IIT-JAM CHEMISTRY 2023 TEST: ATOMIC STRUCTURE

Time 00: 60 Hour Date: 31-10-2022

M.M.: 35

INSTRUCTION:

1. Attempt all the questions.

- 2. PART-A contains 10 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q.1 to Q.5 carries 1 Mark and Q.6 to Q.10 carries 2 Marks each.
- PART-B contains 05 Multiple Select Questions(MSQ). Each question has 4 choices (a), (b), (c) 3. and (d) for its answer, out of which ONE or MORE than ONE is/are correct. For each correct answer you will be awarded 2 marks.
- PART-C contains 06 Numerical Answer Type (NAT) questions. Q.16 to Q.17 carry 1 Mark and 4. Q.18 to Q.21 carries 2 Marks each. The answer of each (NAT) is a real number.
- 5. In all Parts, questions not attempted will result in zero mark. In PART-A (MCQ), wrong answer will result in negative marks. For all 1 mark questions, 1/3 marks will be deducted for each wrong answer. For all 2 marks questions, 2/3 marks will be deducted for each wrong answer. In PART-B (MSQ), there is no negative and no partial marking provisions. There is no negative marking in Section-C (NAT) as well.

PART-A

Q.1 to Q.05: Carry 1 Mark each.

1	. (Commutator	of the	operators	$5P_z$	and $10z$ is	;
---	-----	------------	--------	-----------	--------	--------------	---

(a)
$$50 i\hbar$$

(b)
$$-50 i\hbar$$

(c)
$$-15 i\hbar$$

(d)
$$-i\hbar$$

2. Wavefunction associated with ground state for a particle along x-direction in one dimentional box having length $-\ell$ to $+\ell$.

(a)
$$\psi = \sqrt{\frac{2}{\ell}} \cos \frac{\pi x}{\ell}$$

(b)
$$\psi = \sqrt{\frac{2}{\ell}} \sin \frac{\pi x}{\ell}$$

(c)
$$\psi = \sqrt{\frac{1}{\ell}} \sin \frac{\pi x}{2\ell}$$

(a)
$$\psi = \sqrt{\frac{2}{\ell}} \cos \frac{\pi x}{\ell}$$
 (b) $\psi = \sqrt{\frac{2}{\ell}} \sin \frac{\pi x}{\ell}$ (c) $\psi = \sqrt{\frac{1}{\ell}} \sin \frac{\pi x}{2\ell}$ (d) $\psi = \sqrt{\frac{1}{\ell}} \cos \frac{\pi x}{2\ell}$

3. If the electron were spin 1 particles, instead of spin ½, then the number of electrons that can be accommodated in a level are

(a) 4

(b) 3

(c)2

(d) 1

The de-Broglie wavelength of a particle of mass m, energy E and velocity v is 4.

(a)
$$\frac{h}{\sqrt{2mE}}$$

(b) $\frac{\hbar}{m}$

(c)
$$\frac{\sqrt{2mE}}{h}$$

(d)
$$\frac{mv}{h}$$

5. Velocity of electron associated with 3rd Bohr's orbit of hydrogen atom

(a)
$$\frac{\hbar}{3ma_0}$$

(b)
$$\frac{ma_0}{3\hbar}$$

(c)
$$\frac{27 \, h}{ma_0}$$

(d)
$$\frac{ma_0}{27\hbar}$$

Q.6 to Q.10: Carry 2 Marks each.

The kinetic energy of a particle described by the wavefunction e^{-ikx} is 6.

(a)
$$-\frac{h^2}{8\pi^2m} \cdot k^2$$

(c)
$$\frac{h^2}{8\pi^2 m} \cdot k^2$$
 (d) k^2

Benzene π -electrons are considered as particle in 2D-square box of infinite potential barrier having length ℓ . 7. The energy associated with the lowest energy transition is

(a)
$$\frac{2h^2}{8m\ell^2}$$

(b)
$$\frac{5h^2}{8m\ell^2}$$
 (c) $\frac{3h^2}{8m\ell^2}$ (d) $\frac{h^2}{8m\ell^2}$

(c)
$$\frac{3h^2}{8m\ell^2}$$

(d)
$$\frac{h^2}{8m\ell^2}$$

What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition (i.e. 8. $n_1 = 4$ to $n_2 = 2$) of He⁺ spectrum?

(a)
$$n_1 = 4$$
 to $n_2 = 2$

(b)
$$n_1 = 4$$
 to $n_2 = 1$

(c)
$$n_1 = 2$$
 to $n_2 = 1$

(a)
$$n_1 = 4$$
 to $n_2 = 2$ (b) $n_1 = 4$ to $n_2 = 1$ (c) $n_1 = 2$ to $n_2 = 1$ (d) $n_1 = 3$ to $n_2 = 2$

Which of the following electronic transition in hydrogen atom has minimum energy? 9.

(a)
$$n=1 \rightarrow n=2$$

(b)
$$n = 1 \rightarrow n = 10$$

(c)
$$n = 2 \to n = 3$$

(d)
$$n=3 \rightarrow n=5$$

The spin angular momentum of 3p electron is 10.

(a)
$$\frac{\sqrt{3}}{4\pi}h$$

(b) 0

(c)
$$\frac{\sqrt{3}}{2}h$$

(d) $\sqrt{2} h$

PART-B

Q.11 to Q.15: Carry 2 Marks each.

Which of the following functions is(are) quantum mechanically well behaved? 11.

(a)
$$\psi(x) = e^{-\alpha x} (a > 0)$$
 $0 < x$

(b)
$$\psi(x) = \frac{1}{4-x}$$
 1 < x < 10

(a)
$$\psi(x) = e^{-\alpha x} (a > 0)$$
 $0 < x < \alpha$ (b) $\psi(x) = \frac{1}{4 - x}$ $1 < x < 10$
 (c) $\psi(x) = e^{-a|x|}$ $(a > 0)$ $-\infty < x < +\infty$ (d) $\psi(x) = e^{-x^2}$ $-\infty < x < +\infty$

(d)
$$\psi(x) = e^{-x^2}$$
 $-\infty < x < +\infty$

- 12. An electron near the nucleons of an atom is strongly attracted by the nucleus and has/have
 - (a) low potential energy

(b) high kinetic energy

- (c) high potential energy
- CAREER ENDE(d) low velocity
- A particle is placed in a one dimensional box of size L along x-axis (0 < x < L) with potential V(x) = 0. 13. Which of the following statements is/are TRUE.
 - (a) For an arbitrary state $|\psi_n\rangle$, the average location of particle is L/2.
 - (b) In the ground state the particle has exact location L/2
 - (c) In the ground state the probability of finding the particle in the interval (L/4 to L/2) is 41%
 - (d) On moveing in higher state probability distribution become uniform.
- Which of the following statements is/are CORRECT. 14.
 - (a) Both position (\hat{x}) and momentum (\hat{p}) operators commute with their commutator
 - (b) One dimensional square well with infinite potential has infinite number of states
 - (c) For hydrogenic atoms 3s and 3p orbitals are degenerate.
 - (d) Function kx is an eigen function of $\frac{d}{dx}$ operator.

- 15. Which of the following statements is/are **TRUE** for Bohr's theory.
 - (a) When an electron moves from one orbit to another it either radiates or absorbs energy
 - (b) Angular momentum of an electron in particular orbit must be equal to a whole number n of quantum.
 - (c) For an electron to remain in its orbit, electrostatic attraction between electron and the nucleus which tends to pull the electron towards the nucleus must be equal to centrifugal force.
 - (d) For hydrogenic type atoms as atomic number increases electron moves to higher energy orbit.

PART-C

Q.16 to Q.17: Carry 1 Mark each.

- 16. The average value of the radius $\langle r \rangle$ in the 1s state of the hydrogen atom is ______Å. [Given: Bohr's first orbit is 0.529 Å]. (Round off upto three decimal places)
- 17. The electron of a hydrogen atom is in its first Bohr orbit having de-Broglie wavelength of 13.4 Å. The parameter of the orbit is ______Å. (Round off upto one decimal place)

Q.18 to Q.21: Carry 2 Marks each.

- 18. A certain particle carries 2.5×10^{-16} C of static electric charge. The number of electrons associated with this change is _____(Round off to nearest integer)

 [Charge carry by an electron is 1.6×10^{-19} C).
- 19. For the particle in a cubic box, the degree of degeneracy of the energy levels with the value of $\frac{8ma^2E}{h^2}$ as 27 is _____(Round off to nearest integer)
- 20. In an atom, how many electrons can have quantum numbers n = 4, $m_l = 1$, $m_s = 1/2$ _____(Answer shoul be an integer).
- 21. For a particular state hydrogenic radial wavefunction with atomic number Z, is given as

$$R_{n,\ell}(r) = \frac{1}{(243)^{1/2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - \frac{6Zr}{na_0} + \frac{Z^2r^2}{n^2a_0^2}\right) \cdot e^{-\frac{Zr}{na_0}}$$

The number of radial nodes in this orbital will be _____(Answer should be an integer).

IIT-JAM CHEMISTRY 2023 TEST: ATOMIC STRUCTURE

Time 00 : 60 Hour Date : 31-10-2022

M.M.: 35

PART - A

1. (b) 2. (d) 3. (b) 4. (a) 5. (a) 6. (a) 7. (c)

8. (c) 9. (d) 10. (a)

PART - B

11. (c,d) 12. (a,b) 13. (a,c,d) 14. (a,b,c) 15. (a,b,c)

PART - C

16. (0.793 to 0.795) 17. (13.4) 18. (1560 to 1565) 19. (4)

20. (3) 21. (2)

CAREER ENDEAVOUR