The Gauss-seidel method is given by

$$
\begin{aligned}
& x_{1}^{(n+1)}=\frac{1}{2}\left[7+x_{2}^{n}\right] \\
& x_{2}^{(n+1)}=\frac{1}{2}\left[1+x_{1}^{(n+1)}+x_{3}^{(n)}\right] \\
& x_{3}^{(n+1)}=\frac{1}{2}\left[1+x_{2}^{(n+1)}\right]
\end{aligned}
$$

Given, $X^{(0)}=\left[x_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{0}\right]=[0,0,0]$

$$
\begin{aligned}
& x_{1}^{(1)}=\frac{1}{2}\left[7+x_{2}^{(0)}\right]=\frac{1}{2}[7+0]=3.5 \\
& x_{2}^{(1)}=\frac{1}{2}\left[1+x_{1}^{(1)}+x_{3}^{(0)}\right]=\frac{1}{2}[1+3.5+0]=2.25 \\
& x_{3}^{(1)}=\frac{1}{2}\left[1+x_{2}^{(1)}\right]=\frac{1}{2}[1+2.25]=1.625
\end{aligned}
$$

Hence option (b) is correct.

25. Consider the system of equations
[D.U. 2017]

$$
\left[\begin{array}{ll}
1 & -a \\
-a & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

where ' a ' is a real constant. Then Gauss-seidal method for the solution of the above system converges for
(a) all values of a
(b) $|a|<1$
(c) $|a|>1$
(d) $a>2$

Soln. Consider the system $A X=B$. We know that the gauss seidal method converges for $A X=B$ if the matrix A is diagonally dominated.

\therefore we have $1>|a|$
Hence option (b) is correct.
26. The total number of arithmetic operations required to find the solution of a system of n linear equation in n unknowns by Gauss elimination method is
[D.U. 2018]
(a) $\frac{2}{3} n^{3}+\frac{1}{2} n^{2}-\frac{5}{6} n$
(b) $n^{3}-\frac{1}{6} n$
(c) $\frac{2}{3} n^{3}+\frac{3}{2} n^{2}-\frac{7}{6} n$
(d) $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}-\frac{5}{6} n$

Soln. Article - Counting operation in Gaussian elimination.

Consider a system of n linear equation in n unknowns and the corresponding $\mathrm{n} \times \mathrm{n}$ coefficient matrix

$$
A=\left[\begin{array}{l}
a_{11} a_{12} \ldots . a_{1 n} \\
a_{21} a_{22} \ldots \ldots a_{2 n} \\
\left.\left\lvert\, \begin{array}{lll}
& \mid \\
a_{n 1} & a_{n 2} \ldots \ldots & a_{n n}
\end{array}\right.\right], ~
\end{array}\right]
$$

The $n \times 1$, solution matrix $X=\left[x_{1}, x_{2} \ldots \ldots x_{n}\right]^{\mathrm{T}}$, and the $n \times 1$ constant matrix $B=\left[b_{1}, b_{2} \ldots . . b_{\mathrm{n}}\right]^{\mathrm{T}}$.
consider $A X=B$
Then After Gaussian elimination, the system convert as

$$
U X=G
$$

Where

$$
u=\left[\begin{array}{ccc}
u_{11} & u_{12} \ldots . . u_{1 n} \\
& u_{22} \ldots \ldots . u_{2 n} \\
& & \mid \\
& \ldots \ldots \ldots \ldots . u_{n n}
\end{array}\right] \text { is the coefficient matrix of the equivalent system, }
$$

and $g=\left[\begin{array}{c}g_{1} \\ g_{2} \\ \mid \\ g_{n}\end{array}\right]$ be the $n \times 1$ equivalent constant matrix.
The following table states the operation count from going from A to U at each step as

Step Number	Additional subtraction	Number of multiplications	Divisions
1.	$(n-1)^{2}$	$(n-1)^{2}$	$n-1$
2.	$(n-2)^{2}$	$(n-2)^{2}$	$n-2$
\vdots	\vdots	\vdots	\vdots
$n-2$	4	\vdots	2
$n-1$	1	1	1

Therefore
Total number of Addition/Subtraction $=\sum(n-1)^{2}=\frac{n(n-1)(2 n-1)}{6}$
Total number of Multiplication/Divisions $=\sum(n-1)^{2}+\sum(n-1)=\frac{n(n-1)(2 n-1)}{6}+\frac{n(n-1)}{2}=\frac{n\left(n^{2}-1\right)}{3}$
Now we count the Number of Addition/Subtraction and the Number of Multiplication/divisions in goingfrom $\mathrm{b} \rightarrow \mathrm{g}$, we have
Total Number of Addition/Subtraction $=\sum(n-1)=\frac{n(n-1)}{2}$
Total Number of Multiplication/divisions $=\sum(n-1)=\frac{n(n-1)}{2}$
Lastly, we count the Number of Addition/Subtraction and Multiplications/divisions for finding the sdution from the back substitution method, as

Total Number of addition/subtraction $=\sum(n-1)=\frac{n(n-1)}{2}$
Total Number of Multiplication/division $=\sum n=\frac{n(n+1)}{2}$
Therefore, the total number of operations to obtain the solution of a system of n linear equations in n variables using Gaussian - elimination method is

Total Number of additions/subtraction $=\frac{n(n-1)(2 n-1)}{6}+\frac{n(n-1)}{2}+\frac{n(n-1)}{2}=\frac{n(n-1)(2 n+5)}{6}$
Total number of multiplication/divisions to obtain solution is

$$
=\frac{n\left(n^{2}-1\right)}{3}+\frac{n(n-1)}{2}+\frac{n(n+1)}{2}=\frac{n\left(n^{2}+3 n+1\right)}{3}
$$

Therefore total number of Arithmetic operations are

Total number of operation are

$$
\begin{aligned}
& =\frac{n(n-1)(2 n+5)}{6}+\frac{n\left(n^{2}+3 n-1\right)}{3} \\
& =\frac{4 n^{3}+9 n^{2}-7 n}{6}=\frac{2}{3} n^{3}+\frac{3}{2} n^{2}-\frac{7}{6} n
\end{aligned}
$$

$$
=\frac{2}{3} n^{3}+\frac{3}{2} n^{2}-\frac{7}{6} n
$$

Hence option (c) is correct

27. If $\left(\begin{array}{lll}1 & 4 & 3 \\ 2 & 7 & 9 \\ 5 & 8 & a\end{array}\right)=\left[\begin{array}{ccc}\ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & -53\end{array}\right]\left[\begin{array}{ccc}1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1\end{array}\right]$, then the value of a is
[GATE-2008]
(a) -2
(b) -1
(c) 1
(d) 2

Soln. $\left(\begin{array}{lll}1 & 4 & 3 \\ 2 & 7 & 9 \\ 5 & 8 & a\end{array}\right)=\left[\begin{array}{ccc}\ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & -53\end{array}\right]\left[\begin{array}{ccc}1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\ell_{11} & \ell_{11} u_{12} & \ell_{11} u_{13} \\ \ell_{21} & \ell_{11} u_{12}+\ell_{22} & \ell_{21} u_{13}+\ell_{22} u_{23} \\ \ell_{31} & \ell_{31} u_{12}+\ell_{32} & \ell_{31} u_{13}+\ell_{32} u_{23}-53\end{array}\right]$
Comparing both sides, we have
$\ell_{11}=1, \ell_{21}=2, \ell_{31}=5, \ell_{11} u_{12}=4$ implies $u_{12}=4$
$\ell_{11} u_{13}=3$ implies $u_{13}=3, \ell_{21} u_{12}+\ell_{22}=7$ implies $8+\ell_{22}=7$ i.e. $\ell_{22}=-1$
$\ell_{21} u_{13}+\ell_{22} u_{23}=9$ implies $6-u_{23}=9$ i.e. $u_{23}=-3$
$\ell_{31} u_{12}+\ell_{32}=8$ implies $20+\ell_{32}=8$ i.e. $\ell_{32}=-12$
Now, $\ell_{31} u_{13}+\ell_{32} u_{23}-53=a$ implies $15+36-53=a$ i.e. $a=-2 \quad \square$
Option (a) is correct

Interpolation by Polynomials

Suppose that a function $f(x)$ is not defined explicitely, but its value at some finite number of points $\left\{x_{i}, i=1,2, \ldots, n\right\}$ is given. The interest is to find the value of f at some point x lying between x_{j} and x_{k}, for some $j, k=1,2, \ldots, n$. This can be obtained by first approximating f by a known function and then finding the value of this approximate function at the point x. Such a process is called the interpolation.

Lagrange Interpolation:

The basic interpolation problem can be posed in one of two ways:
I. Given a set of nodes $\left\{x_{i} / i=0,1, \ldots n\right\}$ and corresponding date values $\left\{y_{i} / i=0,1, \ldots n\right\}$. Find the polynomial $p_{n}(x)$ of degree less than or equal to n, such that $p_{n}\left(x_{i}\right)=y_{i}, i=0,1, \ldots n$
II. Given a set of nodes $\left\{x_{i} / i=0,1, \ldots, n\right\}$ and a continuous function $f(x)$. Find the polynomial $p_{n}(x)$ of degree less than or equal to n , such that $p_{n}\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \ldots . n$

Note that in the first problem we are trying to fit a polynomial to the data, and in the second case, we are trying to approximate a given function with the interpolating polynomial. Note that the first problem can be viewed as a particular case of the second.

Theorem (Lagrange Interpolation Formula)

Let $x_{0}, x_{1}, \ldots x_{n} \in I=[a, b]$ be $n+1$ distinct nodes and let $f(x)$ be a continuous real- valued function defined on I. Then, there exists a unique polynomial p_{n} of degree $\leq n$ (called Lagrange Formula for interploting Polynomial), given by
$p_{n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) l_{k}(x)$ where $l_{k}(x)=\prod_{i=0, i \neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}, k=0, \ldots, n$
such that $p_{n}\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \ldots, n$

The function $l_{k}(x)$ is called the Lagrange Multiplier.

Newton Interpolation and Divided Differences

We have seen that in the Lagrange formula of interpolating polynomial for a function, if we decide toadd a point to the set of nodes to increase the accuracy, we have to completely recompute all of the $l_{i}(x)$ functions. In other words, we cannot express P_{n+1} in terms of p_{n}, using Lagrange formula. An alternate form of the polynomail, known as the Newton form, avoids this problem, and allows us to easily write P_{n+1} in terms of P_{n}.

The idea behind the Newton formula of the interploting polynomial is to write $P_{n}(x)$ in the form (called Newton form)

