The Gauss-seidel method is given by

$$\begin{aligned} x_1^{(n+1)} &= \frac{1}{2} \Big[7 + x_2^n \Big] \\ x_2^{(n+1)} &= \frac{1}{2} \Big[1 + x_1^{(n+1)} + x_3^{(n)} \Big] \\ x_3^{(n+1)} &= \frac{1}{2} \Big[1 + x_2^{(n+1)} \Big] \end{aligned}$$

Given, $X^{(0)} = \left[x_1^{(0)}, x_2^{(0)}, x_3^0 \right] = \left[0, 0, 0 \right]$

$$x_{1}^{(1)} = \frac{1}{2} \Big[7 + x_{2}^{(0)} \Big] = \frac{1}{2} \Big[7 + 0 \Big] = 3.5$$
$$x_{2}^{(1)} = \frac{1}{2} \Big[1 + x_{1}^{(1)} + x_{3}^{(0)} \Big] = \frac{1}{2} \Big[1 + 3.5 + 0 \Big] = 2.25$$
$$x_{3}^{(1)} = \frac{1}{2} \Big[1 + x_{2}^{(1)} \Big] = \frac{1}{2} \Big[1 + 2.25 \Big] = 1.625$$

Hence option (b) is correct.

25. Consider the system of equations

$$\begin{bmatrix} 1 & -a \\ -a & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

where 'a' is a real constant. Then Gauss-seidal method for the solution of the above system converges for

(a) all values of a (b) |a| < 1 (c) |a| > 1 (d) a > 2

Soln. Consider the system AX = B. We know that the gauss seidal method converges for AX = B if the matrix A is diagonally dominated.

i.e.
$$a_{ii} > \sum_{i \neq j} |a_{ij}|$$
 for each *i* **AREER ENDEAVOUR**
.:. we have $1 > |a|$

Hence option (b) is correct.

26. The total number of arithmetic operations required to find the solution of a system of *n* linear equation in *n* unknowns by Gauss elimination method is **[D.U. 2018]**

(a)
$$\frac{2}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n$$

(b) $n^3 - \frac{1}{6}n$
(c) $\frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n$
(d) $\frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n$

Soln. Article - Counting operation in Gaussian elimination.

Consider a system of n linear equation in n unknowns and the corresponding $n \times n$ coefficient matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \dots a_{1n} \\ a_{21} & a_{22} \dots a_{2n} \\ | & | & | \\ a_{n1} & a_{n2} \dots a_{nn} \end{bmatrix}$$

The $n \times 1$, solution matrix $X = [x_1, x_2, \dots, x_n]^T$, and the $n \times 1$ constant matrix $B = [b_1, b_2, \dots, b_n]^T$.

[D.U. 2017]

consider AX = B

Then After Gaussian elimination, the system convert as

Where
$$u = \begin{bmatrix} u_{11} & u_{12} \dots & u_{1n} \\ u_{22} & \dots & u_{2n} \\ & & | \\ \dots & \dots & \dots & u_{nn} \end{bmatrix}$$
 is the coefficient matrix of the equivalent system,

and $g = \begin{vmatrix} g_1 \\ g_2 \\ | \\ g \end{vmatrix}$ be the $n \times 1$ equivalent constant matrix.

The following table states the operation count from going from A to U at each step as

Step Number	Additional subtraction	Number of multiplications	Divisions
1.	$(n-1)^2$	$(n-1)^2$	n-1
2.	$(n-2)^2$	$(n-2)^2$	n-2
-		1	
$\frac{1}{n-2}$: 4	4	2
n-1	i 🔹	i	1

Therefore

Total number of Addition/Subtraction = $\sum (n-1)^2 = \frac{n(n-1)(2n-1)}{6}$

Total number of Multiplication/Divisions = $\sum (n-1)^2 + \sum (n-1) = \frac{n(n-1)(2n-1)}{6} + \frac{n(n-1)}{2} = \frac{n(n^2-1)}{3}$

Now we count the Number of Addition/Subtraction and the Number of Multiplication/divisions in going from $b \rightarrow g$, we have

Total Number of Addition/Subtraction =
$$\sum (n-1) = \frac{n(n-1)}{2}$$

Total Number of Multiplication/divisions = $\sum (n-1) = \frac{n(n-1)}{2}$

Lastly, we count the Number of Addition/Subtraction and Multiplications/divisions for finding the solution from the back substitution method, as

Total Number of addition/subtraction = $\sum (n-1) = \frac{n(n-1)}{2}$

Total Number of Multiplication/division = $\sum n = \frac{n(n+1)}{2}$

Therefore, the total number of operations to obtain the solution of a system of n linear equations in n variables using Gaussian - elimination method is

Total Number of additions/subtraction = $\frac{n(n-1)(2n-1)}{6} + \frac{n(n-1)}{2} + \frac{n(n-1)}{2} = \frac{n(n-1)(2n+5)}{6}$

Total number of multiplication /divisions to obtain solution is

$$=\frac{n(n^{2}-1)}{3}+\frac{n(n-1)}{2}+\frac{n(n+1)}{2}=\frac{n(n^{2}+3n+1)}{3}$$

Therefore total number of Arithmetic operations are

$$= \frac{n(n-1)(2n+5)}{6} + \frac{n(n^2+3n-1)}{3}$$
$$= \frac{4n^3+9n^2-7n}{6} = \frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n$$
$$= \frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n$$

Total number of operation are

Hence option (c) is correct

27. If
$$\begin{pmatrix} 1 & 4 & 3 \\ 2 & 7 & 9 \\ 5 & 8 & a \end{pmatrix} = \begin{bmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & -53 \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix}$$
, then the value of a is [GATE-2008]
(a) -2 (b) -1 (c) 1 (d) 2
(a) -2 (b) -1 (c) 1 (d) 2
Soln. $\begin{pmatrix} 1 & 4 & 3 \\ 2 & 7 & 9 \\ 5 & 8 & a \end{pmatrix} = \begin{bmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & -53 \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \ell_{11} & \ell_{11}u_{12} & \ell_{11}u_{13} \\ \ell_{21} & \ell_{11}u_{12} + \ell_{22} & \ell_{21}u_{13} + \ell_{22}u_{23} \\ \ell_{31} & \ell_{31}u_{12} + \ell_{32} & \ell_{31}u_{13} + \ell_{32}u_{23} - 53 \end{bmatrix}$
Comparing both sides, we have
 $\ell_{11} = 1, \ell_{21} = 2, \ell_{31} = 5, \ell_{11}u_{12} = 4$ implies $u_{12} = 4$
 $\ell_{11}u_{13} = 3$ implies $u_{13} = 3, \ell_{21}u_{12} + \ell_{22} = 7$ implies $8 + \ell_{22} = 7$ i.e. $\ell_{22} = -1$
 $\ell_{21}u_{13} + \ell_{22}u_{23} = 9$ implies $6 - u_{23} = 9$ i.e. $u_{23} = -3$
 $\ell_{31}u_{12} + \ell_{32} = 8$ implies $20 + \ell_{32} = 8$ i.e. $\ell_{32} = -12$
Now, $\ell_{31}u_{13} + \ell_{32}u_{23} - 53 = a$ implies $15 + 36 - 53 = a$ i.e. $a = -2$
Option (a) is correct

4

Interpolation by Polynomials

Suppose that a function f(x) is not defined explicitly, but its value at some finite number of points $\{x_i, i=1,2,...,n\}$ is given. The interest is to find the value of f at some point x lying between x_j and x_k , for some j, k = 1, 2,...,n. This can be obtained by first approximating f by a known function and then finding the value of this approximate function at the point x. Such a process is called the interpolation.

Lagrange Interpolation:

The basic interpolation problem can be posed in one of two ways:

- **I.** Given a set of nodes $\{x_i / i = 0, 1, ..., n\}$ and corresponding date values $\{y_i / i = 0, 1, ..., n\}$. Find the polynomial
- $p_n(x)$ of degree less than or equal to *n*, such that $p_n(x_i) = y_i$, i = 0, 1, ..., n

II. Given a set of nodes $\{x_i / i = 0, 1, ..., n\}$ and a continuous function f(x). Find the polynomial $p_n(x)$ of degree less than or equal to n, such that $p_n(x_i) = f(x_i), i = 0, 1, ..., n$

Note that in the first problem we are trying to fit a polynomial to the data, and in the second case, we are trying to approximate a given function with the interpolating polynomial. Note that the first problem can be viewed as a particular case of the second.

Theorem (Lagrange Interpolation Formula)

Let $x_0, x_1, \dots, x_n \in I = [a, b]$ be n + 1 distinct nodes and let f(x) be a continuous real-valued function defined on I. Then, there exists a unique polynomial p_n of degree $\leq n$ (called Lagrange Formula for interploting Polynomial), given by

$$p_n(x) = \sum_{k=0}^n f(x_k) l_k(x)$$
 where $l_k(x) = \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}, k = 0, ..., n$

such that $p_n(x_i) = f(x_i), i = 0, 1, ..., n$

The function $l_k(x)$ is called the **Lagrange Multiplier.**

Newton Interpolation and Divided Differences

We have seen that in the Lagrange formula of interpolating polynomial for a function, if we decide toadd a point to the set of nodes to increase the accuracy, we have to completely recompute all of the $l_i(x)$ functions. In other words, we cannot express P_{n+1} in terms of p_n , using Lagrange formula. An alternate form of the polynomial, known as the Newton form, avoids this problem, and allows us to easily write P_{n+1} in terms of P_n .

The idea behind the Newton formula of the interploting polynomial is to write $P_n(x)$ in the form (called Newton form)

