The period of rotation is $T=\frac{2 \pi m}{q B}=\frac{2 \times 3.14 \times 1.67 \times 10^{-27}}{1.6 \times 10^{-19} \times 0.3}=21.85 \times 10^{-8} \mathrm{sec}$.
Therefore, pitch of the helix is $p=v_{\|} \times T=\left(2 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)\left(21.85 \times 10^{-8} \mathrm{~s}\right)=43.7 \times 10^{-3} \mathrm{~m}=43.7 \mathrm{~mm}$
Example: In figure shown there exists a uniform magnetic field \vec{B} in the region. Calculate net force on the wire PQ due to the magnetic field.

Soln. Force on the wire is $\vec{F}=\int I d \vec{l} \times \vec{B}$
$=I \int(d x \hat{i}+d y \hat{j}) \times B(-\hat{k})=I B \int(d x \hat{j}-d y \hat{i})$
$=I B\left[\hat{j} \int_{-a}^{+a} d x-\hat{i} \int_{0}^{0} d y\right]=2 I B a \hat{j}$
Example: In the figure shown there exists a non uniform magnetic field $\vec{B}=x \hat{k}$. claculate force on the circular loop shown in figure.
Soln. Magnetic force on the loop is given as

$$
\begin{aligned}
\vec{F} & =\oint I d \vec{l} \times \vec{B} \\
& =I \oint(d x \hat{i}+d y \hat{j}) \times k x \hat{k} \\
& =I k\left[\int x d x(-\hat{j})+\int x d y(\hat{i})\right]=I k\left[-\hat{j} \int_{0}^{0} x d x+\hat{i} \int_{0}^{0} x d y\right] \\
& =I k\left\{-\hat{j}\left[\frac{x^{2}}{2}\right]_{0}^{0}+\hat{i}\left[\int_{0}^{a / 2} \frac{y}{\sqrt{3}} d y+\int_{a / 2}^{0}\left(a-\frac{y}{\sqrt{3}}\right) d y+\int_{a}^{0} 0 d y\right]\right\} \\
& =I k\left\{0+\hat{i}\left[\frac{a^{2}}{8 \sqrt{3}}-\frac{a^{2}}{2}+\frac{a^{2}}{8 \sqrt{3}}\right]=\frac{-I k a^{2}}{4}\left[2-\frac{1}{\sqrt{3}}\right] \hat{i}\right.
\end{aligned}
$$

Example: Find the value of the magnetic field required to maintain non-relativistic protons of energy 1 MeV in a circular orbit of radius 100 mm .
(Given: $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}, e=1.6 \times 10^{-19} \mathrm{C}$
Soln. $\quad \frac{1}{2} m v^{2}=1 \times 10^{6} \times 1.6 \times 10^{-19} J$

$$
\Rightarrow \quad v=\sqrt{\frac{3.2 \times 10^{-13}}{m}}=\sqrt{\frac{3.2 \times 10^{-13}}{1.67 \times 10^{-27}}}=\sqrt{1.91677 \times 10^{14}}=1.384474 \times 10^{7} \mathrm{~m} / \mathrm{sec}
$$

Now, for circular orbit

$$
\begin{aligned}
& q v B=\frac{m v^{2}}{r} \\
& \begin{aligned}
B=\frac{m v}{q r} & =\frac{1.67 \times 10^{-27} \times 1.384474 \times 10^{7}}{1.6 \times 10^{-19} \times 10^{-1}} \\
& =\frac{1.67 \times 1.384474}{1.6}=1.4450 \text { Tesla }
\end{aligned}
\end{aligned}
$$

Example: A particle of mass $1 \times 10^{-26} \mathrm{~kg}$ and charge $+1.6 \times 10^{-19} \mathrm{C}$ travelling with a velocity $1.28 \times 10^{6} \mathrm{~m} /$ s in the $+x$-direction enters a region in which a uniform electric field E and a uniform magnetic field of induction B are present such that $E_{x}=E_{y}=0, E_{z}=102.4 \mathrm{kV} / \mathrm{m}$ and $B_{x}=B_{z}=0, B_{y}=8 \times 10^{-2} \mathrm{~Wb} \mathrm{~m}^{-2}$. The particle enters this region at the origin at time $t=0$. Determine the location x, y and z coordinates of the particle at $t=5 \times 10^{-6} \mathrm{~s}$. If the electric field is switched off at this instant (with magnetic field still present), what will be the position of the particle at $t=7.45 \times 10^{-6} \mathrm{~s}$?

Soln. Velocity of particle in $+x$-direction $=1.28 \times 10^{6} \mathrm{~m} / \mathrm{sec}$.
$E_{x}=E_{y}=0, E_{z}=102.4 \mathrm{kV} / \mathrm{m}$
$B_{x}=B_{z}=0, B_{y}=8 \times 10^{-2} \mathrm{~Wb} \mathrm{~m}^{-2}$
These are shown in figure
Electric force \vec{F}_{e} on the charge is given by

$$
\begin{array}{rlrl}
\left|\vec{F}_{e}\right| & =q \vec{E}=\left(1.6 \times 10^{-19}\right)\left(102.4 \times 10^{3}\right) & & * \vec{E} \\
& =163.84 \times 10^{-16} \text { along -z-direction } & \text { ENDEAVOUR }
\end{array}
$$

Magnetic force \vec{F}_{m} on the charge is given

$$
\begin{aligned}
\left|\vec{F}_{m}\right| & =q v B \\
& =\left(1.6 \times 10^{-19}\right)\left(1.28 \times 10^{6}\right)\left(8 \times 10^{-2}\right) \\
& =163.84 \times 10^{-16} \text { along }+z \text {-direction }
\end{aligned}
$$

Thus there are two equal, opposite and collinear forces acting on the particle along z-axis. Hence the resultant force on particle is zero. The particle moves thus along the x-axis without deflection.
(a) At time $t=5 \times 10^{-6} \mathrm{~s}$, the distance x travelled by the particle.
$x=v t=\left(1.28 \times 10^{6}\right)\left(5 \times 10^{-6}\right)=6.4 \mathrm{~m}$
Therefore, coordinates of the particle $=(6.4,0,0)$.
(b) When the electric field is switched off, there will be a force 163.84×10^{-16} along $+z$-axis acting on the particle moves in uniform magnetic field and describes a circular path in $x z$-plane as shown in figure. We know that when a particle of mass m and charge q is subjected to a magnetic field B acting perpendicular to it, the particle moves with velocity v in a circular trajectory whose radius r is given by

$$
B q v=m v^{2} / r \text { or } r=\frac{m v}{B q}
$$

