23. is TRUE?
 - (a) $f_3(x) < f_2(x) < f_1(x)$ for $0 < x < \frac{\sqrt{3}}{2}$ (b) $f_1(x) < f_3(x) < f_2(x)$ for x > 0
 - (c) $f_1(x) + f_2(x) < \frac{f_3(x)}{2}$ for $x > \frac{\sqrt{3}}{2}$ (d) $f_2(x) < f_1(x) < f_3(x)$ for x > 0
- Consider the group $\mathbb{Z}^2 = \{(a,b) \mid a,b \in \mathbb{Z}\}$ under component wise addition. Then which of the following is 24. a subgroup of \mathbb{Z}^2 ?
 - (a) $\{(a,b) \in \mathbb{Z}^2 \mid ab = 0\}$
- CAREER (b) $\{(a,b) \in \mathbb{Z}^2 | 3a + 2b = 15\}$
- (c) $\{(a,b) \in \mathbb{Z}^2 \mid 7 \text{ divides } ab\}$
- (d) $\{(a,b) \in \mathbb{Z}^2 \mid 2 \text{ divides } a \text{ and } 3 \text{ divides } b\}$
- A particular integral of the differential equation $y'' + 3y' + 2y = e^{e^x}$ is 25.
 - (a) $e^{e^x}e^{-x}$
- (b) $e^{e^x}e^{-2x}$
- (c) $e^{e^x}e^{2x}$
- (d) $e^{e^x} e^x$
- $a,b \in \mathbb{R}$ and let $f: \mathbb{R} \to \mathbb{R}$ be a thrice differential function. If $z = e^u f(v)$, where u = ax + by and 26. v = ax - by, then which one of the following is TRUE?
 - (a) $b^2 z_{yy} a^2 z_{yy} = 4a^2 b^2 e^u f'(v)$
- (b) $b^2 z_{yy} a^2 z_{yy} = -4e^u f'(v)$

(c) $bz_x + az_y = abz$

(d) $bz_x + az_y = -abz$

27. Let y(x) be the solution of the differential equation $\frac{dy}{dx} + y = f(x)$, for $x \ge 0$, y(0) = 0, where

$$f(x) = \begin{cases} 2, & 0 \le x < 1 \\ 0, & x \ge 1 \end{cases}$$
. Then $y(x) = x < 1$

- (a) $2(1-e^{-x})$ when $0 \le x < 1$ and $2(e-1)e^{-x}$ when $x \ge 1$
- (b) $2(1-e^{-x})$ when $0 \le x < 1$ and 0 when $x \ge 1$
- (c) $2(1-e^{-x})$ when $0 \le x < 1$ and $2(1-e^{-1})e^{-x}$ when $x \ge 1$
- (d) $2(1-e^{-x})$ when $0 \le x < 1$ and $2e^{1-x}$ when $x \ge 1$

28. Consider the region *D* in the *yz* plane bounded by the line $y = \frac{1}{2}$ and the curve $y^2 + z^2 = 1$, where $y \ge 0$.

If the region D is revolved about the z-axis in \mathbb{R}^3 , then the volume of the resulting solid is

- (a) $\frac{\pi}{\sqrt{3}}$
- (b) $\frac{2\pi}{\sqrt{3}}$
- (c) $\frac{\pi\sqrt{3}}{2}$
- (d) $\pi\sqrt{3}$

29. Suppose that $f, g : \mathbb{R} \to \mathbb{R}$ are differentiable functions such that f is strictly increasing and g is strictly decreasing. Define p(x) = f(g(x)) and q(x) = g(f(x)), $\forall x \in \mathbb{R}$. Then for t > 0 the sign of

$$\int_{0}^{t} p'(x)(q'(x)-3)dx$$
 is

- (a) positive
- (b) negative
- (c) dependent on t
- (d) dependent on f and g

30. Let I denote the 4×4 identity matrix. If the roots of the characteristic polynomial of a 4×4 matrix M

are
$$\pm \sqrt{\frac{1 \pm \sqrt{5}}{2}}$$
, then $M^8 =$

- (a) $I + M^2$
- (b) 2I + M
- (c) 2I + 3M
- (d) 3I + 2M

SECTION-B

Multiple Select Questions (MSQ)

Q.1 - Q.10 carry TWO marks each.

1. The solution(s) of the differential equation $\frac{dy}{dx} = (\sin 2x)y^{1/3}$ satisfying y(0) = 0 is(are)

(a) y(x) = 0

(b) $y(x) = -\sqrt{\frac{8}{27}} \sin^3 x$

(c) $y(x) = \sqrt{\frac{8}{27}} \sin^3 x$

(d) $y(x) = \sqrt{\frac{8}{27}} \cos^3 x$

- 2. Let P and Q be two non-empty disjoint subsets of \mathbb{R} . Which of the following is (are) FALSE?
 - (a) If P and Q are compact, then $P \cup Q$ is also compact
 - (b) If P and Q are not connected, then $P \cup Q$ is also not connected
 - (c) If $P \cup Q$ and P are closed, then Q is closed
 - (d) If $P \cup Q$ and P are open, then Q is open
- Let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ denote the group of non-zero complex numbers under multiplication. Suppose 3.

 $Y_n = \{z \in \mathbb{C} \mid z^n = 1\}, n \in \mathbb{N}$. Which of the following is (are) subgroup(s) of \mathbb{C}^* ?

- (a) $\bigcup_{n=1}^{100} Y_n$ (b) $\bigcup_{n=1}^{\infty} Y_{\gamma^n}$ (c) $\bigcup_{n=100}^{\infty} Y_n$ (d) $\bigcup_{n=1}^{\infty} Y_n$
- Let $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be defined by $f(x) = x + \frac{1}{x^3}$. On which of the following interval (s) is f one-one? 4.
 - (a) $(-\infty, -1)$
- (b) (0, 1)
- (c) (0, 2)
- 5. Let S be a subset of \mathbb{R} such that 2018 is an interior point of S. Which of the following is (are) TRUE?
 - (a) S contains an interval
 - (b) There is a sequence in S which does not converge to 2018
 - (c) There is an element $y \in S$, $y \ne 2018$ such that y is also an interior point of S
 - (d) There is a point $z \in S$, such that |z-2018| = 0.002018
- $\vec{F}(x, y, z) = (2x + 3yz)\hat{i} + (3xz + 2y)\hat{j} + (3xy + 2z)\hat{k}$ for $(x, y, z) \in \mathbb{R}^3$, then which among the following is 6. (are) TRUE?
 - (a) $\nabla \times \vec{F} = \vec{0}$
 - (b) $\oint \vec{F} \cdot d\vec{r} = 0$ along any simple closed curve C
 - (c) There exists a scalar function $\phi: \mathbb{R}^3 \to \mathbb{R}$ such that $\nabla \cdot \vec{F} = \phi_{xx} + \phi_{yy} + \phi_{zz}$
 - (d) $\nabla \cdot \vec{F} = 0$
- 7. Let $m, n \in \mathbb{N}, m < n, P \in M_{n \times m}(\mathbb{R}), Q \in M_{m \times n}(\mathbb{R})$. Then which of the following is (are) NOT possible?
 - (a) rank(PQ) = n
 - (b) rank(QP) = m
 - (c) rank(PQ) = m
 - (d) $rank(QP) = \left\lceil \frac{m+n}{2} \right\rceil$, the smallest integer larger than or equal to $\frac{m+n}{2}$

Suppose $\alpha, \beta, \gamma \in \mathbb{R}$. Consider the following system of linear equations. 8.

 $x + y + z = \alpha$, $x + \beta y + z = \gamma$, $x + y + \alpha z = \beta$. If this system has at least one solution, then which of the following statements is (are) TRUE?

(a) If
$$\alpha = 1$$
 then $\gamma = 1$

(b) If
$$\beta = 1$$
 then $\gamma = \alpha$

(c) If
$$\beta \neq 1$$
 then $\alpha = 1$

(d) If
$$\gamma = 1$$
 then $\alpha = 1$

9. Suppose f, g, h are permutations of the set $\{\alpha, \beta, \gamma, \delta\}$, where

f interchanges α and β but fixes γ and δ

g interchanges β and γ but fixes α and δ

h interchanges γ and δ but fixes α and β

Which of the following permutations interchange (s) α and δ but fix(es) β and γ ?

(a)
$$f \circ g \circ h \circ g \circ f$$
 (b) $g \circ h \circ f \circ h \circ g$ (c) $g \circ f \circ h \circ f \circ g$ (d) $h \circ g \circ f \circ g \circ h$

(b)
$$g \circ h \circ f \circ h \circ g$$

(c)
$$g \circ f \circ h \circ f \circ g$$

(d)
$$h \circ g \circ f \circ g \circ h$$

10. Which of the following subsets of \mathbb{R} is (are) connected?

(a)
$$\{x \in \mathbb{R} \mid x^2 + x > 4\}$$

(b)
$$\{x \in \mathbb{R} \mid x^2 + x < 4\}$$

(c)
$$\{x \in \mathbb{R} \mid |x| < |x-4|\}$$

(d)
$$\{x \in \mathbb{R} \mid |x| > |x-4|\}$$

SECTION-C

Numerical Answer Type (NAT)

Q.1 - Q.10 carry ONE mark each.

- Let $f(x) = \sum_{n=0}^{\infty} (-1)^n x(x-1)^n$ for 0 < x < 2. Then the value of $f\left(\frac{\pi}{4}\right)$ is ______ 1.
- Let $f(x, y) = \sqrt{x^3 y} \sin \left(\frac{\pi}{2} e^{\left(\frac{y}{x}-1\right)} \right) + xy \cos \left(\frac{\pi}{3} e^{\left(\frac{x}{y}-1\right)}\right)$ for $(x, y) \in \mathbb{R}^2$, x > 0, y > 0. 2.

Then
$$f_x(1,1) + f_y(1,1) =$$

- Let $\phi(x, y, z) = 3y^2 + 3yz$ for $(x, y, z) \in \mathbb{R}^3$. Then the absolute value of the directional derivative of ϕ in 3. the direction of the line $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z}{-2}$, at the point (1, -2, 1) is _____
- Let $f:[0,\infty)\to[0,\infty)$ be continuous on $[0,\infty)$ and differentiable on $(0,\infty)$. If $f(x)=\int_0^{\infty}\sqrt{f(t)}dt$, 4. then f(6) =_____

- 5. Let $a_n = \frac{(1+(-1)^n)}{2^n} + \frac{(1+(-1)^{n-1})}{3^n}$. Then the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n x^n$ about x=0 is ______
- 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = \begin{cases} \frac{x^2 y(x y)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$.

Then $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ at the point (0, 0) is _____

- 7. Let W_1 be the real vector space of all 5×2 matrices such that the sum of the entries in each row is zero. Let W_2 be the real vector space of all 5×2 matrices such that the sum of the entries in each column is zero. Then the dimension of the space $W_1 \cap W_2$ is ______
- 8. The coefficient of x^4 in the power series expansion of $e^{\sin x}$ about x = 0 is _____ (correct upto three decimal places).
- 9. Let A₆ be the group of even permutations of 6 distinct symbols. Then the number of elements of order 6 in A₆ is _____
- 10. The order of the element (123)(246)(456) in the group S_6 is ______

Q.11 - Q.20 carry TWO marks each.

- 11. If $y(x) = v(x) \sec x$ is the solution of $y'' (2 \tan x)y' + 5y = 0$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, satisfying y(0) = 0 and $y'(0) = \sqrt{6}$, then $v\left(\frac{\pi}{6\sqrt{6}}\right)$ is _____ (correct upto two decimal places).
- 12. Suppose x, y, z are positive real numbers such that x + 2y + 3z = 1. If M is the maximum value of xyz^2 , then the value of $\frac{1}{M}$ is _____
- 13. If $\alpha = \int_{\pi/6}^{\pi/3} \frac{\sin t + \cos t}{\sqrt{\sin 2t}} dt$, then the value of $\left(2\sin\frac{\alpha}{2} + 1\right)^2$ is _____
- 14. Suppose $Q \in M_{3\times 3}(\mathbb{R})$ is a matrix of rank 2. Let $T: M_{3\times 3}(\mathbb{R}) \to M_{3\times 3}(\mathbb{R})$ be the linear transformation defined by T(P) = QP. Then the rank of T is ______
- 15. Let $a_k = (-1)^{k-1}$, $s_n = a_1 + a_2 + ... + a_n$ and $\sigma_n = (s_1 + s_2 + ... + s_n)/n$, where $k, n \in \mathbb{N}$. Then $\lim_{n \to \infty} \sigma_n$ is _____ (correct upto one decimal place)

MA-2018 PAPER 10

16. The value of the integral $\int_{0}^{1} \int_{x}^{1} y^{4}e^{xy^{2}}dydx$ is ______ (correct upto three decimal places)

17. The area of the parametrized surface

 $S = \{((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u) \in \mathbb{R}^3 \mid 0 \le u \le \frac{\pi}{2}, 0 \le v \le \frac{\pi}{2}\} \text{ is } \underline{\hspace{1cm}}$

(correct upto two decimal places)

18. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f'' is continuous on \mathbb{R} and f(0) = 1, f'(0) = 0 and f''(0) = -1.

Then $\lim_{x\to\infty} \left(f\left(\sqrt{\frac{2}{x}}\right) \right)^x$ is _____ (correct upto three decimal places)

19. If x(t) is the solution to the differential equation $\frac{dx}{dt} = x^2 t^3 + xt$, for t > 0, satisfying x(0) = 1, then the value of $x(\sqrt{2})$ is _____ (correct upto two decimal places)

20. If the volume of the solid in \mathbb{R}^3 bounded by the surfaces x = -1, x = 1, y = -1, y = 1, z = 2, $y^2 + z^2 = 2$ is $\alpha - \pi$, then $\alpha = \underline{\hspace{1cm}}$

***** END OF QUESTION PAPER *****

CAREER ENDEAVOUR

MA-2018 PAPER 11

IIT-JAM MATHEMATICS - 2018

ANSWER KEY

SECTION-A

1. (b) 2. (c)

(c) 3. (c)

4. (b) 5. (c)

6. (a)

7. (b)

8. (d)

9. (b)

10. (d)

11. (d)

12. (b)

13. (c)

14. (c)

15. (b)

16. (c)

17. (b)

18. (a)

19. (c)

20. (c)

21. (a)

22. (d)

23. (*)

24. (d)

25. (b)

26. (a)

27. (a)

28. (c)

29. (a)

30. (c)

SECTION-B

1. (a, b, c)

2. (b, c, d)

3. (b)

4. (b)

5. (a, b, c)

6. (a, b, c)

7. (a, d)

8. (a, b)

9. (a, d)

10. (b, c, d)

SECTION-C

1. (1)

2. (3)

3. (7)

4. (9)

5. (2)

6. (1)

7. (4)

8. (-0.125)

9. (0)

10. (4)

11. (0.5)

12. (1152)

13. (3)

14. (6)

15. (0.5)

16. (0.239)

17. (6.5)

18. (0.367)

19. (-2.718)

20. (6)

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255