

IIT-JAM CHEMISTRY 2023

TEST: ORGANOMETALLIC COMPOUNDS

Time 00: 60 Hour Date: 11-09-2022

M.M.: 35

INSTRUCTION:

1. Attempt all the questions.

- 2. PART-A contains 10 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. From Q.1 to Q.5 carries 1 Marks and Q.6 to Q.10 carries 2 Marks each.
- 3. PART-B contains 04 Multiple Select Questions(MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. For each correct answer you will be awarded 2 marks.
- 4. PART-C contains 08 Numerical Answer Type (NAT) questions. Q.16 to Q.17 carry 1 Mark and Q.18 to Q.21 carries 2 Marks each. The answer of each (NAT) is a real number.
- 5. In all sections, questions not attempted will result in zero mark. In PART-A (MCQ), wrong answer will result in negative marks. For all 1 mark questions, 1/3 marks will be deducted for each wrong answer. For all 2 marks questions, 2/3 marks will be deducted for each wrong answer. In PART-B (MSQ), there is no negative and no partial marking provisions. There is no negative marking in PART-C (NAT) as well.

PART-A

Q.1 to Q.05: Carry 1 Mark each.

Find organic fragment isolobal with each of the following 1.

> (A) $Ni\left(\eta^5 - C_5H_5\right)$ (B) $Cr\left(CO\right)_2\left(\eta^6 - C_6H_6\right)$ (C) $\left\lceil Fe\left(CO\right)_2\left(PPh_3\right)\right\rceil^{-1}$ (a) A-CH, B-CH₂, C-CH

(b) A-CH, B-CH₂+, C-CH

(c) A-CH, B-CH₂⁺, C-CH

(d) A-CH₂, B-CH₂⁺, C-CH

Match the following 2.

List-A

(1) $\left[PtCl_3(C_2H_4) \right]^{-1}$

(2) $Ir(PPh_3)_2(CO)Cl$

(3) $\left[Rh \left(PPh_3 \right)_3 Cl \right]$

(4) $\left[PdCl_{4} \right]^{2-}$, CuCl,

(a) A-IV, B-III, C-II, D-I

(c) A-I, B-II, C-III, D-IV

List-B

- (i) Wacker process
- (ii) Wilkinsons catalyst
- (iii) Vaska's complex
- (iv) Zeise's salt
- (b) A-IV, B-III, C-I, D-II
- (d) A-I, B-II, C-IV, D-III

3. The correct order of energy level of d-orbital of ferrocene is

(a) $d_{x^2-y^2}$, $d_{xy} < d_{z^2} < d_{xy}$, d_{yz}

(b) $d_{z^2} < d_{xz}, d_{yz} < d_{x^2-y^2}, d_{xy}$

(c) $d_{x^2-y^2}$, $d_{xy} < d_{xz}$, $d_{yz} < d_{z^2}$

(d) $d_{yz}, d_{xz} < d_{x^2-y^2}, d_{xy} < d_{z^2}$

4. The species GeC₂B₂H₁₁ can be classified as

(a) Closo

- (c) Arachno
- (d) Hypho

5. Which of the following is the correct order for donor ability?

- (a) $PF_3 > P(OAr)_2 > P(OR)_2 > PAr_3$
- (b) $PF_3 > P(OR)_2 > P(OAr)_2 > PAr_3$
- (c) $PAr_3 > P(OR)_2 > P(OAr)_2 > PF_3$
- (d) $PAr_3 > P(OAr)_2 > P(OR)_2 > PF_3$

Q.6 to Q.10: Carry 2 Marks each.

- The structure of $Rh_6(CO)_{16}$ and $B_{12}H_{14}$ are respectively. (a) closo, nido (b) closo, arachno (continuous) 6.
- (c) closo, closo
- (d) nido, arachno

7. Which of the following complex having highest C–C bond length.

- 8. Following the 18-electron rule as guide, determine x, y, z in the following complexes
 - (i) $\left[\eta^5 CpOs(CO)_x \right]_2$ has an Os-Os single bond
 - (ii) $\left[\eta^{6} \left(C_{6}H_{6}\right)Mn(CO)_{2}CH_{3}\right]^{y}$ (iii) $\left[\eta^{5}Cp(CO)_{2}Fe(PhC \equiv CH)\right]^{z}$ (a) x = 2, y = 1, z = +1 (b) x = 1, y = 0, z = +1 (c) x = 1, y = 1, z = +1 (d) x = 2, y = 0, z = +1

9. The correct order of rate of oxidative addition is

(a) Fe (0) > Co(+1) > Ni(+2)

(b) Ru(0) > Pd(+2) > Rh(+1)

(c) Pt(+2) > Ir(+1) > Os(0)

(d) Rh(+1) > Ir(+1) > Co(+1)

The structure corresponding to the compound Ru₂(CO)₁₇C is: 10.

(a) Square pyramidal

(b) TBP

(c) Octahedral

(d) Butterfly

PART-B

Q.11 to Q.15: Carry 2 Marks each.

- 11. Correct statement regarding ferrocene is
 - (a) it obey 18-electron rule
 - (b) it is more reactive towards electrophilic substitution reaction than benzene
 - (c) it is diamagnetic in nature
 - (d) it exist in eclipsed confirmation in gaseous state
- 12. Select the correct order regarding v_{C-O} value of carbonyl complexes

(a)
$$Ni(CO)_4 < \lceil Fe(CO)_4 \rceil^{2-} > \lceil Co(CO)_4 \rceil^{-1}$$

(b)
$$\left[\operatorname{Cr} \left(\operatorname{CO} \right)_{6} \right] > \operatorname{CO} > \left[\operatorname{V} \left(\operatorname{CO} \right)_{6} \right]^{-} > \left[\operatorname{Ti} \left(\operatorname{CO} \right)_{6} \right]^{2-}$$

(c)
$$CO > \left[Cr(CO)_{6} \right] > \left[V(CO)_{6} \right]^{-} > \left[Ti(CO)_{6} \right]^{2-}$$

(d)
$$Ni(CO)_4 > Ni(CO)_3 \lceil P(OMe)_3 \rceil > Ni(CO)_2 \lceil P(OMe)_3 \rceil_2$$

Which of the following statement is/are true regarding above reaction

- (a) Metal oxidation state changes from Ir(+1) to Ir(+3)
- (b) Electron count changes from $16 e^- \rightarrow 18 e^-$
- (c) Both reactant and product are diamagnetic
- (d) O, converted into superoxide
- 14. Which of the following complexes follows 18 electron rule

- 15. Which of the following sequences is/are correct for mentioned properties?
 - (a) $HCo(CO)_3(PMe_3) < HCo(CO)_3(PPh_3) < HCo(CO)_3(PF_3)$ [acidity order]
 - (b) $HMn(CO)_5 < HTe(CO)_5 < HRe(CO)_5$ [thermal stablility order]
 - (c) $NO^+ < CS < CO < CN^-$ [order of π -accepting ability]
 - (d) $BH_3 \cdot CO < free CO < CO^+$ [order of \overline{v}_{C-O}]

PART-C

Q.16 to Q.17: Carry 1 Mark each.

- 16. Number of bridging carbonyl in $\left[\text{Fe}_3(\text{CO})_{12} \right]$ is ______
- 17. If the cluster $\left[\text{Co}_3\left(\text{CH}\right)\left(\text{CO}\right)_9\right]$ obeying 18-electron rule, number of bridging ligand is ______

Q.18 to Q.21: Carry 2 Marks each.

- 18. Number of framework electron in the fragment Ru(CO)₃ involve in cluster formation is ______
- 19. Bond order in cluster $\left[Mo_2 (SO_4)_4 \right]^{4-}$ is _____
- 20. The number of metal-metal bonds per metal in the following complex $\operatorname{Ir}_4(\operatorname{CO})_{12}$ is _____
- 21. The total valence electrons in the following complex is _____

IIT-JAM CHEMISTRY 2023 TEST: ORGANOMETALLIC COMPOUNDS

Time 00 : 60 Hour Date : 11-09-2022

M.M.: 35

PART - A

1. (c) 2. (a)

3. (a)

4. (a)

5. (c)

6. (c)

7. (c)

8. (d)

9. (a)

10. (c)

PART - B

11. (a,b,c,d) 12. (c,d)

13. (a,b,c)

14. (a, d)

15. (a,b)

PART - C

16. (2)

17. (1)

18. (2)

19. (4)

20. (3)

21. (16)

CAREER ENDEAVOUR