Problem : Consider a monoatomic ideal gas operating in a closed cycle as shown in the P-V diagram given below. The ratio $\frac{P_{1}}{P_{2}}$ is \qquad (upto two place decimal)

(Specify your answer upto two digits after the decimal point)
Soln. For adiabatic process,

$$
P_{2} V_{1}^{\gamma}=P_{1}\left(3 V_{1}\right)^{\gamma}
$$

where, $\gamma=\frac{5}{3}$ (for monoatomic gas)

$$
\therefore \quad \frac{P_{2}}{P_{1}}=3^{\gamma}=3^{5 / 3}
$$

or, $\quad \frac{P_{1}}{P_{2}}=3^{-5 / 3}=0.1602=0.16$ (upto two place decimal)

Correct answer is (0.16)

Problem : A motor car tyre has a pressure of 2 atm at room temperature $27^{\circ} \mathrm{C}$. If the tyre suddenly bursts, find the resulting temperature.
Soln. Given : $P_{1}=2 \mathrm{~atm}, P_{2}=1 \mathrm{~atm}, T_{1}=27^{\circ} \mathrm{C}=27+273=300 \mathrm{~K}, T_{2}=$?
Since the bursting of tyre happens suddenly, the process must be adiabatic and hence, we have

$$
\frac{P_{1}^{\gamma-1}}{T_{1}^{\gamma}}=\frac{P_{2}^{\gamma-1}}{T_{2}^{\gamma}}
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{P_{2}}{P_{1}}\right)^{\gamma-1}=\left(\frac{T_{2}}{T_{1}}\right)^{\gamma} \\
& \Rightarrow\left(\frac{1}{2}\right)^{1.4-1}=\left(\frac{T_{2}}{300}\right)^{1.4} \quad \Rightarrow\left(\frac{1}{2}\right)^{0.4}=\left(\frac{T_{2}}{300}\right)^{1.4}
\end{aligned}
$$

where we have taken the final pressure to be 1 atm .
Solving, we have

$$
\Rightarrow \quad T_{2}=246.1 \mathrm{~K}=-26.9^{\circ} \mathrm{C}
$$

Problem : A quantity of air at $27^{\circ} \mathrm{C}$ and atmospheric pressure is suddenly compressed to half of its original volume.
Find the (i) pressure and (ii) temperature.
Soln. Given $P_{1}=1 \mathrm{~atm}, P_{2}=$?, $\gamma=1.4$

$$
V_{1}=V, V_{2}=V / 2, T_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}, T_{2}=?
$$

For an adiabatic process, $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$
$\Rightarrow \quad P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=1\left(\frac{V}{\frac{V}{2}}\right)=1(2)^{1.4}=2.636 \mathrm{~atm}$
Also, $\quad T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1}$
$\Rightarrow \quad T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=300\left(\frac{V}{\frac{V}{2}}\right)^{1.4-1}=300(2)^{0.4}=395.9 \mathrm{~K}=122.9^{\circ} \mathrm{C}$
Problem : 1 gm molecule of a manoatomic $\left(\gamma=\frac{5}{3}\right)$ perfect gas at $27^{\circ} \mathrm{C}$ adiabatically compressed in reversible process from an initial pressure 1 atmosphere to a final pressure of 50 atmosphere. Calculate the resulting difference in temperature.
Soln. Given: $P=1 \mathrm{~atm}, P_{2}=50 \mathrm{~atm}, T_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}, T_{2}=$?, $\gamma=\frac{5}{3}$
Using $\frac{P_{1}^{\gamma-1}}{T_{1}^{\gamma}}=\frac{P_{2}^{\gamma-1}}{T_{2}^{\gamma}}$ or $\left(\frac{P_{2}}{P_{1}}\right)^{\gamma-1}=\left(\frac{T_{2}}{T_{1}}\right)^{\gamma}$
$\Rightarrow \quad(50)^{\frac{5}{3}-1}=\left(\frac{T_{2}}{300}\right)^{\frac{5}{3}} \Rightarrow 50^{\frac{2}{3}}=\left(\frac{T_{2}}{300}\right)^{\frac{5}{3}}$
$\Rightarrow \quad \frac{2}{3} \log 50=\frac{5}{3} \log T_{2}-\frac{5}{3} \log 300$
$\Rightarrow \quad T_{2}=1434 \mathrm{~K}=1161^{\circ} \mathrm{C}$
The required difference in temperature $=1161^{\circ} \mathrm{C}-27^{\circ} \mathrm{C}=1134^{\circ} \mathrm{C}$.
Problem : Three moles of an ideal monatomic gas occupy a volume of $20 \mathrm{~m}^{3}$ at 300 K . If the gas expands adiabatically to $40 \mathrm{~m}^{3}$ the final pressure is nearest to
(a) $331 \mathrm{~N} / \mathrm{m}^{2}$
(b) $1200 \mathrm{~N} / \mathrm{m}^{2}$
(c) $980 \mathrm{~N} / \mathrm{m}^{2}$
(d) $486 \mathrm{~N} / \mathrm{m}^{2}$
(e) $118 \mathrm{~N} / \mathrm{m}^{2}$

Soln. For an ideal gas, we have

$$
P_{i}=\frac{n R T}{V_{i}}=\frac{3 R \times 300}{20}=374.13 \mathrm{~N} / \mathrm{m}^{2}
$$

Now, for an adiabatic process, we have

$$
\begin{aligned}
P_{f} & =\left(\frac{V_{i}}{V_{f}}\right)^{\gamma} P_{i}, \text { where } \gamma=\frac{5}{3} \text { for monoatomic gas. } \\
\therefore \quad P_{f} & =\frac{374.13}{2^{5 / 3}}=117.84 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Correct option is (e)

