(b) $(z-3) \sin \left(\frac{1}{z+2}\right)=(z-3)\left[\frac{1}{z+2}-\frac{1}{(z+2)^{3} \cdot 3!}+\frac{1}{(z+2)^{5} \cdot 5!}-\ldots \ldots \ldots.\right]$
so, $\mathrm{z}=-2$ is an isolated essential singular point.

5.6 Residue of a Complex Function

Residue at a pole:

Let, $\mathrm{z}=\mathrm{a}$ be a pole of order ' m ' of $\mathrm{f}(\mathrm{z})$ and C_{1} is a circle of radius ' r ' with center at $\mathrm{z}=\mathrm{a}$ which does not contain singularities except $\mathrm{z}=\mathrm{a}$, then $\mathrm{f}(\mathrm{z})$ is analytic within the annular region $\mathrm{r}<|\mathrm{z}-\mathrm{a}|<\mathrm{R}$ can be expanded into Laurrent series within the annulur region as:

Co-efficient b_{1} is known as residue of $\mathrm{f}(\mathrm{z})$ at $\mathrm{z}=$ a i.e. Res. $\mathrm{f}(\mathrm{z}=\mathrm{a})=\mathrm{b}_{1}=\frac{1}{2 \pi i} \oint_{C_{1}} f(z) d z$

Methods of finding residues:

CASE 1: Residue at simple pole:

(a) Method 1: Res. $f(z=a)=\underset{z \rightarrow a}{\operatorname{Lt}}(z-a) f(z)$
(b) Method 2: If $f(z)=\frac{\phi(z)}{\psi(z)}$ where $\psi(a)=0$ but $\phi(a) \neq 0$, then Res. $f(z=a)=\frac{\phi(a)}{\psi^{\prime}(a)}$

CASE 2: Residue at a pole of order ' n ':

(a) Method 1: Res. $\mathrm{f}(\mathrm{z}=\mathrm{a})=\frac{1}{(n-1)!}\left\{\frac{d^{n-1}}{d z^{n-1}}\left[(z-a)^{n} f(z)\right]\right\}_{z=a}$
(b) Method 2: First put $\mathrm{z}-\mathrm{a}=\mathrm{t}$ and expand it into series, then Res. $\mathrm{f}(\mathrm{z}=\mathrm{a})=$ co-efficient of $1 / \mathrm{t}$.

CASE 3: Residue at $z=\infty$:

$$
\text { Res. } f(z=\infty)=\underset{z \rightarrow \infty}{\operatorname{Lt}}[-z f(z)]
$$

Example 30: Find the singular points of the following function and the corresponding residues:
(a) $f(z)=\frac{1-2 z}{z(z-1)(z-2)}$
(b) $f(z)=\frac{z^{2}}{z^{2}+a^{2}}$
(c) $f(z)=z^{2} e^{1 / z}$

Soln: (a) $f(z)=\frac{1-2 z}{z(z-1)(z-2)} \Rightarrow$ Poles : $z=0, z=1, z=2$
Res. $f(z=0)=\underset{z \rightarrow 0}{\operatorname{Lt}}(z-0) f(z)=\underset{z \rightarrow 0}{\operatorname{Lt}} \frac{1-2 z}{(z-1)(z-2)}=\frac{1}{2}$
Res. $f(z=1)=\operatorname{Lt}_{z \rightarrow 1}(z-1) f(z)=\operatorname{Lt}_{z \rightarrow 1} \frac{1-2 z}{z(z-2)}=1$
Res. $f(z=2)=\underset{z \rightarrow 2}{\operatorname{Lt}}(z-2) f(z)=\operatorname{Lt}_{z \rightarrow 2} \frac{1-2 z}{z(z-1)}=-\frac{3}{2}$
(b) $f(z)=\frac{z^{2}}{z^{2}+a^{2}} \Rightarrow$ Poles : $z=i a, z=-i a$

Res. $f(z=i a)=\left(\frac{z^{2}}{2 z}\right)_{z=i a}=\frac{1}{2} i a$; Res. $f(z=-i a)=\left(\frac{z^{2}}{2 z}\right)_{z=-i a}=-\frac{1}{2} i a$
(c) $f(z)=z^{2} e^{1 / z}=z^{2}\left[1+\frac{1}{z}+\frac{1}{z^{2} \cdot 2!}+\frac{1}{z^{3} \cdot 3!}+\ldots \ldots ..\right] \Rightarrow$ Poles : $z=0$

Res. $f(z=0)=$ Coefficient of $\frac{1}{z}=\frac{1}{3!}=\frac{1}{6}$

Example 31: The value of the residue of $\frac{\sin z}{z^{6}}$ is
(a) $-\frac{1}{5!}$
(b) $\frac{1}{5!}$
(c) $\frac{2 \pi i}{5!}$
(d) $-\frac{2 \pi i}{5!}$

Soln: $f(z)=\frac{\sin z}{z^{6}}=\frac{1}{z^{6}}\left[z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\ldots \ldots\right]$ CNDEAWOUR

$$
=\frac{1}{z^{5}}-\frac{1}{3!} \frac{1}{z^{3}}+\frac{1}{5!} \frac{1}{z}-\ldots \ldots .
$$

Residue of $f(z)=$ coefficient of $\left(\frac{1}{z}\right)=\frac{1}{5!}$

Correct option is (b)

5.7 Cauchy Residue Theorem:

If $\mathrm{f}(\mathrm{z}$) in single-valued and analytic inside a simple closed curve ' C , except at a finite number of singular points within C , then

$$
\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=2 \pi \mathrm{i}\left(\text { sum of the residues at poles within ' } \mathrm{C}^{\prime}\right)
$$

Example 32: Evaluate the integral: $\oint_{c} \frac{4-3 z}{z(z-1)(z-3)} d z$ where $|z|=\frac{3}{2}$
Soln: $f(z)=\frac{4-3 z}{z(z-1)(z-3)} \Rightarrow$ Poles : $z=0, z=1, z=3$
But, the given contour is circle centered at the origin and radius $3 / 2$ units.
Therefore, only $\mathrm{z}=0$ and $\mathrm{z}=1$ within the contour.
$I=2 \pi i[\operatorname{Re} s . f(z=0)+\operatorname{Re} s . f(z=1)]=2 \pi i\left[\frac{4}{3}-\frac{1}{2}\right]=\frac{5 \pi i}{3}$
Example 33: Evaluate the integral: $\oint_{C} \frac{e^{2 z}+z^{2}}{(z-1)^{5}} d z$ where $|z|=2$
Soln: $f(z)=\frac{e^{2 z}+z^{2}}{(z-1)^{5}} \Rightarrow$ Poles : $z=1($ order 5)
$I=2 \pi i \times \operatorname{Re} s . f(z=1)=2 \pi i \times \frac{1}{4!} \frac{d^{4}}{d z^{4}}\left[e^{2 z}+z^{2}\right]_{z=1}=2 \pi i \times \frac{2 e^{2}}{3}=\frac{4 \pi i e^{2}}{3}$
Example 34: The value of the integral $\oint_{C} \frac{z^{3}}{z^{2}-5 z+6} d z$, where C is closed contour defined by the equation $2|z|-5=0$, traversed in the anti-clockwise direction, is
(a) $-16 \pi i$
(b) $16 \pi i$
(c) $8 \pi i$
(d) $2 \pi i$

Soln: $f(z)=\frac{z^{3}}{z^{2}-5 z+6}$; Condition of singularity: $z^{2}-5 z+6=0 \Rightarrow z=3,2$ (1st order pole)
Given closed contour: $c: 2|z|-5=0 \Rightarrow|z|=\frac{5}{2}$
Only $\mathrm{z}=2$ i.e. point $(2,0)$ is within ' c '
$\left.\operatorname{Res.f}(z)\right|_{z=2}=\left.(z-2) \frac{z^{3}}{(z-3)(z-2)}\right|_{z=2}=-8$
Given integral: $\mathrm{I}=2 \pi \mathrm{i} \times($ sum of the residues $)=-16 \pi \mathrm{i}$

Correct answer is (a)

Example 35: The value of the integral $\int_{C} z^{10} d z, C$ is the unit circle with the origin as the centre is
(a) 0
(b) $z^{11} / 11$
(c) $2 \pi i z^{11} / 11$
(d) $1 / 1$

Soln: $f(z)=z^{10}$ is analytic in the entire complex argand plane.
So, according to Cauchy integral theorem,

$$
\int_{C} z^{10} d z=0
$$

Correct option is (a)

