12.	If the system of equation $x - ky - z = 0$, $kx - y - z = 0$ and $x + y - z = 0$ has a non zero solution, then the
	possible value of k are
~ •	(a) $-1, 2$ (b) 0, 1 (c) 1, 2 (d) $-1, 1$ [IIT-JEE : 2011
Soln.	Given that, system of equation is $x - ky = z = 0$
	x - ky - z = 0
	kx - y - z = 0
	x + y - z = 0
	$\begin{vmatrix} 1 & -k & -1 \end{vmatrix}$
	Matrix representation is $A = \begin{vmatrix} k & -1 & -1 \end{vmatrix}$
	Given system has non zero solution $\Rightarrow A = 0$
	$\implies 1(1+1) + k(-k+1) - 1(k+1) = 0$
	$\Rightarrow 2 - k^2 + \not k - \not k - 1 = 0 \Rightarrow -k^2 + 1 = 0$
	$\Rightarrow k^2 = 1 \Rightarrow k = \pm 1$
	Correct option is (d)
13.	The equation has [TIFR-2012
	$r + \frac{1}{r}r_{r} + \frac{1}{r}r_{r} = 1$
	$x_1 + \frac{1}{4}x_2 + \frac{1}{2}x_3 = 1$
	$x_1 + \frac{1}{2}x_2 + \frac{1}{27}x_3 = 1$
	has no solution (T/F)
Soln	After solving these we get $Q(A) = Q(A \cdot B) = 3$ hence unique solution
5011.	Statement is false
14.	The equation $x_1 + 2x_2 + 3x_2 = 1$, $x_1 + 4x_2 + 9x_2 = 1$, $x_1 + 8x_2 + 27x_2 = 1$ have [TIFR-2010]
	(a) only one solution (b) two solution
	(c) infinitely many solution (d) no solution
Soln.	$\rho(A) = \rho(A:B)$ and also A is invertible
	Correct option is (a)
15.	Let A be a 5 \times 4 matrix with real entries such that $Ax = 0$ iff $x = 0$ where x is 4 \times 1 vector and 0 is nu
	vector. Then rank of A is [(SCQ) CSIR-NET/JRF : Dec. 2013
	(a) 4 (b) 5 (c) 2 (d) 1
Soln.	$Ax = 0$ has trivial solution only If $\rho(A) =$ the number of columns = 4
16	Correct option is (a). Let A be a 5 \times 4 matrix with real antries such that the space of all solution of the linear system
10.	$Ax^{t} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$ Here M^{t} denote the transpose of an solution of the linear system.
	$Ax = [1, 2, 3, 4, 5]$ is given by $\{[1 + 2s, 2 + 5s, 5 + 4s, 4 + 5s] : s \in \mathbb{R}\}$. Here <i>M</i> denote the transpose C
	a matrix M) then the rank of A is equal to [(SCQ) CSIR-NET/JRF: Dec-201]
Soln	(a) 4 (b) 5 (c) 2 (d) 1 Solution set of $Ax^{t} = [1, 2, 3, 4, 5]^{t}$ is given by
5011.	(
	$S = \{ [1+2s, 2+3s, 3+4s, 4+5s]^{t} : s \in \mathbb{R} \} = \{ (1, 2, 3, 4) + s(2, 3, 4, 5) : s \in \mathbb{R} \} \implies \dim S = 2$
	\therefore The number of L.I. solution of the given non homogeneous system of equation is 2.
	Hence, $n - r + 1 = 2$
	$\Rightarrow 4 - r + 1 = 2 \qquad \Rightarrow \checkmark r = \checkmark 3 \qquad \Rightarrow \boxed{r = 3}$
	Correct option is (b).

System of Linear Equation

- 17. $[A]_{m \times n} x = [b]_{n \times 1}$ be a system of equation then which of the following is true?
 - (a) If m = n then the given system of equation has always unique solution [(SCQ) CSIR-NET/JRF: Dec-2011]
 - (b) If m < n then the given system of equation has no solution
 - (c) If m < n then the given system of equation has infinite or no solution
 - (d) If $m \le n$ then the given system of equation has no solution
- **Soln.** We know that, if number of equation is less than number of unknowns then system of linear equation have either no or infinite solutions. As, rank [A:B] < number of unknowns and if rank [A:B] = rank $[A] \Rightarrow$ infinite solution. rank $[A:B] \neq$ rank $[A] \Rightarrow$ no solution. **Correct option is (c).**

18. Tick true or false

A is 3×4 matrix of rank 3. Then system of equations Ax = b has exactly one solution. [TIFR-2011]

Soln. n - r = 4 - 3 = 1 so it has infinite number of solution.

Statement is false.

Unsolved Problems

SIMULTANEOUS LINEAR SYSTEM

In all the following, you show consistency and inconsistency. If consistent find solution on it.

(1) x+2y-3z=-4(2) x + y + z = 62x + 3y + 2z = 2x + 2z = 73x - 3y - 4z = 13x + y + z = 12(3) 5x - 7y = 2(4) 4x - 2y = 36x - 3y = 57x - 5y = 3(5) x - 2y + z = 0(6) 4x + 3z = 8x + y - z = 02x - z = 23x + 6y - 5z = 03x + 2y = 5(7) x + y + z = 5Find α , β so that it have infinite many solution. x + 3y + 3z = 9 $x+2y+\alpha z=\beta$ (8) x + y + z = 3will not have unique solution for k equal to x + 2v + 3z = 4x + 4y + kz = 6(a) 0(b) 5 (c) 6(d) 7 (9) x+2y+z=6(10) 2x+3y=4for what value of *a* the system has solution 2x + y + 2z = 6x + y + z = 4x + y + z = 5x+2y-z=a(12) -x+5y=-1(11) 4x + 2y = 7x - y = 22x + y = 6x + 3y = 3 $2x_1 - x_2 + 3x_3 = 1$ $x_1 + x_2 + 2x_3 = 1$ (14) $x_1 + 2x_2 + 3x_3 = 2$ (13) $3x_1 - 2x_2 + 5x_3 = 2$ $-x_1 - 4x_2 + x_3 = 3$ $x_1 + 4x_2 + ax_3 = 4$ has unique solution. Find a = ?

39

Vector Spaces

Binary Operation: Let *G* be a non-empty set. Then $G \times G = \{(a, b) : a, b \in G\}$. If $f: G \times G \to G$ is a function, then *f* is called the binary operation on *G*. Let '*' be the binary operation on *G* if and only if $a * b \in G \forall a, b \in G$ and a * b is unique. This is called closure property of binary operation and set *G* is closed with respect to binary operation. **Group:** Let (G, \oplus) be an algebraic structure where \oplus is binary operation over non-empty set *G*, then (G, \oplus) is called group under the operation \oplus if following postulate are satisfied:

- **1.** Closure Property: The binary operation \oplus is closed. i.e. $a \oplus b \in G$ for all $a, b \in G$
- **2.** Associative Law: The binary operation \oplus follow associative law.

i.e. $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ for all $a, b, c \in G$

- **3.** Existence of Identity Element: There exist an element $e \in G$ called identity such that $a \oplus e = e \oplus a = a \forall a \in G$
- 4. Existence of Inverse: For each element 'a' in G, there exist an element a^{-1} (inverse of a) is G, such that $a \oplus a^{-1} = a^{-1} \oplus a = e$

Remark 1: Many author do not mention first property as this is same as of the definition of binary operation.

Abelian Group or Commutative Group: A group G is said to be abelian if commutative law holds i.e. $a \oplus b = b \oplus a \forall a, b \in G$.

Remark 2: A group with addition binary operation is known as additive group.

Remark 3: A group with multiplication binary operation is known as multiplicative group.

Groupoid: Let (S, \oplus) be an algebraic structure and \oplus is binary operation over non-empty set *S*. (S, \oplus) is called groupoid if it follow closure property.

Semi-group: Let *S* be a non-empty set, then (S, \oplus) is called semi-group if it satisfies following property:

- **1.** Closure Property: $a \oplus b \in S \forall a, b \in S$
- **2.** Associative Property: $a \oplus (b \oplus c) = (a \oplus b) \oplus c \forall a, b, c \in S$

Monoid: Let S be a non-empty set, (S, \oplus) is called monoid if it satisfies following property:

- **1.** Closure Property: $a \oplus b \in S \forall a, b \in S$
- **2.** Associative Property: $a \oplus (b \oplus c) = (a \oplus b) \oplus c \forall a, b, c \in S$
- **3.** Existence of Identity: There exist $e \in G$ such that $a \oplus e = e \oplus a = a \forall a \in G$

Field: An algebraic structure (F, +, .) having at least two elements is said to be field if it possesses following properties.

- **1.** (F, +) is abelian group.
- 2. (F', .) is abelian group, where $F' = F \{0\}$
- 3. Multiplication distribute over addition i.e.

$$a.(b+c) = ab + ac \ \forall a, b, c \in F$$

OR (F, +, .) is called field if

- F_1 Addition is closed i.e., $a + b \in F, \forall a, b \in F$
- F_2 Addition is associative i.e., $a + (b + c) = (a + b) + c, \forall a, b, c \in F$

 $\mathbf{F}_3 - \exists$ element $0 \in F$ such that $a + 0 = a, \forall a \in F$

- \mathbf{F}_4 For each element $a \in F \exists (-a) \in F$ such that $a + (-a) = 0, \forall a \in F$
- F_5 Addition is commutative i.e., $a+b=b+a, \forall a, b \in F$
- \mathbf{F}_6 Multiplication is closed i.e., $a.b \in F \ \forall a, b \in F$
- F_7 Multiplication is associative i.e., $a.(b.c) = (a.b).c, \forall a, b, c \in F$
- $F_8 \exists$ a non-zero element denoted by $1 \in F$ such that $a \cdot 1 = 1 \cdot a = a, \forall a \in F$
- F_9 For every non-zero element $a \in F$, $\exists a^{-1} \in F$ such that $a \cdot a^{-1} = 1$, $\forall a \in F$
- F_{10} Multiplication is commutative i.e. $a.b = b.a \forall a.b \in F$

 F_{11} – Multiplication is distributive over addition i.e.

a.(b+c) = a.b + a.c and $\forall a, b, c \in F$

'0' identity element of addition is called zero-element of field, '1' identity element of multiplication is called unity of field.

Vector space: A vector space (or linear space) consists of the following:

- 1. A field F of scalars
- 2. A set V of objects, called vectors
- 3. A rule (or operation) called vector addition and a rule (or operation), called scalar multiplication.

Definition: A non-empty set *V* is said to be a vector space over the field *F* if the following conditions hold: **Vector addition:**

- (a) Addition is closed i.e. for all $\alpha, \beta \in V, \alpha + \beta \in V$
- (b) Addition is commutative, $\alpha + \beta = \beta + \alpha$
- (c) Addition is associative $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- (d) There is a unique vector 0 in V, called the zero vector, such that $\alpha + 0 = \alpha$ for all $\alpha \in V$

