$$= a + ar + ar^{2} + \dots + ar^{n-1} = \begin{cases} \frac{a(1-r^{n})}{1-r}, |r| < 1\\ na, r = 1\\ a, r = 1 \end{cases}$$

$$= a + ar + ar^{2} + \dots + ar^{n-1} = \begin{cases} \frac{a(1-r^{n})}{1-r}, |r| > 1\\ \frac{1-(-1)^{n}}{2}, r = -1 \end{cases}$$
When $|r| < 1 \lim_{n \to \infty} S_{n} = \frac{a}{1-r}$ $\left(\because \lim_{n \to \infty} r^{n} = 0 \right)$

$$\Rightarrow \sum_{n=1}^{\infty} ar^{n-1} \text{ is convergent}$$
When $r = 1, \lim_{n \to \infty} S_{n} = \infty \Rightarrow \sum_{n=1}^{\infty} ar^{n-1} \text{ is divergent}$
When $r = 1, \lim_{n \to \infty} S_{n} = \infty \Rightarrow \sum_{n=1}^{\infty} ar^{n-1} \text{ is divergent}$
When $r = 1, S_{2n} = 0, S_{2n+1} = 1 \Rightarrow (S_{n})$ is having two subsequence converging to different limits.

$$\Rightarrow \lim_{n \to \infty} s_{n} \text{ does not exist } \Rightarrow \sum_{n=1}^{\infty} ar^{n-1} \text{ converges iff } |r| < 1.$$
The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converges iff $|r| < 1.$
Theorem: Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series. Then $\lim_{n \to \infty} a_{n} = 0$.
However, it can be shown that $\sum_{n=1}^{\infty} \frac{1}{n}$ is a divergent series.
Example: Consider $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n+2}}\right)$. Show that this series is convergent.
Solm: Let $a_{n} = \frac{1}{\sqrt{n}} + 1 = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{n+2}}$
 $\Rightarrow \lim_{n \to \infty} S_{n} = \frac{1}{\sqrt{2}} \Rightarrow \sum_{n=1}^{\infty} a_{n}$ is convergent and $\sum_{n=1}^{\infty} a_{n} = \frac{1}{\sqrt{2}}$

Example: Consider
$$\sum_{n=1}^{\infty} \frac{|n|}{n^2}$$
. Show that this series is divergent
Sola: Let $a_n = \left| \frac{n}{n^2} = \frac{n(n-1)|n-2}{n^2} = \left(1-\frac{1}{n}\right)|\frac{n-2}{n-2} \forall n \ge 2$
Then $\lim_{n \to \infty} a_n \neq 0 \Rightarrow$ By the above theorem $\sum_{n=1}^{\infty} \frac{|n|}{n^2}$ is divergent
Example: Show that $\sum_{n=1}^{\infty} \frac{2n+1}{3n+2}$ is divergent.
Sola: Let $a_n = \frac{2n+1}{3n+2}$
 $\lim_{n \to \infty} a_n = \frac{2}{3} \neq 0 \Rightarrow \sum_{n=1}^{\infty} a_n$ is divergent.
Sola: Let $a_n = \frac{2n+1}{3n+2}$
 $\lim_{n \to \infty} a_n = \frac{2}{3} \neq 0 \Rightarrow \sum_{n=1}^{\infty} a_n$ is divergent.
 $\frac{52.1 \text{ Theorem: } (\text{Cauchy's criterion for series):}}{1 \text{ The series } \sum_{n=1}^{\infty} a_n}$ converges if and only if for every $\varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t.
 $|S_n - S_n| = |a_{n+1} + a_{n+2} + ... + a_n| < \varepsilon$ for all $m > n \ge N$.
Example: (Harmonic series): Show that the veries $\sum_{n=1}^{\infty} a_n^2$ divergent.
Sola. We note that
 $|S_{2n} - S_n| = |\sum_{n=1}^{\infty} \frac{1}{n+1} = |\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n}| = \frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n}| \le \frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n} = \frac{1}{2}$... (1)
Suppose that $\sum_{n=1}^{\infty} 1_n^2$ converges. By Cauchy's criterion, given $\varepsilon = \frac{1}{2} \cdot \exists N \in \mathbb{N}$ s.t. $|\sum_{n=1}^{\infty} \frac{1}{n} |s| < \frac{1}{2}$ for all $m > n \ge N$.
If we choose $n = N$, $m = 2N$ then
 $\left| \sum_{n=1}^{\infty} \frac{1}{n} \right| < \frac{1}{2}$ i.e. $|S_{1n} - S_n| < \frac{1}{2}$ which is a contradiction to $(1) \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

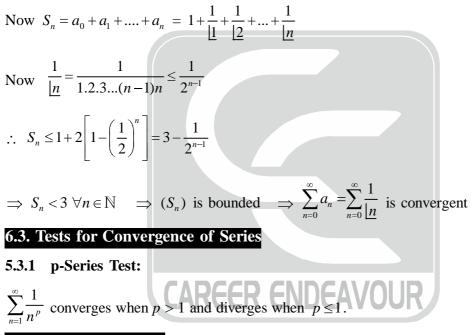
6.2.2.Theorem:

Let (a_n) be a sequence of non-negative real numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if the sequence of partial sums is bounded.

Example: Show that the exponential series $\sum_{n=0}^{\infty} \frac{1}{\underline{n}}$ is bounded.

Soln.
$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \frac{1}{\lfloor \underline{n} \rfloor}, \quad a_n = \frac{1}{\lfloor \underline{n} \rfloor} > 0$$

Using the above theorem, if we can show that (S_n) is bounded, then $\sum_{n=0}^{\infty} a_n$ will be convergent.



6.3.2. Comparison Test:

(a) Let (a_n) and (b_n) be two sequences such that $|a_n| \le b_n$ for some $n \ge N_0$, where N_0 is some fixed

integer. If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) Let (d_n) be a sequence such that $a_n \ge d_n \ge 0$ for some $n \ge N_0$. If $\sum_{n=1}^{\infty} d_n$ diverges then $\sum_{n=1}^{\infty} a_n$ diverges. **Example:** Examine the convergence of the following series

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
 (b) $\sum_{n=1}^{\infty} \frac{n+1}{n^2 + 1}$

Soln.

(a) Let
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
 i.e. $a_n = \frac{1}{n^2 + 1}$ \therefore $\frac{1}{n^2 + 1} \le \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent ($\because p = 2$)
 \Rightarrow By comparison test $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ is convergent

