

IIT-JAM-PHYSICS 2023

Unit Test : Mechanics

Time: 70 Minutes

Instructions:

- Section-A contains 10 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. For each correct answer you will be awarded 3 marks. For each incorrect answered 1 mark will be deducted.
- Section-B contains 5 Multiple Select Questions (MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. For each correct answer you will be awarded 3 marks, there is no negative marking in this section.
- Section-C contains 5 Numerical Answer Type (NAT) questions which contain 3 Marks for each, and there is no negative marking.

[SECTION - A — MULTIPLE CHOICE QUESTIONS (MCQ)]

1. A particle is projected over a triangle from one extremity of its horizontal base to the other such that the particle goes just over its vertex as shown in the figure below:

(b) $(\tan \alpha + \tan \beta)$

If ' θ ' be the angle of projection w.r.t. the horizontal, then tan θ is equal to,

- (a) $\tan \alpha + \tan \beta$
- (c) $\frac{1}{2}(\tan \alpha + \tan \beta)$ (d) $(\tan \alpha \tan \beta)$
- 2. A ball is thrown up from an incline plane of 45° such that it hits back the incline normally to it (as shown in the figure below).

The value of ' θ ' is,

- (a) $\tan^{-1}(1/4)$ (b) $\tan^{-1}(1/2)$ (c) $\cot^{-1}(1/4)$ (d) $\cot^{-1}(1/2)$
- A spaceship of mass 10³ kg floating in space starts ejecting fuel at a rate of 1 kg/s and with a speed of 10 m/s w.r.t. itself. The speed of the spaceship after ten minutes will be approximately equal to
 (a) 3.12 m/s
 (b) 6.24 m/s
 (c) 9.16 m/s
 (d) 10.45 m/s

South Delhi : 28-A/11, Jia Sarai, Near-IIT Metro Station, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 56-58, First Floor, Mall Road, G.T.B. Nagar (Near Metro Gate No. 3), Delhi-09, Ph: 011-41420035

Date : 24-07-2022 M.M. : 60

5. A particle of unit mass is dropped from point A at a height H = 3 m. If the track is frictionless and the radius of the circular part *BCD* is r = 2m, then the height upto which it will rise along the circle after crossing B is, $(g = 10 \text{ m/s}^2)$

6. A particle of mass 1 kg is thrown vertically upwards with speed 10 m/sec from the top a tower which is at a height of 10 m from the ground. Assume that it hits ground along vertically downward direction and the coefficient of restitution is e = (2/3). If it keeps on bouncing back and each collision is of 0.1 sec duration, then the force on the floor for first collision is equal to,

(a)
$$10\sqrt{3}$$
 N (b) $20\sqrt{3}$ N (c) $100\sqrt{3}$ N (d) $\frac{500}{\sqrt{3}}$ N

7. A particle with mass $m(t) = m_0 e^{-\lambda t}$ moving with initial speed v_0 experiences a resistive force of $F_d = -\beta v^2$,

at t = 0, where β is a positive constant and 'v' is the instantaneous speed of the particle. Its speed at $t = \frac{1}{\lambda}$ will be equal to,

(a)
$$\left[\frac{1}{v_0} + \frac{\beta}{m_0\lambda}(e-1)\right]^{-1}$$
 (b) $\left[\frac{1}{ev_0} + \frac{\beta}{2\lambda m_0}(e-e^{-1})\right]^{-1}$
(c) $\left[\frac{1}{v_0} + \frac{\beta}{2m_0\lambda}(1-e)\right]^{-1}$ (d) $\left[\frac{1}{ev_0} - \frac{\beta}{2m_0\lambda}(e-e^{-1})\right]^{-1}$

8. In figure below, coefficient of friction between block and inclined plane is μ . If F = 0, the object accelerates down the plane with acceleration *a*. What should be the value of *F* for the object to accelerate downwards with a/2?

(a)
$$\frac{mg\sin\theta - \mu mg\cos\theta}{2(\mu\sin\theta + \cos\theta)}$$
(b)
$$\frac{2(\mu\sin\theta - \cos\theta)}{mg\sin\theta + \mu mg}$$
(c)
$$\frac{mg\sin\theta + mg\cos\theta}{\mu\sin\theta - \cos\theta}$$
(d)
$$\frac{2(\mu\sin\theta + \cos\theta)}{mg\sin\theta - \mu mg\cos\theta}$$

2

9. A block of mass *m* is placed on a rough surface with a vertical cross-section of $y = \frac{x^3}{6}$; $(x \ge 0)$ as shown in

the figure below:

If the co-efficient of friction between the block and the surface is 0.5, then the maximum height above ground at which the block can be placed without slipping is,

(a) $\frac{1}{6}$ (b) $\frac{1}{3}$ (c) $\frac{2}{5}$ (d) $\frac{4}{5}$

10. If \hbar , G, c and k_B respectively denote reduced Planck's constant, gravitational constant, speed of light and Boltzmann constant, then Planck's temperature can be expressed as

[SECTION - B — MULTIPLE SELECTIVE QUESTIONS (MSQ)]

11. A truck is moving with a speed of 8 m/s and is as wide as the road. A man starts crossing the road when he is at a distance of 4 m from the truck by starting to run at a constant speed 'V' moving at an angle ' θ ' with the road as shown in the figure below:

Which of the following option(s) is/are correct?

- (a) The necessary speed to cross safely will be minimum for $\theta = \tan^{-1}(2)$.
- (b) The necessary speed to cross safely will be minimum for $\theta = \frac{1}{2} \tan^{-1}(2)$.
- (c) The minimum required speed is V = 3.57 m/sec.
- (d) The minimum required speed is V = 1.79 m/sec.
- 12. A constant force *F* acts on a cart of mass *m* on which rain starts falling at a rate of ' α ' at t = 0. If the speed of the system is v_0 at t = 0, then which of the following option(s) is/are *correct* at time t_0 ?
 - (a) The impulse imparted by the force is Ft_0 .
 - (b) The impulse imparted by the force is $Ft_0/2$.
 - (c) The speed of the cart becomes $\frac{Ft_0 + mv_0}{m + \alpha t_0}$.
 - (d) The speed of the cart becomes $\frac{mv_0 Ft_0}{m + \alpha t_0}$.

13. A man of mass 'm' runs anticlockwise as seen from above in a circular path on the surface of a sphere maintaining a constant height H from the x-y plane. If he starts running from x-z plane and his speed is equal to a constant V, then which of the following statement(s) is/are correct with respect to the (r, θ, ϕ) co-ordinate system ?

 H^2

(a) Its velocity can be expressed as: $\vec{V} = -V\hat{\phi}$

(b) The position of the particle at time 't', obeys
$$\phi(t) = \frac{Vt}{\sqrt{R^2 - t^2}}$$

(c) The radius of the circular track is,
$$\sqrt{R^2 - H^2}$$

- (d) The component of weight along \hat{r} is, $\frac{mgH}{R}$.
- 14. At the moment t = 0, the force F = kt is applied to a small body of mass *m* resting on smooth horizontal plane (*k* is constant). The permanent direction of this force forms an angle θ with the horizontal. Which of the following option(s) is/are *correct*?

- (a) The body will break off the plane at $t = \frac{mg}{k \sin \theta}$
- (b) The velocity of the body at the moment of its breaking off the plane will be $v = \frac{mg^2}{2k} \left(\frac{\cos\theta}{\sin^2\theta} \right)$.
- (c) The distance travelled by the body upto the moment of its breaking off the plane will be $s = \frac{m^2 g^3 \cos \theta}{6k^2 \sin^3 \theta}$.
- (d) The distance travelled by the body upto the moment of its breaking off the plane will be $s = \frac{m^2 g^3 \cos \theta}{3k^2 \sin^3 \theta}$.
- 15. A pulley fixed to the ceiling of a lift carries a thread whose ends are attached to the loads of masses 4 kg and 3 kg. The lift starts going down with an acceleration of $a = 4 \text{ m/s}^2$ relative to the shaft on the lift. Which of the following option(s) is/are *correct*?

- (a) The acceleration of the load 4 kg relative to the shaft of the lift is 0.83 m/s^2 .
- (b) The acceleration of the load 4 kg relative to the lift is 4.83 m/s^2 .
- (c) The tension in the string connecting the masses to the pulley is $19.89\,N.$
- (d) The tension in the string connecting the masses to the pulley is 9.8 N.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Metro Station, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 56-58, First Floor, Mall Road, G.T.B. Nagar (Near Metro Gate No. 3), Delhi-09, Ph: 011-41420035

1

[SECTION - C — NUMERICAL ANSWER TYPE QUESTIONS (NAT)]

16. A small block is connected to one end of two identical massless strings of length 5/3 cm with the other ends fixed to a vertical rod as shown in the figure below:

For a given value of angular velocity ω the ratio of tensions is $T_1: T_2 = 4:1$. ' ω ' is equal to _____× 10⁻¹ rad/sec. [$g = 9.8 \text{ m/s}^2$] [Answer should be nearest integer]

17. A block is placed on an inclined plane moving towards right with an acceleration $a_0 = g$, where AC = 5m and all surface are smooth.

If a block is placed at *C* with zero initial speed and the time taken by the block to move from *C* to *A* is $\sqrt{\alpha}$ sec, then α is equal to _____. [$g = 10 \text{ m/s}^2$] [Answer should be an integer]

18. A raindrop falling through a cloud accumulates mass at a rate of kmv, where k > 0 and m is the instantaneous mass. If m_0 is its initial mass and its speed is given by,

$$v(t) = \sqrt{\frac{g}{k}} \tanh\left(\sqrt{kg}t\right)$$

then the time at which its mass doubles is equal to $(1/\sqrt{kg})$. [Upto two decimal places]

$$\left[\operatorname{Given}: \int \tanh(x) \, dx = \ln\left[\cosh(x)\right] + c \text{ and } \cosh^{-1}(2) = 1.317\right]$$

Considering the figure below, the maximum value of *F* that can be applied without the upper block sliding is
 ______N. [Answer should be an integer]

20. The speed of a particle moving along a circle of radius 1 m is given by $v(t) = (\alpha t^2 + 2)$ m/sec, where $\alpha = 2$ m/sec³ and 't' is in seconds. The magnitude of total acceleration at t = 2 sec is _____ m/sec². [Upto 2 decimal place]

5

IIT-JAM-PHYSICS 2023

Unit Test : Mechanics

Time: 70 Minutes

Date : 24-07-2022 M.M. : 60

6

ANSWER KEY

SECTION-A : MULTIPLE CHOICE QUESTIONS (MCQ)			
1. (a)	2. (b)	3. (c) 4. (b)	5. (d)
6. (d)	7. (b)	8. (a) 9. (a)	10. (a)
SECTION-B : MULTIPLE SELECTIVE QUESTIONS (MSQ)			
11. (a), (c)	12. (a), (c)	13. (b), (c), (d) 14. (a), (b), (c) 15. (c)
SECTION-C : NUMERICAL ANSWER TYPE QUESTIONS (NAT)			
16. (44)	17. (5)	18. (1.30 to 1.35)	
19. (30)	20. (100.30 to 10	00.35)	
	CARE	ER ENDEAVOUR	

