IIT-JAM PHYSICS 2023
 TEST : THERMODYNAMICS

Time : 60 Minutes
Date : 20-11-2022
M.M. : 40

INSTRUCTIONS:

- Part-A contains 10 Multiple Choice Questions (MCQ). Each question has 4 choices (a), (b), (c) and (d), for its answer, out of which ONLY ONE is correct. For each correct answer you will be awarded 2 marks. For each incorrect answered $\mathbf{0 . 5}$ mark will be deducted.
- Part-B contains 5 Multiple Select Questions (MSQ). Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE or MORE than ONE is/are correct. For each correct answer you will be awarded $\mathbf{2}$ marks, there is no negative marking in this section.
- Part-C contains 5 Numerical Answer Type (NAT) questions which contain 2 Marks for each, and there is no negative marking.

PART-A [Multiple Choice Questions]

1. When an ideal monoatomic gas is expanded adiabatically from initial volume V_{0} to $3 V_{0}$, its temperature changes from T_{0} to T. Then the ratio T / T_{0} is
(a) $1 / 3$
(b) $(1 / 3)^{2 / 3}$
(c) $(1 / 3)^{5 / 3}$
(d) 3
2. An ideal gas is expanded adiabatically from X to B (as shown in figure below). If the same gas expands freely into vacuum in an adiabatic container from point X to one of the points out of A, B and C. The point will be

(a) A
(b) B
(c) C
(d) Either A and C
3. An engine of efficiency η operates between two reservoirs at temperatures T_{1} and T_{2} with $T_{1}>T_{2}$. All of the work delivered by the engine is used to drive a carnots heat pump of coefficient of performance β (working between the same temperature limits). Which relation is correct?
(a) $\eta \cdot \beta=1$
(b) $\frac{\eta}{\beta}=1$
(c) $\eta \cdot \beta<1$
(d) $\frac{\eta}{\beta}=1$
4. Two moles of ideal diatomic gas at a temperature 300 K was cooled isochorically so as the gas pressure reduced by one third of its initial value. The gas then was expanded isobarically till its temperature got back to its initial value of 300 K . The total amount of heat absorbed by the gas in this process (in terms of gas constant) is
(a) 150
(b) 200
(c) 300
(d) 400
5. Two ideal gases is a box are initially separated by a partition. Let N_{1}, V_{1} and N_{2}, V_{2} be the number of particles and volumes occupied by the two systems, when the partition is removed, the pressure of the mixture at an equilibrium temperature T is
(a) $k_{B} T\left(\frac{N_{1}+N_{2}}{2\left(V_{1}+V_{2}\right)}\right)$
(b) $k_{B} T\left(\frac{N_{1}+N_{2}}{V_{1}+V_{2}}\right)$
(c) $k_{B} T\left(\frac{N_{1}}{V_{1}}+\frac{N_{2}}{V_{2}}\right)$
(d) $\frac{k_{B} T}{2}\left(\frac{N_{1}}{V_{1}}+\frac{N_{2}}{V_{2}}\right)$
6. A real gas with equation of state $b^{3}\left(P+\frac{a^{2}}{V^{3}}\right)=n R T$ (where ' a ' and ' b ' are constants) undergoes expansion from volume V_{0} to $2 V_{0}$ at constant temperature T_{0}. The change in internal energy in isothermal expansion is
(a) 0
(b) $\frac{a^{2} b^{3}}{V_{0}^{3}} \ln (2)$
(c) $\frac{a^{2}}{2 V_{0}^{2}}$
(d) $\frac{3 a^{2}}{8 V_{0}^{2}}$
7. As shown in the figure, an ideal gas is confined to chamber A of an insulated container, with vacuum in chamber B, when the plug in the wall separating the chambers A and B is removed, the gas fills both the chambers. Which of the following statements is true?
(a) Temperature of the gas decrease as it expands to fill the space in chamber B
(b) Internal energy of the gas increase as its atoms have more space to more around

(c) Internal energy of the gas decreases
(d) The temperature of the gas remains unchanged
8. $\left(\frac{\partial P}{\partial T}\right)_{V}$ can be given in terms of isobaric volume expansivity α_{P} and isothermal compressibility β_{T} as
(a) $\frac{\alpha_{P}}{\beta_{T}}$
(b) $\frac{-\alpha_{P}}{\beta_{T}}$
(c) $\frac{\beta_{T}}{\alpha_{P}}$
(d) $\frac{-\beta_{T}}{\alpha_{P}}$
9. Consider an ideal gas initially occupying $1 \mathrm{~m}^{3}$ at $1.5 \mathrm{bar}, 20^{\circ} \mathrm{C}$ undergoes a reversible compression for which $\mathrm{PV}^{\mathrm{n}}=$ constant to a final state where the pressure is 6 bar and the temperature is $120^{\circ} \mathrm{C}$.
Take $\mathrm{C}_{\mathrm{V}}=0.718 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{k}^{-1}$. Which one of the following is correct?
(a) The given process is adiabatic process
(b) $n=1.67$
(c) $n=1.27$
(d) $w \simeq 190 \mathrm{~kJ}$
10. For an ideal gas, $A B$ and $C D$ are two isotherms at temperatures T_{1} and $T_{2}\left(T_{1}>T_{2}\right)$, respectively. $A D$ and BC represent two adiabatic paths as shown in the figure.

Let $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{C}}$ and V_{D} be the volume of the gas at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively.

If $\frac{V_{B}}{V_{A}}=2$; then $\frac{V_{C}}{V_{D}}$ is

(a) 2
(b) $\frac{1}{2}$
(c) $\left(\frac{1}{2}\right)^{r}$
(d) 2^{r-1}
(where r is adiabatic exponent of ideal gas)
11. An ideal monatomic gas having two moles undergoes the following cyclic process:

Which of the following is/are correct(s)?
(a) Total work done in the cycle is $R T_{0}(1-\ln 3)$
(b) Total work done in the cycle is $R T_{0}(2-\ln 3)$
(c) Total heat absorbed by the gas in the cycle is $5 R T_{0}$
(d) Total heat released by the gas in the cycle is $R T_{0}(3+\ln 3)$
12. An ideal gas cycle is represented by a rectangle on $P-V$ diagram. If P_{1} and P_{2} are the lower and higher pressures, and V_{1} and V_{2} the smaller and larger volumes, respectively.

Identify which of the following is/are correct?
(a) The work done per cycle is $\left(P_{2}-P_{1}\right)\left(V_{2}-V_{1}\right)$
(b) Amount of heat absorbed in the cycle is $\frac{C_{V}}{R}\left[P_{2}-P_{1}\right] V_{1}+\frac{C_{P}}{R}\left[V_{2}-V_{1}\right] P_{2}$
(c) Amount of heat rejected in the cycle is $\frac{C_{V}}{R}\left[P_{2}-P_{1}\right] V_{2}+\frac{C_{P}}{R}\left[V_{2}-V_{1}\right] P_{1}$
(d) Efficiency; $\eta=\frac{(r-1)}{\left(\frac{V_{1}}{V_{2}-V_{1}}\right)+\left(\frac{P_{2}}{P_{2}-P_{1}}\right)}$ (where r is adiabatic exponent)
13. A Carnot heat engine, working between the temperature limits T_{0} and $T_{0} / 3$, is used to run a Carnot heat pump working between the temperature limits T_{0} and $T_{0} / 4$. If the heat rejected to the cold reservoir of the heat engine is $100 \mathrm{cal} / \mathrm{s}$. Which of the following is/are correct(s)?
(a) Coefficient of performance of the heat pump is $7 / 3$
(b) Heat extracted from the cold reservoir of the heat pump is $200 / 3 \mathrm{~W}$
(c) Net heat exchanged by the reservoir at temperature T_{0} in one cycle (of combined heat engine and heat pump) is 100 W
(d) Net heat exchanged by the reservoir at temperature T_{0} in one cycle (of combined heat engine and heat pump) is 140 W
14. 3 moles of an ideal monoatomic gas performs a cycle shown in the figure. The gas temperature $\mathrm{T}_{\mathrm{A}}=400 \mathrm{~K}$, $\mathrm{T}_{\mathrm{B}}=800 \mathrm{~K}, \mathrm{~T}_{\mathrm{C}}=2400 \mathrm{~K}, \mathrm{~T}_{\mathrm{D}}=1200 \mathrm{~K}$.

Which of the following is/are correct?
(a) The total work done is 2400 R Joules, (where R is gas constant)
(b) The total heat goes out of engine in a cycle is 11400 R
(c) The efficiency of the engine is 0.17
(d) The efficiency of the engine is 0.21
15. The equation of state of a gas is $P\left(V-\frac{a^{2}}{V}\right)=n R T$. Which of the following is/are correct?
(a) Work done by the gas when it is expanded isothermally at temperature T_{0} from volume V_{0} to $2 \mathrm{~V}_{0}$ is

$$
w=\frac{n R T_{0}}{2} \log _{e}\left[\frac{4 V_{0}^{2}-a^{2}}{V_{0}^{2}-a^{2}}\right]
$$

(b) Change in internal energy of the gas during an isothermal expansion at T_{0} from V_{0} to $2 \mathrm{~V}_{0}$ is $\Delta U=0$
(c) During an adiabatic process, the gas obeys $\mathrm{PV}^{\mathrm{r}}=$ constant
(d) During an adiabatic process, the gas obeys $\left(V^{2}-a^{2}\right) T^{\frac{2 C_{V}}{R}}=$ Constant

PART-C [Numerical Answer Type]

16. A diatomic ideal gas is expanded adiabatically against the piston of a cylinder. As a result, the temperature of the gas drops from 1500 K to 500 K . What is the number of moles of the gas required to obtain 5000 R Joules of work from the expansion? [where R is universal gas constant]
[Answer must be an integer]
17. Consider a Carnot refrigerator operating between temperatures of 600 K and 400 K .500 J of work is done on the working substance during one cycle. The heat (in calories) extracted per cycle from the cold temperature reservoir is \qquad [Specify your answer to two digits after the decimal point]
18. The smallest possible time taken by a refrigerator to freeze 2 kg of water at $0^{\circ} \mathrm{C}$ if a 50 W motor is available is \qquad hr . [The outside temperature is $27^{\circ} \mathrm{C}$]
[Round off to two decimal places]
19. An iron piece of mass 0.1 kg at $940^{\circ} \mathrm{C}$ is put in thermal contact with a substance of water equivalent 10 gm at $20^{\circ} \mathrm{C}$. The resultant equilibrium temperature would be \qquad ${ }^{\circ} \mathrm{C}$.
(Specific heat of iron is $470 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$)
[Specify nearest integer]
20. The molar heat capacity of a diatomic ideal gas taken through the process $T \sqrt{V}=$ constant in terms of universal gas constant R is \qquad [Specify your answer upto two decimal place]

IIT-JAM PHYSICS 2023
 TEST : THERMODYNAMICS

Time : 60 Minutes
Date : 20-11-2022
M.M. : 40

ANSWER KEY

PART-A [Multiple Choice Questions]

1. (b)
2. (a)
3. (c)
4. (d)
5. (b, c, d)
6. (a, b, d)
7. (a, b, c)
8. (d)

PART-C [Numerical Answer Type]

16. (2)
17. (238.00 to 239.50) 18. (0.35 to 0.37)
18. (505 to 508)
19. (0.50)
