NUMBER SYSTEMS

Decimal-Binary Conversion:

A decimal integer number can be converted into its equivalent binary number by dividing the number successively by 2 and keeping a track of the remainder until a quotient of zero is obtained. Taking the remainder in the reverse order we get the binary equivalent.

Example: Convert the decimal number (29) to an equivalent binary number.

Soln.

2	29		(LSB)
2	14	1	
2	7		
2	3		
2	1		
2	1		
	0	1	

Therefore, equivalent binary number corresponding to the decimal number, $(29)_{10}=(11101)_{2}$

Convert decimal fraction to binary fraction:

For decimal fraction the conversion is done by successive multiplication by 2 and recording each time a carry in the integer position. The process is continued untill the fractional part is zero or it starts repeat again.
Example: Convert the decimal fraction, 0.6875 into equivalent binary fraction.

Soln.

Therefore, the equivalent binary fraction $(0.1011)_{2}$
Example: Conver the decimal number (15.25$)_{10}$ into equivalent binary number.

$$
\begin{array}{ll}
0.25 \times 2=0.50 & \text { carry } 0 \\
0.50 \times 2=0.00 & \text { carry } 1 \\
\downarrow
\end{array}
$$

$\therefore \quad(15.25)_{10}=(1111.01)_{2}$

Binary to decimal number:

Any binary number can be easily converted into equivalent decimal number using the weights assigned to each bit position.

Example: Convert the binary number (101101) into its equivalent decimal number.
Soln. $(101101)_{2}=1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$

$$
=32+0+8+4+0+1=(45)_{10}
$$

Example: Convert the binary number (0.0101)2 into its equivalent decimal number.
Soln. $\quad(0.0101)_{2}=0 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4}=0+\frac{1}{4}+0+\frac{1}{16}=0.25+0.0625=(0.3125)_{10}$

Octal number systems:

The octal number system is a base eight system. It use eight digits $0,1,2,3,4,5,6$ and 7 .
Example: Covert (175) ${ }_{10}$ to octal.

Soln.

$\therefore \quad(175)_{10}=(257)_{8}$
Example: Convert (0.22) ${ }_{10}$ to octal number.
Soln. $0.22 \times 8=1.76=0.76$ plus a carry 1 ARE (MSB) ENDEAVOUR
$0.08 \times 8=6.08=0.08$ plus a carry 6

$0.64 \times 8=5.12=0.12$ plus a carry 5
$\therefore \quad(0.22)_{10}=(0.1605 \ldots . .)_{8}$
Note: $(175.22)_{10}=(175)_{10}+(0.22)_{10}=(257)_{8}+(0.1605 \ldots . .)_{8}=(257.1605 \ldots .)_{8}$
Example: Convert (257.5) ${ }_{8}$ into decimal equivalent.
Soln. $\quad(257.5)_{8}=2 \times 8^{2}+5 \times 8^{1}+7 \times 8^{0}+5 \times 8^{-1}$

$$
=128+40+7+0.625=(175.625)_{10}
$$

