Bases: A base is a substance that accepts a proton (Bronsted-Lowry). Basic compounds have high pK_a-values and are good proton acceptors, as the cations (or conjugate acids), formed on protonation, are relatively stable.

In water:

The strength of bases are usually described by the K_a-and pKa-values of the conjugate acid.

• If B is a strong base, then BH will be relatively stable and not easily deprotonated. BH will therefore have a high pK_-value

• If B is a weak base, then BH will be relatively unstable and easily deprotonated. BH will therefore have a low pK₂-value.

The cation can be stabilised by +I and +M groups, which can delocalise the positive charge. (The more 'spread out' the positive charge, the more stable it is).

(c) Inductive effects and aliphatic (or alkyl) amines: On protonation of amines, ammonium salts are formed.

$$R - NH_2 + H - X \longrightarrow R - NH_3 X$$

The greater the +I effect of the R group, the greater the electron density at nitrogen and the more basic the amine. The greater the +I effect, the more stable the ammonium cation and the more basic the amine.

The pK₂-values should increase steadily as more +I alkyl groups are introduced on nitrogen.

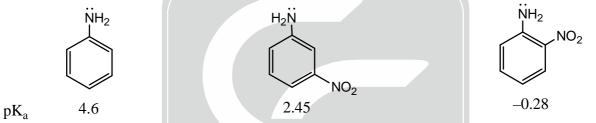
In organic solvents (which can not solvate the cation) or in gas phase, the order of pK_a s is expected to be as follows:

$$R_3N > R_2NH > RNH_2 > NH_3$$
 most basic $(R = +I \text{ alkyl group})$

However, the pK_a-values are determined in water, and the more hydrogen atoms on the positively charged nitrogen, the greater the extent of hydrogen-bonding between water and the cation. This solvation leads to the stabilisation of the cations containing N–H bonds.

The presence of –I and /or –M groups on nitrogen reduces the basicity, and hence, for example, amides are poor bases.

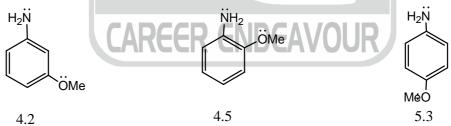
Ethanamide has a pK_a of -0.5.


$$H_3C$$
 NH_2
 H_3C
 NH_2
 NH_2
 NH_2

The C=O group stabilises the lone pair on nitrogen by resonance. This reduces the electron density on nitrogen

(d) Mesomeric effects and aryl (or aromatic) amines:

The lone pair of electrons on the nitrogen atom of aminobenzene (or aniline) can be stabilised by the delocalisation of the electrons onto the 2-, 4-and 6-positions of the benzene ring. Aromatic amines are therefore less basic than aliphatic amines.


- If –M groups are introduced at the 2-, 4-and/or 6-positions (but not at the 3- or 5-position), the anion can be further stabilised by delocalisation, as the negative charge can be spread onto the –M group. This reduces the basicity of the amine.
- If –I groups are introduced on the benzene ring, the order of –I stabilisation is 2-position > 3-position > 4-position. This reduces the basicity of the amine.

Most basic as no-I or –M
groups on the ring lone

The NO₂ group can stabilise the lone pair inductively Least basic: The NO₂ group can stabilise the lone pair inductively and by resonance

• If +M group (e.g. OMe) are introduced at the 2-, 4- or 6-position of aminobenzene, then the basicity is increased. This is because the +M group donates electron density to the carbon atom bearing the amine group.

Least basic: The OMe group cannot donate electron density to the carbon atom bearing the nitrongen

 pK_a

The OMe group can donate electron density to the nitrogen but it has a strong –I effect as it is in the 2-position

Most basic: The OMe group can donate electron density to the nitrogen and it has a weak –I effect (as well apart from the nitrogen)

Curly arrows can be used to show the delocalisation of electrons onto the carbon atom bearing the nitrogen.

(e) Lewis acids and base:

• A Lewis acid is any substance that accepts an electron pair in forming a coordinate bond. Examples include H⁺, BF₃, AlCl₃, TiCl₄, ZnCl₃ and SnCl₄. They have unfilled valence shells and hence can accept electron

