Consider hydrogen electrode,

$$
\begin{gathered}
\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{H}_{2} \\
\mathrm{E}_{\mathrm{H}^{+} \mid \mathrm{H}_{2}}=\mathrm{E}_{\mathrm{H}^{+} \mid \mathrm{H}_{2}}^{0}-\frac{0.0591}{\mathrm{n}} \log \frac{\left(\mathrm{P}_{\mathrm{H}_{2}}\right)^{1 / 2}}{\left[\mathrm{H}^{+}\right]}
\end{gathered}
$$

If $\mathrm{P}_{\mathrm{H}_{2}}=1$ bar then,

$$
\mathrm{E}_{\mathrm{H}^{+} \mid \mathrm{H}_{2}}=0-0.0591 \log \frac{1}{\left[\mathrm{H}^{+}\right]}
$$

$$
\mathrm{E}_{\mathrm{H}^{+} \mid \mathrm{H}_{2}}=-0.0591\left\{-\log \left[\mathrm{H}^{+}\right]\right\}
$$

$$
\mathrm{E}_{\mathrm{H}^{+} \mid \mathrm{H}_{2}}=-0.0591 \mathrm{pH}
$$

\rightarrow Quinhydrone Electrode :- $\mathrm{Q}, \mathrm{QH}_{2}, \mathrm{H}^{+} \mid \mathrm{Au}$
 same amount.

$$
\begin{aligned}
& \mathrm{Q}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{QH}_{2} \\
& \mathrm{E}=\mathrm{E}^{0}-\frac{0.0591}{2} \log \frac{\left[\mathrm{QH}_{2}\right]}{[\mathrm{Q}]\left[\mathrm{H}^{+}\right]^{2}} \\
& \mathrm{E}=\mathrm{E}^{0}-\frac{0.0591}{2}\left\{-\log \left[\mathrm{H}^{+}\right]^{2}\right\}\left([\mathrm{Q}]=\left[\mathrm{QH}_{2}\right]\right) \\
& \mathrm{E}=\mathrm{E}^{0}-0.0591 \mathrm{pH} ; \mathrm{E}_{\mathrm{Q}, \mathrm{QH}_{2}, \mathrm{H}^{+} \mid \mathrm{Au}}^{0}=0.6996 \mathrm{~V}
\end{aligned}
$$

Problem: The cell pontential for the following electrochemical system at $25^{\circ} \mathrm{C}$ is:

$$
\mathrm{Al}(\mathrm{~s})\left|\mathrm{Al}^{3+}(0.01 \mathrm{M}) \| \mathrm{Fe}^{2+}(0.1 \mathrm{M})\right| \mathrm{Fe}(\mathrm{~s})
$$

(a) 1.23 V
(b) 1.21 V
(c) 1.22 V
(d) -2.10 V

Given : Standard reduction potential of $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$ is -1.66 V at $25^{\circ} \mathrm{C}$
Standard reduction potential of $\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}$ is -0.44 V at $25^{\circ} \mathrm{C}$
Soln. Net cell reaction :- $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Fe}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Fe}(\mathrm{s})$

$$
\begin{aligned}
\mathrm{E} & =\mathrm{E}_{\text {cell }}^{0}-\frac{0.0591}{6} \log \frac{\left[\mathrm{Al}^{3+}\right]^{2}}{\left[\mathrm{Fe}^{2+}\right]^{3}} \\
& =[-0.44-(-1.66)]-\frac{0.0591}{6} \log \frac{\left(10^{-2}\right)^{2}}{\left(10^{-1}\right)^{3}}
\end{aligned}
$$

$\mathrm{E}=1.22-\frac{0.0591}{6} \log 10^{-1}$
$\mathrm{E}=1.22+\frac{0.0591}{6}=1.229 \simeq 1.23 \mathrm{~V}$

Correct option is (a)

Problem: According to the Nernst equation, the potential of an electrode changes by 59.2 mV whenever the ratio of the oxidized and the reduced species changes by a factor of 10 at $25^{\circ} \mathrm{C}$. What would be the corresponding change in the electrode potential if the experiment is carried out at $30^{\circ} \mathrm{C}$?
(a) 59.2 mV
(b) 71.0 mV
(c) 60.2 mV
(d) None of the above

Soln. $\quad \mathrm{M}^{\mathrm{n}+}+\mathrm{ne}^{-} \longrightarrow \mathrm{M}$
At 298 K ,

$$
\mathrm{E}_{1}=\mathrm{E}^{0}-\frac{0.0591}{\mathrm{n}} \log \frac{[\text { Reduced }]}{[\text { Oxidised }]}
$$

On changing the ratio by factor 10
$\mathrm{E}_{2}=\mathrm{E}^{0}-\frac{0.0591}{\mathrm{n}} \log 10 \frac{[\text { Reduced }]}{[\text { Oxidised] }}$
$=\mathrm{E}^{0}-\frac{0.0591}{\mathrm{n}} \log \frac{\text { [Reduced] }}{\text { (Oxidation) }}-\frac{0.0591}{\mathrm{n}} \log 10$
$\mathrm{E}_{2}=\mathrm{E}_{1}-\frac{0.0591}{\mathrm{n}}$
or $\mathrm{E}_{2}-\mathrm{E}_{1}=\frac{59.1}{\mathrm{n}} \mathrm{mV}$
The case taken in the problem has $\mathrm{n}=1$
$\mathrm{E}_{2}-\mathrm{E}_{1}=59.1 \mathrm{mV}$

Correct option is (c)

Problem: The standard redox potential of water oxidation to dioxygen is -1.23 V ,
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
The redox potential of the same reaction at $\mathrm{pH}=7$ would be :
(a) -0.41 V
(b) -1 V
(c) -0.82 V
(d) -1.64 V

Soln. $2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \quad \mathrm{E}=-1.23 \mathrm{~V}$
$\mathrm{E}=\mathrm{E}^{0}-\frac{0.0591}{\mathrm{n}} \log \left[\mathrm{H}^{+}\right]^{4}$

