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6.2.1.Theorem: (Cauchy’s criterion for series):

The series 
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Example: (Harmonic series): Show that the series 
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6.2.2.Theorem:

Let (an) be a sequence of non-negative real numbers. Then 
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a  converges if and only if the sequence

of partial sums is bounded.

Example: Show that the exponential series 
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6.3. Tests for Convergence of Series

5.3.1 p-Series Test:
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n n  converges when p > 1 and diverges when 1p .

6.3.2. Comparison Test:
(a) Let (an) and (bn) be two sequences such that | |n na b  for some 0n N , where 0N  is some fixed
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Example: Examine the convergence of the following series
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