IIT-JAM-PHYSICS 2023

Unit Test : Mechanics
Time : 70 Minutes
Date : 24-07-2022
M.M. : 60

Instructions:

- Section-A contains 10 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. For each correct answer you will be awarded $\mathbf{3}$ marks. For each incorrect answered $\mathbf{1}$ mark will be deducted.
- Section-B contains 5 Multiple Select Questions (MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. For each correct answer you will be awarded 3 marks, there is no negative marking in this section.
- \quad Section-C contains 5 Numerical Answer Type (NAT) questions which contain 3 Marks for each, and there is no negative marking.

[SECTION - A - MULTIPLE CHOICE QUESTIONS (MCQ)]

1. A particle is projected over a triangle from one extremity of its horizontal base to the other suchthat the particle goes just over its vertex as shown in the figure below:

If ' θ ' be the angle of projection w.r.t. the horizontal, then $\tan \theta$ is equal to,
(a) $\tan \alpha+\tan \beta$
(b) $(\tan \alpha+\tan \beta)$ $1-\frac{\alpha}{\beta}$
(c) $\frac{1}{2}(\tan \alpha+\tan \beta)$
(d) $(\tan \alpha-\tan \beta)$
2. A ball is thrown up from an incline plane of 45° such that it hits back the incline normally to it (as shown in the figure below).

The value of ' θ ' is,
(a) $\tan ^{-1}(1 / 4)$
(b) $\tan ^{-1}(1 / 2)$
(c) $\cot ^{-1}(1 / 4)$
(d) $\cot ^{-1}(1 / 2)$
3. A spaceship of mass $10^{3} \mathrm{~kg}$ floating in space starts ejecting fuel at a rate of $1 \mathrm{~kg} / \mathrm{s}$ and with a speed of $10 \mathrm{~m} / \mathrm{s}$ w.r.t. itself. The speed of the spaceship after ten minutes will be approximately equal to
(a) $3.12 \mathrm{~m} / \mathrm{s}$
(b) $6.24 \mathrm{~m} / \mathrm{s}$
(c) $9.16 \mathrm{~m} / \mathrm{s}$
(d) $10.45 \mathrm{~m} / \mathrm{s}$
4. Some displacement (s) - time (t) curves for motion in one-dimension are shown below:
(I)

(II)

(III)

(IV)

Which of the graphs denote positive acceleration?
(a) (I) and (III)
(b) (I) and (IV)
(c) (II) and (IV)
(d) (II) and (III)
5. A particle of unit mass is dropped from point A at a height $H=3 \mathrm{~m}$. If the track is frictionless and the radius of the circular part $B C D$ is $r=2 \mathrm{~m}$, then the height upto which it will rise along the circle after crossing B is, ($g=$ $10 \mathrm{~m} / \mathrm{s}^{2}$)

(a) 3 m
(b) 4 m
(c) 2 m
(d) $8 / 3 \mathrm{~m}$
6. A particle of mass 1 kg is thrown vertically upwards with speed $10 \mathrm{~m} / \mathrm{sec}$ from the top a tower which is at a height of 10 m from the ground. Assume that it hits ground along vertically downward direction and the coefficient of restitution is $e=(2 / 3)$. If it keeps on bouncing back and each collision is of $0.1 \sec$ duration, then the force on the floor for first collision is equal to,
(a) $10 \sqrt{3} \mathrm{~N}$
(b) $20 \sqrt{3} \mathrm{~N}$
(c) $100 \sqrt{3} \mathrm{~N}$
(d) $\frac{500}{\sqrt{3}} \mathrm{~N}$
7. A particle with mass $m(t)=m_{0} e^{-\lambda t}$ moving with initial speed v_{0} experiences a resistive force of $F_{d}=-\beta v^{2}$, at $t=0$, where β is a positive constant and ' v ' is the instantaneous speed of the particle. Its speed at $t=\frac{1}{\lambda}$ will be equal to,
(a) $\left[\frac{1}{v_{0}}+\frac{\beta}{m_{0} \lambda}(e-1)\right]^{-1}$
(b) $\left[\frac{1}{e v_{0}}+\frac{\beta}{2 \lambda m_{0}}\left(e-e^{-1}\right)\right]^{-1}$
(c) $\left[\frac{1}{v_{0}}+\frac{\beta}{2 m_{0} \lambda}(1-e)\right]^{-1}$
(d) $\left[\frac{1}{e v_{0}}-\frac{\beta}{2 m_{0} \lambda}\left(e-e^{-1}\right)\right]^{-1}$
8. In figure below, coefficient of friction between block and inclined plane is μ. If $\mathrm{F}=0$, the object accelerates down the plane with acceleration a. What should be the value of F for the object to accelerate downwards with $a / 2$?
(a) $\frac{m g \sin \theta-\mu m g \cos \theta}{2(\mu \sin \theta+\cos \theta)}$
(b) $\frac{2(\mu \sin \theta-\cos \theta)}{m g \sin \theta+\mu m g}$
(c) $\frac{m g \sin \theta+m g \cos \theta}{\mu \sin \theta-\cos \theta}$
(d) $\frac{2(\mu \sin \theta+\cos \theta)}{m g \sin \theta-\mu m g \cos \theta}$

9. A block of mass m is placed on a rough surface with a vertical cross-section of $y=\frac{x^{3}}{6} ;(x \geq 0)$ as shown in the figure below:

If the co-efficient of friction between the block and the surface is 0.5 , then the maximum height above ground at which the block can be placed without slipping is,
(a) $\frac{1}{6}$
(b) $\frac{1}{3}$
(c) $\frac{2}{5}$
(d) $\frac{4}{5}$
10. If \hbar, G, c and k_{B} respectively denote reduced Planck's constant, gravitational constant, speed of light and Boltzmann constant, then Planck's temperature can be expressed as
(a) $\sqrt{\frac{\hbar c^{5}}{k_{B}^{2} G}}$
(b) $\sqrt{\frac{\hbar c^{3}}{k_{B}^{2} G}}$
(c) $\sqrt{\frac{G}{\hbar c^{4} k_{B}^{2}}}$
(d) $\sqrt{\frac{\hbar k_{B}^{2}}{G c^{3}}}$

[SECTION- B - MULTIPLE SELECTIVE QUESTIONS (MSQ)]

11. A truck is moving with a speed of $8 \mathrm{~m} / \mathrm{s}$ and is as wide as the road. A man starts crossing the road when he is at a distance of 4 m from the truck by starting to run at a constant speed ' V ' moving at an angle ' θ ' with the road as shown in the figure below:

Which of the following option(s) is/are correct ?
(a) The necessary speed to cross safely will be minimum for $\theta=\tan ^{-1}(2)$.
(b) The necessary speed to cross safely will be minimum for $\theta=\frac{1}{2} \tan ^{-1}(2)$.
(c) The minimum required speed is $V=3.57 \mathrm{~m} / \mathrm{sec}$.
(d) The minimum required speed is $V=1.79 \mathrm{~m} / \mathrm{sec}$.
12. A constant force F acts on a cart of mass m on which rain starts falling at a rate of ' α ' at $t=0$. If the speed of the system is v_{0} at $t=0$, then which of the following option(s) is/are correct at time t_{0} ?
(a) The impulse imparted by the force is $F t_{0}$.
(b) The impulse imparted by the force is $F t_{0} / 2$.
(c) The speed of the cart becomes $\frac{F t_{0}+m v_{0}}{m+\alpha t_{0}}$.
(d) The speed of the cart becomes $\frac{m v_{0}-F t_{0}}{m+\alpha t_{0}}$.
13. A man of mass ' m ' runs anticlockwise as seen from above in a circular path on the surface of a sphere maintaining a constant height H from the $x-y$ plane. If he starts running from $x-z$ plane and his speed is equal to a constant V, then which of the following statement(s) is/are correct with respect to the (r, θ, ϕ) co-ordinate system?
(a) Its velocity can be expressed as: $\vec{V}=-V \hat{\phi}$
(b) The position of the particle at time ' t ', obeys $\phi(t)=\frac{V t}{\sqrt{R^{2}-H^{2}}}$.
(c) The radius of the circular track is, $\sqrt{R^{2}-H^{2}}$.
(d) The component of weight along \hat{r} is, $\frac{m g H}{R}$.

14. At the moment $t=0$, the force $F=k t$ is applied to a small body of mass m resting on smooth horizontal plane (k is constant). The permanent direction of this force forms an angle θ with the horizontal. Which of the following option(s) is/are correct?

(a) The body will break off the plane at $t=\frac{m g}{k \sin \theta}$.
(b) The velocity of the body at the moment of its breaking off the plane will be $v=\frac{m g^{2}}{2 k}\left(\frac{\cos \theta}{\sin ^{2} \theta}\right)$.
(c) The distance travelled by the body upto the moment of its breaking off the plane will be $s=\frac{m^{2} g^{3} \cos \theta}{6 k^{2} \sin ^{3} \theta}$.
(d) The distance travelled by the body upto the moment of its breaking off the plane will be $s=\frac{m^{2} g^{3} \cos \theta}{3 k^{2} \sin ^{3} \theta}$.
15. A pulley fixed to the ceiling of a lift carries a thread whose ends are attached to the loads of masses 4 kg and 3 kg . The lift starts going down with an acceleration of $a=4 \mathrm{~m} / \mathrm{s}^{2}$ relative to the shaft on the lift. Which of the following option(s) is/are correct ?

(a) The acceleration of the load 4 kg relative to the shaft of the lift is $0.83 \mathrm{~m} / \mathrm{s}^{2}$.
(b) The acceleration of the load 4 kg relative to the lift is $4.83 \mathrm{~m} / \mathrm{s}^{2}$.
(c) The tension in the string connecting the masses to the pulley is 19.89 N .
(d) The tension in the string connecting the masses to the pulley is 9.8 N .

[SECTION - C - NUMERICAL ANSWER TYPE QUESTIONS (NAT)]

16. A small block is connected to one end of two identical massless strings of length $5 / 3 \mathrm{~cm}$ with the other ends fixed to a vertical rod as shown in the figure below:

For a given value of angular velocity ω the ratio of tensions is $T_{1}: T_{2}=4: 1$. ' ω ' is equal to \qquad $\times 10^{-1}$ $\mathrm{rad} / \mathrm{sec}$. $\left[\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right.$] [Answer should be nearest integer]
17. A block is placed on an inclined plane moving towards right with an acceleration $a_{0}=g$, where $A C=5 \mathrm{~m}$ and all surface are smooth.

If a block is placed at C with zero initial speed and the time taken by the block to move from C to A is $\sqrt{\alpha} \sec$, then α is equal to \qquad [$g=10 \mathrm{~m} / \mathrm{s}^{2}$] [Answer should be an integer]
18. A raindrop falling through a cloud accumulates mass at a rate of $k m v$, where $k>0$ and m is the instantaneous mass. If m_{0} is its initial mass and its speed is given by,

$$
v(t)=\sqrt{\frac{g}{k}} \tanh (\sqrt{k g} t)
$$

then the time at which its mass doubles is equal to _(1/ $\sqrt{\mathrm{kg}})$. [Upto two decimal places]
$\left[\right.$ Given: $\int \tanh (x) d x=\ln [\cosh (x)]+c$ and $\left.\cosh ^{-1}(2)=1.317\right]$
19. Considering the figure below, the maximum value of F that can be applied without the upper block sliding is
\qquad N . [Answer should be an integer]

20. The speed of a particle moving along a circle of radius 1 m is given by $v(t)=\left(\alpha t^{2}+2\right) \mathrm{m} / \mathrm{sec}$, where $\alpha=2 \mathrm{~m} / \mathrm{sec}^{3}$ and ' t ' is in seconds. The magnitude of total acceleration at $t=2 \mathrm{sec}$ is \qquad $\mathrm{m} / \mathrm{sec}^{2}$. [Upto 2 decimal place]

IIT-JAM-PHYSICS 2023
Unit Test : Mechanics
Time : 70 Minutes
Date : 24-07-2022
M.M. : 60

ANSWER KEY

SECTION-A : MULTIPLE CHOICE QUESTIONS (MCQ)

1. (a)
2. (b)
3. (c)
4. (b)
5. (d)
6. (d)
7. (b)
8. (a)
9. (a)
10. (a)

SECTION-B : MULTIPLE SELECTIVE QUESTIONS (MSQ)

11. (a), (c)
12. (a), (c)
13. (b), (c), (d)
14. (a), (b), (c)
15. (c)

SECTION-C : NUMERICAL ANSWER TYPE QUESTIONS (NAT)

16. (44)
17. (5)
18. (1.30 to 1.35)
19. (30)
20. (100.30 to 100.35)
