PAPER: IIT-JAM 2021

CHEMISTRY-CY

- 1. Section-A contains 30 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q.1 to Q.10 carries 1 Marks and Q.11 to Q.30 carries 2 Marks each.
- 2. Section-B contains 10 Multiple Select Questions(MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. For each correct answer you will be awarded 2 marks.
- 3. Section-C contains 20 Numerical Answer Type (NAT) questions. From Q.1 to Q.10 carries 1 Mark each and Q.11 to Q.20 carries 2 Marks each. For each NAT type question, the value of answer in between 0 to 9.
- 4. In all sections, questions not attempted will result in zero mark. In Section–A (MCQ), wrong answer will result in negative marks. For all 1 mark questions, 1/3 marks will be deducted for each wrong answer. For all 2 marks questions, 2/3 marks will be deducted for each wrong answer. In Section–B (MSQ),there is no negative and no partial marking provisions. There is no negative marking in Section–C (NAT) as well.

SECTION-A

Multiple Choice Questions (MCQ)

Q.1 – Q.10 carry ONE mark each.

1. Two sets of quantum numbers with the same number of radial nodes are

(a)
$$n = 3$$
; $\ell = 0$; $m_{\ell} = 0$ and $n = 2$; $\ell = 0$; $m_{\ell} = 0$

(b)
$$n = 3$$
; $\ell = 2$; $m_{\ell} = 0$ and $n = 2$; $\ell = 1$; $m_{\ell} = 0$

(c)
$$n = 3$$
; $\ell = 1$; $m_{\ell} = -1$ and $n = 2$; $\ell = 1$; $m_{\ell} = 0$

(d)
$$n = 3$$
; $\ell = 1$; $m_{\ell} = 1$ and $n = 2$; $\ell = 1$; $m_{\ell} = 0$

2. The major product formed in the following reaction is

3. Among the following, the matrices with non-zero determinant are

$$\mathbf{P} : \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{Q} : \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \quad \mathbf{R} : \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 3 & 1 & 3 & 0 \\ 4 & 3 & 1 & 4 \end{bmatrix} \quad \mathbf{S} : \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 2 \\ 3 & 4 & 1 & 3 \\ 4 & 1 & 2 & 4 \end{bmatrix}$$

- (a) P, Q and S
- (b) P, Q and R
- (c) P, R and S
- (d) Q, R and S
- For Na^+ , Mg^{2+} , Al^{3+} and F^- , the ${\bf CORRECT}$ order of ionic radii is 4.
 - (a) $Al^{3+} > Mg^{2+} > Na^+ > F^-$
- (c) $F^- > Na^+ > Mg^{2+} > Al^{3+}$
- $\begin{array}{l} \mbox{(b) } Al^{3+} > Na^{+} > Mg^{2+} > F^{-} \\ \mbox{(d) } Na^{+} > F^{-} > Mg^{2+} > Al^{3+} \end{array}$
- The major product formed in the following reaction is 5.

- The CORRECT order of pK_a for the compound I to IV in water at 298 K is 6.
 - $HCo(CO)_3(PPh_3)$ $HCo(CO)_3(P(OPh)_3)$ $HCo(CO)_2(PPh_3)_2$ HCo(CO)
 - (a) I > II > III > IV
- (b) IV > III > II > I
- (c) IV > II > III > I
- (d) I > III > II > IV
- Spin-only magnetic moments (in BM) of $\left[\text{NiCl}_2 \left(\text{PPh}_3 \right)_2 \right]$ and $\left[\text{Mn} \left(\text{NCS} \right)_6 \right]^{4-}$, respectively 7.
 - (a) 0.00 and 1.89
- (b) 2.83 and 1.89
- (c) 2.83 and 5.92
- (d) 0.00 and 5.92
- A pure substance M has lesser density in solid state than in liquid state. The ΔS_{fusion} of M is +25 J K⁻ 8. ¹ mol⁻¹. The CORRECT representative Pressure-Temperature diagram for the fusion of M is

9. The major product formed in the following reaction is

$$(a) \qquad \qquad (b) \qquad (c) \qquad (d) \qquad (c) \qquad (d) \qquad (d$$

CN
10. A compound shows ¹H NMR peaks at δ-values (in ppm) 7.31 (2H), 7.21 (2H), 4.5 (2H) and 2.3 (3H). The structure of the compound is

$$(a) \qquad \qquad (b) \qquad \qquad (c) \qquad \qquad (d) \qquad \qquad Me$$

Q.11 - Q.30 carry TWO marks each.

11. For $\alpha > 0$, the value of the integral $\int_{0}^{+\infty} xe^{-\alpha x^2} dx$ is

(a) 0 (b)
$$\sqrt{\frac{\pi}{\alpha}}$$
 (c) ∞

12. The major product formed in the following reaction is

$$(a) \qquad \qquad (b) \qquad (b) \qquad (b) \qquad (c) \qquad (d) \qquad (d$$

$$(c) \begin{picture}(c){c} \begin{picture}($$

13. The products P, Q, R and S formed in the following reactions are

OH
$$\frac{1. \text{ HBr}}{2. \text{ CuCN}}$$
 $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{2. \text{ CuCN}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{2. \text{ CuCN}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. HCl}}$ $\frac{1. \text{ HBr}}{3. \text{ Conc. HCl}}$ $\frac{2. \text{ CuCN}}{3. \text{ Conc. Hcl}}$ $\frac{2. \text{ C$

- 14. Reaction of BCl₃ with NH₄Cl at 140°C produces compound P. Further, P reacts with NaBH₄ to give a colorless liquid Q. The reaction of Q with H₂O at 100°C produces compound R and a diatomic gas S. Among the following, the CORRECT statement is
 - (a) S is Cl₂
- (b) P is $B_3N_3H_6$
- (c) R is $[B(OH)NH]_3$ (d) Q is $[BCINH]_3$
- 15. The reaction that produces the following as a major product is

(a)
$$H_3CO$$

$$CHO$$

$$+$$

$$Ph_3P$$

$$t-BuOK$$

16. The major products **E** and **F** formed in the following reactions are

17. For the consecutive reaction,

$$X \xrightarrow{k_X} Y \xrightarrow{k_Y} Z$$

 C_0 is the initial concentration of X. The concentrations of X, Y and Z at time t are C_X , C_Y and C_Z , respectively. The expression for the concentration of Y at time t is

(a)
$$\frac{k_X C_0}{k_Y - k_X} \left(e^{-k_Y t} - e^{-k_X t} \right)$$

(b)
$$\frac{k_X C_X}{k_Y - k_Y} \left(e^{-k_X t} - e^{-k_Y t} \right)$$

(c)
$$\frac{k_{X}C_{X}}{k_{Y}-k_{X}} \left(e^{-k_{Y}t}-e^{-k_{X}t}\right)$$

(d)
$$\frac{k_x C_0}{k_y - k_y} \left(e^{-k_x t} - e^{-k_y t} \right)$$

18. The complex that does **NOT** obey the 18-electron rule is (Given: Atomic number of Ti, Mn, Ta and Ir are 22, 25, 73 and 77, respectively)

(a)
$$\left[\left(\eta^5 - C_5 H_5 \right) Ti \left(CO \right)_4 \right]^{-1}$$

(b)
$$\left[\left(\eta^5 - C_5 H_5\right) \operatorname{Ir}\left(CH_2\right) \left(PMe_3\right)\right]$$

(c)
$$\left[\text{TaCl}_3 \left(\text{PEt}_3 \right)_2 \left(\text{CHCMe}_3 \right) \right]$$

(d)
$$\left[\text{Mn} \left(\text{SnPh}_3 \right)_2 \left(\text{CO} \right)_4 \right]^{-}$$

- 19. The CORRECT statement regarding the molecules BF₃ and CH₄ is
 - (a) Both BF₃ and CH₄ are microwave active
 - (b) Both BF₃ and CH₄ are infrared active
 - (c) BF₃ is microwave active and infrared active
 - (d) CH₄ is microwave active and infrared inactive
- 20. The decreasing order of C=C bond length in the following complexes is

$$(\mathbf{I}) \left[\text{Cl}_3 \text{Pt} \left(\text{CH}_2 = \text{CH}_2 \right) \right]^{-1}$$

$$(\mathbf{II}) \left\lceil \mathrm{Cl}_{3} \mathrm{Pt} \left(\mathrm{C} \left(\mathrm{CN} \right)_{2} = \mathrm{C} \left(\mathrm{CN} \right)_{2} \right) \right\rceil^{-1}$$

$$(III)$$
 $Cl_3Pt(CF_2 = CH_2)$

$$(IV) \lceil Cl_3 Pt (CF_2 = CF_2) \rceil^{-1}$$

(a)
$$IV > II > I > III$$

(b)
$$II > IV > III > I$$

(c)
$$IV > II > III > I$$
 (d) $II > III > IV > I$

(d)
$$II > III > IV > I$$

21. The volume correction factor for a non-ideal gas in terms of critical pressure (p_c) , critical molar volume (V_c) , critical temperature (T_c) and gas constant (R) is

(a)
$$\frac{8p_cV_c}{3T}$$

(b)
$$3p_cV_c^2$$

(b)
$$3p_c V_c^2$$
 (c) $\frac{27R^2T_c^2}{64p_c}$ (d) $\frac{RT_c}{8p_c}$

(d)
$$\frac{RT_c}{8p_c}$$

22. Half-life $(t_{1/2})$ of a chemical reaction varies with the initial concentration of reactant (A_0) as given below:

$A_o \left(\operatorname{mol} \operatorname{L}^{-1} \right)$	5×10 ⁻²	4×10 ⁻²	3×10 ⁻²
$t_{1/2}(s)$	360	450	600

The order of the reaction is

- (a) 0
- (b) 1

- (c)3
- (d) 2

23. In the following reaction, compound Q is

24. Monochromatic X-rays having energy 2.8×10⁻¹⁵ J diffracted (first order) from (200) plane of a cubic crystal at an angle 8.5°. The length of unit cell in Å of the crystal (rounded off to one decimal place) is

(Given: Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}, c = 3.0 \times 10^8 \text{ ms}^{-1}$)

- (a) 2.4
- (b) 4.8
- (c) 9 8
- (d) 3.4
- 25. The CORRECT combination for metalloenzymes given in **Column-I** with their catalytic reactions in **Column-II** is

Column-I

Column-II

(I) Cytochrome P-450

(K) $2H_2O_2 \longrightarrow 2H_2O + O_2$

(II) Catalase

(L) $R-CH_2OH + O_2 \longrightarrow R-CHO + H_2O$ (R=alkyl or aryl)

(III) Galactose oxidase

(M) $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$

(IV) Cytochrome c oxidase

(N) $R - H + O_2 + 2e^- + 2H^+ \longrightarrow R - OH + H_2O$ (R = alkyl or aryl)

(a) (I)-(N); (II)-(K); (III)-(L); (IV)-(M)

(b) (I)-(M); (II)-(N); (III)-(K); (IV)-(L)

(b) (I)-(N); (II)-(L); (III)-(K); (IV)-(M)

- (d) (I)-(M); (II)-(K); (III)-(L); (IV)-(N)
- 26. Hybridization of central atoms in I₃-, ClF₃ abd SF₄, respectively, are
 - (a) sp, sp^3d and dsp^2

(b) sp^3d , sp^3d and sp^3d

(c) sp^3d , sp^2 and dsp^2

- (d) sp, sp^2 and sp^3d
- 27. According to the crystal field theory, d-d transition observed in $\left[\operatorname{Ti}(H_2O)_6\right]^{3+}$ is
 - (a) Laporte allowed and spin allowed
- (b) Laporte forbidden and spin forbidden
- (c) Laporte forbidden and spin allowed
- (d) Laporte allowed and spin forbidden
- 28. The major product formed in the following reaction is

$$(d) \xrightarrow{\mathsf{OH}}_{\mathsf{Me}}^{\mathsf{OH}}$$

29. Reaction of $\left[\operatorname{Ni}\left(\operatorname{CN}\right)_{4}\right]^{2-}$ with metallic potassium in liquid ammonia at -33 °C yields complex **E**.

The geometry and magnetic behaviour of **E**, respectively, are

- (a) Octahedral and paramagnetic
- (b) Tetrahedral and diamagnetic
- (c) Square planar and diamagnetic
- (d) Square pyramidal and paramagnetic
- 30. The major product formed in the following reaction sequence is

SECTION-B

Multiple Select Questions (MSQ)

Q.1 - Q.10 carry TWO marks each.

1. Among the following, the anti-aromatic compound(s) is(are)

- 2. The pigment responsible for red color in tomato has one functional group. The CORRECT statement(s) about this functional group is/are
 - (a) It gives positive silver mirror test
 - (b) It gives hydrazone derivative on reaction with 2, 4-dinitrophenylhydrazine
 - (c) It decolorizes bromine water
 - (d) It gets cleaved on reaction with ozone
- 3. Hantzsch pyridine synthesis involves several steps. Some of those are
 - (a) Michael addition (b) Darzens reaction (c) Mannich reaction (d) Aldol reaction
- 4. The functional group(s) in reducing sugar that tests positive with Tollen's reagent is/are
 - (a) Aldehyde
- (b) Ketone
- (c) Acetal
- (d) Hemi-acetal
- 5. The CORRECT statement(s) about sodium nitroprusside is/are
 - (a) Nitroprusside ion is formed in the brown ring test for nitrates
 - (b) It is a paramagnetic complex
 - (c) It is used for the detection of S^{2-} in aqueous solution
 - (d) It contains nitrosyl ligand as NO⁺
- 6. The product (P) and (Q) formed in the reaction are

- 7. The complex(es) that show(s) Jahn-Teller distortion is/are
 - (a) $\left[\text{Co}(\text{CN})_5 (\text{H}_2\text{O}) \right]^{3-}$

(b) $\left[\text{NiF}_6 \right]^2$

(c) $\left[Mn(CNMe)_{\epsilon} \right]^{2+}$

- (d) $\left[\text{Co(en)}_2 \, \text{F}_2 \, \right]$
- 8. The CORRECT statement(s) about the species is/are
 - (a) BH and CH are isolobal and isoelectronic
 - (b) CH₂⁻ and NH₂ are isolobal and isoelectronic
 - (c) CH₃ and Mn(ČO)₅ are isolobal
 - (d) CpMo(CO)₃ and CpW(CO)₃ are isoelectronic (where Cp is cyclopentadienyl)
- 9. The compound(s), which give(s) benzoic acid on oxidation with $KMnO_4$ is(are)

10. The CORRECT Maxwell relation(s) derived from the fundamental equations of thermodynamics is/

(a)
$$\left(\frac{\partial T}{\partial V}\right)_{S} = \left(\frac{\partial p}{\partial S}\right)_{V}$$

(a)
$$\left(\frac{\partial T}{\partial V}\right)_{S} = \left(\frac{\partial p}{\partial S}\right)_{V}$$
 (b) $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{V}$ (c) $\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}$ (d) $\left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p}$

(c)
$$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{I}$$

(d)
$$\left(\frac{\partial S}{\partial p}\right)_T = -\left(\frac{\partial V}{\partial T}\right)$$

SECTION-C

Numerical Answer Type (NAT)

Q.1 – Q.10 carry ONE mark each.

If the root mean square speed of hydrogen gas at a particular temperature is 1900 m s⁻¹, then the root mean square speed of nitrogen gas at the same temperature, in m s⁻¹ (Rounded off to the nearest integer), is _____

(Given: atomic mass of H is 1 g mol⁻¹, atomic mass of N is 14 g mol⁻¹)

For the following fusion reaction, 2.

$$4^{1}H \longrightarrow {}^{4}He + 2\beta^{+} + 2\nu + \gamma$$

the Q-value (energy of the reaction) in MeV (Rounded off to one decimal place) is _____ (Given: Mass of ¹H nucleus is 1.007825 u and mass of ⁴He nucleus is 4.002604u)

Adsorption of a toxic gas on 1.0 g activated charcoal is 0.75 cm³ both at 2.5 atm, 140 K and at 3. 30.0 atm. 280 K. The isosteric enthalpy for adsorption of the gas in kJ mol⁻¹ (Rounded off to two decimal places) is _____

(Given: $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)

MgO crystallizes as rock salt structure with unit cell length 2.12 Å. From electrostatic model, the 4. calcualted lattice energy in kJ mol⁻¹ (rounded off to the nearest integer) is __

(Given: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$; Madelung constant = 1.748; $\epsilon_0 = 8.854 \times 10^{-12} \text{ J}^{-1}\text{C}^2\text{m}^{-1}$; Charge of an electron = 1.602×10^{-19} C).

5. Among the following, the total number of terpenes (terpenoids) is

The total number of microstates possible for a d⁸ electronic configuration is ____ 6.

- 7. The total number of optically active isomers of dichloridobis (glycinato) cobaltate (III) ion is
- 8. The dissociation constant of a weak monoprotic acid is 1.6×10^{-5} and its molar conductance at infinite dilution is 360.5×10^{-4} mho m² mol⁻¹. For 0.01 M solution of this acid, the specific conductance is $n\times10^{-2}$ mho m⁻¹. The value of n (rounded off to two decimal places) is
- 9. Calcium crystallizes in fcc lattice of unit cell length 5.56 Å and density 1.4848 g cm⁻³. The percentage of Schottky defects (rounded off to one decimal place) in the crystal is ______
 (Given: Atomic mass of Ca is 40 g mol⁻¹; N_A = 6.022×10²³ mol⁻¹)
- 10. A buffer solution is prepared by mixing 0.3 M NH_3 and 0.1 M NH_4NO_3 . If K_b of NH_3 is $1.6\times10^-$ s at 25°C, then the pH (rounded off to one decimal place) of the buffer solution at 25°C is

Q.11 - Q.20 carry TWO marks each.

- 11. A dolute solution prepared by dissolving a non-volatile solute in one liter water shows a depression in freezing point of 0.186 K. This solute neither dissociates nor associates in water. The boiling point of the solution in K (rounded off to three decimal places) is ______ (Given: For pure water, boiling point = 373.15 K; cryoscopic constant = 1.86 K (mol kg⁻¹)⁻¹; ebullioscopic constant = 0.51 K (mol kg⁻¹)⁻¹)
- 12. The intensity of a monochromatic visible light is reduced by 90 % due to absorption on passing through a 5.0 mM solution of a compound. If the path length is 4 cm, then the molar extinction coefficient of the compound in M⁻¹ cm⁻¹ is ______
- 13. The thermodynamic data at 298K for the decomposition reaction of limestone at equilibrium is given below.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

Thermodynamic quantity	CaCO ₃ (s)	CaO(s)	$CO_2(g)$
$\mu^0 \left(kJ \text{ mol}^{-1} \right)$	-1128.8	-604.0	-394.4
$\Delta H_{\rm f}^0 \left({ m kJ \ mol^{-1}} ight)$	-1206.9	-635.1	-393.5

The partial pressure of $CO_2(g)$ in atm evolved on heating limestone (rounded off to two decimal places) at 1200 K is _____ (Given: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

14. For the reaction,

$$Q + R \xrightarrow{k_1 \atop k_{-1}} X \xrightarrow{k_2} P$$

 $k_{_1}=2.5\times 10^5~Lmol^{_{-1}}s^{_{-1}},\,k_{_{-1}}=1.0\times 10^4~s^{_{-1}}~and~k_{_2}=10~s^{_{-1}}~.~Under~steady~state~approximation,~the~rate~constant~for~the~overall~reaction~in~L~mol^{_{-1}}~s^{_{-1}}~(rounded~off~to~the~nearest~integer)~is~$

- The mean ionic activity coefficient of 0.004 molal CaCl₂ in water at 298 K (rounded off to three decimal places) is ______
 (Given: Debye-Huckel constant for an aqueous solution at 298 K is 0.509 kg^{1/2} mol^{-1/2})
- 16. If the crystal field splitting energy of $\left[\text{Co}\left(\text{NH}_{3}\right)_{4}\right]^{2+}$ is 5900 cm⁻¹, then the magnitude of its crystal field stabilization energy, in kJ mol⁻¹ (rounded off to one decimal place) is ______
- 17. A salt mixture (1.0 g) contains 25 wt% of MgSO₄ and 75 wt% of M₂SO₄. Aqueous solution of this salt mixture on treating with excess BaCl₂ solution results in the precipitation of 1.49 g of BaSO₄. The atomic mass of M in g mol⁻¹ (rounded off to two decimal places) is _____ (Given: the atomic masses of Mg, S, O, Ba and Cl are 24.31, 32.06, 16.00, 137.33 and 35.45 g mol⁻¹, respectively).
- 18. The surface tension (γ) of a solution, prepared by mixing 0.02 mol of an organic acid in 1L of pure water, is represented as

$$\gamma^* - \gamma = A \log(1 + Bc)$$

 γ^* is the surface tension of pure water, A = 0.03 N m⁻¹, B = 50 mol⁻¹ L and c is concentration in mol L⁻¹. The excess concentration of the organic acid at the surface of the liquid, determined by Gibbs adsorption equation at 300 K is n×10⁻⁶ mol m⁻². The value of n (rounded off to two decimal places) is_______(Given: R = 8.314 JK⁻¹ mol⁻¹)

- 19. The separation of energy levels in the rotational spectrum of CO is $3.8626 \, \mathrm{cm^{-1}}$. The bond length (assume it does not change during rotation) of CO in Å (rounded off to two decimal places) is _____ (Given: Planck's constant h = $6.626 \times 10^{-34} \, \mathrm{Js}$; N_A = $6.022 \times 10^{23} \, \mathrm{mol^{-1}}$; atomic mass of C is 12 g mol⁻¹, atomic mass of O is 16 g mol⁻¹; $c = 3 \times 10^8 \, \mathrm{ms^{-1}}$)
- 20. For the molecule,

$$CH_3 - CH = CH - CH(OH) - CH = CH - CH = C(CH_3)_2$$

the number of all possible stereoisomers is _____