PAPER : IIT-JAM

MATHEMATICS MA-2018

SECTION-A

[Multiple Choice Questions (MCQ)]

Q. 1 - Q. 10 carry ONE mark each.

1. The tangent plane to the surface $z=\sqrt{x^{2}+3 y^{2}}$ at $(1,1,2)$ is given by
(a) $x-3 y+z=0$
(b) $x+3 y-2 z=0$
(c) $2 x+4 y-3 z=0$
(d) $3 x-7 y+2 z=0$
2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a scalar field, $\vec{v}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and let $\vec{a} \in \mathbb{R}^{3}$ be a constant vector. If \vec{r} represents the position vector $x \hat{i}+y \hat{j}+z \hat{k}$, then which one of the following is FALSE?
(a) $\operatorname{curl}(f \vec{v})=\operatorname{grad}(f) \times \vec{v}+f \operatorname{curl}(\vec{v})$
(b) $\operatorname{div}(\operatorname{grad}(f))=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) f$
(c) $\operatorname{curl}(\vec{a} \times \vec{r})=2|\vec{a}| \vec{r}$
(d) $\operatorname{div}\left(\frac{\vec{r}}{|\vec{r}|^{\beta}}\right)=0$, for $\vec{r} \neq \overrightarrow{0}$
3. In \mathbb{R}^{3}, the cosine of the acute angle between the surfaces $x^{2}+y^{2}+z^{2}-9=0$ and $z-x^{2}-y^{2}+3=0$ at the point $(2,1,2)$ is
(a) $\frac{8}{5 \sqrt{21}}$
(b) $\frac{10}{5 \sqrt{21}}$
(c) $\frac{8}{3 \sqrt{21}}$
(d) $\frac{10}{3 \sqrt{21}}$
4. Let $s_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}$ for $n \in \mathbb{N}$. Then which one of the following is TRUE for the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$
(a) $\left\{s_{n}\right\}_{n=1}^{\infty}$ converges in \mathbb{Q}
(b) $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence but does not converge in \mathbb{Q}
(c) The sub-sequence $\left\{s_{k^{n}}\right\}_{n=1}^{\infty}$ is convergent in \mathbb{R} only when k is even natural number
(d) $\left\{s_{n}\right\}_{n=1}^{\infty}$ is not a Cauchy sequence
5. Consider the vector space V over \mathbb{R} of polynomial functions of degree less than or equal to 3 defined on \mathbb{R}. Let $T: V \rightarrow V$ be defined by $(T f)(x)=f(x)-x f^{\prime}(x)$. Then the rank of T is
(a) 1
(b) 2
(c) 3
(d) 4
6. Let a be a positive real number. If f is a continuous and even function defined on the interval $[-a, a]$, then $\int_{-a}^{a} \frac{f(x)}{1+e^{x}} d x$ is equal to
(a) $\int_{0}^{a} f(x) d x$
(b) $2 \int_{0}^{a} \frac{f(x)}{1+e^{x}} d x$
(c) $2 \int_{0}^{a} f(x) d x$
(d) $2 a \int_{0}^{a} \frac{f(x)}{1+e^{x}} d x$
7. In \mathbb{R}^{2}, the family of trajectories orthogonal to the family of asteroids $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is given by
(a) $x^{4 / 3}+y^{4 / 3}=c^{4 / 3}$
(b) $x^{4 / 3}-y^{4 / 3}=c^{4 / 3}$
(c) $x^{5 / 3}-y^{5 / 3}=c^{5 / 3}$
(d) $x^{2 / 3}-y^{2 / 3}=c^{2 / 3}$
8. If $\left(v_{1}, v_{2}, v_{3}\right)$ is a linearly independent set of vectors in a vector space over \mathbb{R}, then which one of the following sets is also linearly independent?
(a) $\left\{v_{1}+v_{2}-v_{3}, 2 v_{1}+v_{2}+3 v_{3}, 5 v_{1}+4 v_{2}\right\}$
(b) $\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{1}\right\}$
(c) $\left\{v_{1}+v_{2}-v_{3}, v_{2}+v_{3}-v_{1}, v_{3}+v_{1}-v_{2}, v_{1}+v_{2}+v_{3}\right\}$
(d) $\left\{v_{1}+v_{2}, v_{2}+2 v_{3}, v_{3}+3 v_{1}\right\}$
9. Which one of the following is TRUE?
(a) \mathbb{Z}_{n} is cyclic if and only if n is prime
(b) Every proper sub-group of \mathbb{Z}_{n} is cyclic
(c) Every proper sub-group of S_{4} is cyclic
(d) If every proper sub-group of a group is cyclic, then the group is cyclic
10. Let $a_{n}=\frac{b_{n+1}}{b_{n}}$, where $b_{1}=1, b_{2}=1$ and $b_{n+2}=b_{n}+b_{n+1}, n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} a_{n}$ is
(a) $\frac{1-\sqrt{5}}{2}$
(b) $\frac{1-\sqrt{3}}{2}$
(c) $\frac{1+\sqrt{3}}{2}$
(d) $\frac{1+\sqrt{5}}{2}$

Q. 11 - Q. 30 carry TWO marks each.

11. For $x \in \mathbb{R}$, let $f(x)=\left\{\begin{array}{cc}x^{3} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$. Then which one of the following is FALSE?
(a) $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$
(b) $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=0$
(c) $\frac{f(x)}{x^{2}}$ has infinitely many maxima and minima on the interval $(0,1)$
(d) $\frac{f(x)}{x^{4}}$ is continuous at $x=0$ but not differentiable at $x=0$
12. If $\vec{F}(x, y)=(3 x-8 y) \hat{i}+(4 y-6 x y) \hat{j}$ for $(x, y) \in \mathbb{R}^{2}$, then $\oint_{C} \vec{F} \cdot d \vec{r}$, where C is the boundary of the triangular region bounded by lines $x=0, y=0$ and $x+y=1$ oriented in the anti-clockwise directions, is
(a) $\frac{5}{2}$
(b) 3
(c) 4
(d) 5
13. Let $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{\left(x^{2}+y^{2}\right)^{a}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$. Then which one of the following is TRUE for f at the point $(0,0)$?
(a) For $\alpha=1, f$ is continuous but not differentiable
(b) For $\alpha=\frac{1}{2}, f$ is continuous and differentiable
(c) For $\alpha=\frac{1}{4}, f$ is continuous and differentiable
(d) For $\alpha=\frac{3}{4}, f$ is neither continuous nor differentiable
14. Let $a, b, c \in \mathbb{R}$. Which of the following values of a, b, c do NOT result in the convergence of the series $\sum_{n=3}^{\infty} \frac{a^{n}}{n^{b}\left(\log _{e} n\right)^{c}}$?
(a) $|a|<1, b \in \mathbb{R}, c \in \mathbb{R}$
(b) $a=1, b>1, c \in \mathbb{R}$
(c) $a=1, b \geq 0, c<1$
(d) $a=-1, b \geq 0, c>0$
15. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let J be a bounded open interval in \mathbb{R}.

Define $W(f, J)=\sup \{f(x) \mid x \in J\}-\inf \{f(x) \mid x \in J\}$. Which one of the following is FALSE?
(a) $W\left(f, J_{1}\right) \leq W\left(f, J_{2}\right)$ if $J_{1} \subset J_{2}$
(b) If f is a bounded function in J and $J \supset J_{1} \supset J_{2} \ldots \supset J_{n} \supset \ldots$ such that the length of the interval J_{n} tends to 0 as $n \rightarrow \infty$, then $\lim _{n \rightarrow \infty} W\left(f, J_{n}\right)=0$
(c) If f is discontinuous at a point $a \in J$, then $W(f, J) \neq 0$
(d) If f is continuous at a point $a \in J$, then for any given $\in>0$ there exists an interval $I \subset J$ such that $W(f, I)<\epsilon$
16. Let U, V and W be finite dimensional real vector spaces, $T: U \rightarrow V, S: V \rightarrow W$ and $P: W \rightarrow U$ be linear transformations. If range $(\mathrm{ST})=$ nullspace (P), nullspace $(\mathrm{ST})=\operatorname{range}(\mathrm{P})$ and $\operatorname{rank}(\mathrm{T})=\operatorname{rank}$ (S), then which one of the following is TRUE?
(a) nullity of $\mathrm{T}=$ nullity of S
(b) dimension of $U \neq$ dimension of W
(c) If dimension of $\mathrm{V}=3$, dimension of $\mathrm{U}=4$, then P is not identically zero
(d) If dimension of $\mathrm{V}=4$, dimension of $\mathrm{U}=3$, and T is one-one, then P is identically zero
17. Let $a_{n}=\frac{(-1)^{n}}{\sqrt{1+n}}$ and let $c_{n}=\sum_{k=0}^{n} a_{n-k} a_{k}$, where $n \in \mathbb{N} \cup\{0\}$. Then which one of the following is TRUE?
(a) Both $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} c_{n}$ are convergent
(b) $\sum_{n=0}^{\infty} a_{n}$ is convergent but $\sum_{n=1}^{\infty} c_{n}$ is not convergent
(c) $\sum_{n=1}^{\infty} c_{n}$ is convergent but $\sum_{n=0}^{\infty} a_{n}$ is not convergent
(d) Neither $\sum_{n=0}^{\infty} a_{n}$ nor $\sum_{n=1}^{\infty} c_{n}$ is convergent
18. Let G be a group satisfying the property that $f: G \rightarrow \mathbb{Z}_{221}$ is a homomorphism implies $f(g)=0, \forall g \in G$.

Then a possible group G is
(a) \mathbb{Z}_{21}
(b) \mathbb{Z}_{51}
(c) \mathbb{Z}_{91}
(d) \mathbb{Z}_{119}
19. An integrating factor of the differential equation $\left(y+\frac{1}{3} y^{3}+\frac{1}{2} x^{2}\right) d x+\frac{1}{4}\left(x+x y^{2}\right) d y=0$ is
(a) x^{2}
(b) $3 \log _{e} x$
(c) x^{3}
(d) $2 \log _{e} x$
20. Let H be the quotient group \mathbb{Q} / \mathbb{Z}. Consider the following statements.
I. Every cyclic subgroup of H is finite
II. Every finite cyclic group is isomorphic to a subgroup of H

Which one of the following holds?
(a) I is TRUE but II is FALSE
(b) II is TRUE but I is FALSE
(c) both I and II are TRUE
(d) neither I nor II is TRUE
21. Let $a_{n}=\left\{\begin{array}{cl}2+\frac{(-1)^{\frac{n-1}{2}}}{n}, & \text { if } n \text { is odd } \\ 1+\frac{1}{2^{n}}, & \text { if } n \text { is even }\end{array}, n \in \mathbb{N}\right.$. Then which one of the following is TRUE?
(a) $\sup \left\{a_{n} \mid n \in \mathbb{N}\right\}=3$ and $\inf \left\{a_{n} \mid n \in \mathbb{N}\right\}=1$ (b) $\liminf \left(a_{n}\right)=\limsup \left(a_{n}\right)=\frac{3}{2}$
(c) $\sup \left\{a_{n} \mid n \in \mathbb{N}\right\}=2$ and $\inf \left\{a_{n} \mid n \in \mathbb{N}\right\}=1$ (
(d) $\liminf \left(a_{n}\right)=1$ and $\limsup \left(a_{n}\right)=3$
22. Let $a_{n}=n+\frac{1}{n}, n \in \mathbb{N}$. Then the sum of the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{a_{n+1}}{n!}$ is
(a) $e^{-1}-1$
(b) e^{-1}
(c) $1-e^{-1}$
(d) $1+e^{-1}$
23. For $x>\frac{-1}{2}$, let $f_{1}(x)=\frac{2 x}{1+2 x}, f_{2}(x)=\log _{e}(1+2 x)$ and $f_{3}(x)=2 x$. Then which one of the following is TRUE?
(a) $f_{3}(x)<f_{2}(x)<f_{1}(x)$ for $0<x<\frac{\sqrt{3}}{2}$
(b) $f_{1}(x)<f_{3}(x)<f_{2}(x)$ for $x>0$
(c) $f_{1}(x)+f_{2}(x)<\frac{f_{3}(x)}{2}$ for $x>\frac{\sqrt{3}}{2}$
(d) $f_{2}(x)<f_{1}(x)<f_{3}(x)$ for $x>0$
24. Consider the group $\mathbb{Z}^{2}=\{(a, b) \mid a, b \in \mathbb{Z}\}$ under component wise addition. Then which of the following is a subgroup of \mathbb{Z}^{2} ?
(a) $\left\{(a, b) \in \mathbb{Z}^{2} \mid a b=0\right\}$
(b) $\left\{(a, b) \in \mathbb{Z}^{2} \mid 3 a+2 b=15\right\}$
(c) $\left\{(a, b) \in \mathbb{Z}^{2} \mid 7\right.$ divides $\left.a b\right\}$
(d) $\left\{(a, b) \in \mathbb{Z}^{2} \mid 2\right.$ divides a and 3 divides $\left.b\right\}$
25. A particular integral of the differential equation $y^{\prime \prime}+3 y^{\prime}+2 y=e^{e^{x}}$ is
(a) $e^{e^{x}} e^{-x}$
(b) $e^{e^{x}} e^{-2 x}$
(c) $e^{e^{x}} e^{2 x}$
(d) $e^{e^{x}} e^{x}$
26. $\quad a, b \in \mathbb{R}$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a thrice differential function. If $z=e^{u} f(v)$, where $u=a x+b y$ and $v=a x-b y$, then which one of the following is TRUE?
(a) $b^{2} z_{x x}-a^{2} z_{y y}=4 a^{2} b^{2} e^{u} f^{\prime}(v)$
(b) $b^{2} z_{x x}-a^{2} z_{y y}=-4 e^{u} f^{\prime}(v)$
(c) $b z_{x}+a z_{y}=a b z$
(d) $b z_{x}+a z_{y}=-a b z$
27. Let $y(x)$ be the solution of the differential equation $\frac{d y}{d x}+y=f(x)$, for $x \geq 0, y(0)=0$, where $f(x)=\left\{\begin{array}{cc}2, & 0 \leq x<1 \\ 0, & x \geq 1\end{array}\right.$. Then $y(x)=$
(a) $2\left(1-e^{-x}\right)$ when $0 \leq x<1$ and $2(e-1) e^{-x}$ when $x \geq 1$
(b) $2\left(1-e^{-x}\right)$ when $0 \leq x<1$ and 0 when $x \geq 1$
(c) $2\left(1-e^{-x}\right)$ when $0 \leq x<1$ and $2\left(1-e^{-1}\right) e^{-x}$ when $x \geq 1$
(d) $2\left(1-e^{-x}\right)$ when $0 \leq x<1$ and $2 e^{1-x}$ when $x \geq 1$
28. Consider the region D in the $y z$ plane bounded by the line $y=\frac{1}{2}$ and the curve $y^{2}+z^{2}=1$, where $y \geq 0$. If the region D is revolved about the z-axis in \mathbb{R}^{3}, then the volume of the resulting solid is
(a) $\frac{\pi}{\sqrt{3}}$
(b) $\frac{2 \pi}{\sqrt{3}}$
(c) $\frac{\pi \sqrt{3}}{2}$
(d) $\pi \sqrt{3}$
29. Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable functions such that f is strictly increasing and g is strictly decreasing. Define $p(x)=f(g(x))$ and $q(x)=g(f(x)), \forall x \in \mathbb{R}$. Then for $t>0$ the sign of $\int_{0}^{t} p^{\prime}(x)\left(q^{\prime}(x)-3\right) d x$ is
(a) positive
(b) negative
(c) dependent on t
(d) dependent on f and g
30. Let I denote the 4×4 identity matrix. If the roots of the characteristic polynomial of a 4×4 matrix M are $\pm \sqrt{\frac{1 \pm \sqrt{5}}{2}}$, then $\mathrm{M}^{8}=$
(a) $I+M^{2}$
(b) $2 I+M^{2}$
(c) $2 I+3 M^{2}$
(d) $3 I+2 M^{2}$

SECTION-B

[Multiple Select Questions (MSQ)]

Q. 31 - Q. 40 carry TWO marks each.

31. The solution(s) of the differential equation $\frac{d y}{d x}=(\sin 2 x) y^{1 / 3}$ satisfying $y(0)=0$ is(are)
(a) $y(x)=0$
(b) $y(x)=-\sqrt{\frac{8}{27}} \sin ^{3} x$
(c) $y(x)=\sqrt{\frac{8}{27}} \sin ^{3} x$
(d) $y(x)=\sqrt{\frac{8}{27}} \cos ^{3} x$
32. Let P and Q be two non-empty disjoint subsets of \mathbb{R}. Which of the following is (are) FALSE?
(a) If P and Q are compact, then $P \cup Q$ is also compact
(b) If P and Q are not connected, then $P \cup Q$ is also not connected
(c) If $P \cup Q$ and P are closed, then Q is closed
(d) If $P \cup Q$ and P are open, then Q is open
33. Let $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ denote the group of non-zero complex numbers under multiplication. Suppose $Y_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}, n \in \mathbb{N}$. Which of the following is (are) subgroup(s) of $\mathbb{C}^{*} ?$
(a) $\bigcup_{n=1}^{100} Y_{n}$
(b) $\bigcup_{n=1}^{\infty} Y_{2^{n}}$
(c) $\bigcup_{n=100}^{\infty} Y_{n}$
(d) $\bigcup_{n=1}^{\infty} Y_{n}$
34. Let $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ be defined by $f(x)=x+\frac{1}{x^{3}}$. On which of the following interval (s) is f one-one?
(a) $(-\infty,-1)$
(b) $(0,1)$
(c) $(0,2)$
(d) $(0, \infty)$
35. Let S be a subset of \mathbb{R} such that 2018 is an interior point of S. Which of the following is (are) TRUE?
(a) S contains an interval
(b) There is a sequence in S which does not converge to 2018
(c) There is an element $y \in S, y \neq 2018$ such that y is also an interior point of S
(d) There is a point $z \in S$, such that $|z-2018|=0.002018$
36. $\vec{F}(x, y, z)=(2 x+3 y z) \hat{i}+(3 x z+2 y) \hat{j}+(3 x y+2 z) \hat{k}$ for $(x, y, z) \in \mathbb{R}^{3}$, then which among the following is (are) TRUE?
(a) $\nabla \times \vec{F}=\overrightarrow{0}$
(b) $\oint_{C} \vec{F} \cdot d \vec{r}=0$ along any simple closed curve C
(c) There exists a scalar function $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\nabla \cdot \vec{F}=\phi_{x x}+\phi_{y y}+\phi_{z z}$
(d) $\nabla \cdot \vec{F}=0$
37. Let $m, n \in \mathbb{N}, m<n, P \in M_{n \times m}(\mathbb{R}), Q \in M_{m \times n}(\mathbb{R})$. Then which of the following is (are) NOT possible?
(a) $\operatorname{rank}(P Q)=n$
(b) $\operatorname{rank}(Q P)=m$
(c) $\operatorname{rank}(P Q)=m$
(d) $\operatorname{rank}(Q P)=\left\lceil\frac{m+n}{2}\right\rceil$, the smallest integer larger than or equal to $\frac{m+n}{2}$
38. Suppose $\alpha, \beta, \gamma \in \mathbb{R}$. Consider the following system of linear equations.
$x+y+z=\alpha, x+\beta y+z=\gamma, x+y+\alpha z=\beta$. If this system has at least one solution, then which of the following statements is (are) TRUE?
(a) If $\alpha=1$ then $\gamma=1$
(b)
If $\beta=1$ then $\gamma=\alpha$
(c) If $\beta \neq 1$ then $\alpha=1$
(d) If $\gamma=1$ then $\alpha=1$
39. Suppose f, g, h are permutations of the set $\{\alpha, \beta, \gamma, \delta\}$, where f interchanges α and β but fixes γ and δ g interchanges β and γ but fixes α and δ h interchanges γ and δ but fixes α and β
Which of the following permutations interchange (s) α and δ but fix(es) β and γ ?
(a) $f \circ g \circ h \circ g \circ f$
(b) $g \circ h \circ f \circ h \circ g$
(c) $g \circ f \circ h \circ f \circ g$
(d) $h \circ g \circ f \circ g \circ h$
40. Which of the following subsets of \mathbb{R} is (are) connected?
(a) $\left\{x \in \mathbb{R} \mid x^{2}+x>4\right\}$
(b) $\left\{x \in \mathbb{R} \mid x^{2}+x<4\right\}$
(c) $\{x \in \mathbb{R}||x|<|x-4|\}$
(d) $\{x \in \mathbb{R}||x|>|x-4|\}$

SECTION-C

[Numerical Answer Type (NAT)]

Q. 41 - Q. 50 carry ONE mark each.

41. Let $f(x)=\sum_{n=0}^{\infty}(-1)^{n} x(x-1)^{n}$ for $0<x<2$. Then the value of $f\left(\frac{\pi}{4}\right)$ is \qquad
42. Let $f(x, y)=\sqrt{x^{3} y} \sin \left(\frac{\pi}{2} e^{\left(\frac{y}{x}-1\right)}\right)+x y \cos \left(\frac{\pi}{3} e^{\left(\frac{x}{y}-1\right)}\right)$ for $(x, y) \in \mathbb{R}^{2}, x>0, y>0$.

Then $f_{x}(1,1)+f_{y}(1,1)=$ \qquad
43. Let $\phi(x, y, z)=3 y^{2}+3 y z$ for $(x, y, z) \in \mathbb{R}^{3}$. Then the absolute value of the directional derivative of ϕ in the direction of the line $\frac{x-1}{2}=\frac{y-2}{-1}=\frac{z}{-2}$, at the point $(1,-2,1)$ is \qquad
44. Let $f:[0, \infty) \rightarrow[0, \infty)$ be continuous on $[0, \infty)$ and differentiable on $(0, \infty)$. If $f(x)=\int_{0}^{x} \sqrt{f(t)} d t$, then $f(6)=$ \qquad
45. Let $a_{n}=\frac{\left(1+(-1)^{n}\right)}{2^{n}}+\frac{\left(1+(-1)^{n-1}\right)}{3^{n}}$. Then the radius of convergence of the power series $\sum_{n=1}^{\infty} a_{n} x^{n}$ about $x=0$ is \qquad
46. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\left\{\begin{array}{cc}\frac{x^{2} y(x-y)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$.

Then $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)-\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$ at the point $(0,0)$ is
47. Let W_{1} be the real vector space of all 5×2 matrices such that the sum of the entries in each row is zero. Let W_{2} be the real vector space of all 5×2 matrices such that the sum of the entries in each column is zero. Then the dimension of the space $W_{1} \cap W_{2}$ is \qquad
48. The coefficient of x^{4} in the power series expansion of $e^{\sin x}$ about $x=0$ is \qquad (correct upto three decimal places).
49. Let A_{6} be the group of even permutations of 6 distinct symbols. Then the number of elements of order 6 in A_{6} is \qquad -
50. The order of the element (123)(246)(456) in the group S_{6} is \qquad
Q. 51 - Q. 60 carry TWO marks each.
51. If $y(x)=v(x) \sec x$ is the solution of $y^{\prime \prime}-(2 \tan x) y^{\prime}+5 y=0,-\frac{\pi}{2}<x<\frac{\pi}{2}$, satisfying $y(0)=0$ and $y^{\prime}(0)=\sqrt{6}$, then $v\left(\frac{\pi}{6 \sqrt{6}}\right)$ is \qquad (correct upto two decimal places).
52. Suppose x, y, z are positive real numbers such that $x+2 y+3 z=1$. If M is the maximum value of $x y z^{2}$, then the value of $\frac{1}{M}$ is \qquad
53. If $\alpha=\int_{\pi / 6}^{\pi / 3} \frac{\sin t+\cos t}{\sqrt{\sin 2 t}} d t$, then the value of $\left(2 \sin \frac{\alpha}{2}+1\right)^{2}$ is \qquad
54. Suppose $Q \in M_{3 \times 3}(\mathbb{R})$ is a matrix of rank 2. Let $T: M_{3 \times 3}(\mathbb{R}) \rightarrow M_{3 \times 3}(\mathbb{R})$ be the linear transformation defined by $T(P)=Q P$. Then the rank of T is \qquad
55. Let $a_{k}=(-1)^{k-1}, s_{n}=a_{1}+a_{2}+\ldots+a_{n}$ and $\sigma_{n}=\left(s_{1}+s_{2}+\ldots+s_{n}\right) / n$, where $k, n \in \mathbb{N}$.

Then $\lim _{n \rightarrow \infty} \sigma_{n}$ is \qquad (correct upto one decimal place)
56. The value of the integral $\int_{0}^{1} \int_{x}^{1} y^{4} e^{x y^{2}} d y d x$ is \qquad (correct upto three decimal places)
57. The area of the parametrized surface
$S=\left\{((2+\cos u) \cos v,(2+\cos u) \sin v, \sin u) \in \mathbb{R}^{3} \left\lvert\, 0 \leq u \leq \frac{\pi}{2}\right., 0 \leq v \leq \frac{\pi}{2}\right\}$ is \qquad
(correct upto two decimal places)
58. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f^{\prime \prime}$ is continuous on \mathbb{R} and $f(0)=1, f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=-1$. Then $\lim _{x \rightarrow \infty}\left(f\left(\sqrt{\frac{2}{x}}\right)\right)^{x}$ is \qquad (correct upto three decimal places)
59. If $x(t)$ is the solution to the differential equation $\frac{d x}{d t}=x^{2} t^{3}+x t$, for $t>0$, satisfying $x(0)=1$, then the value of $x(\sqrt{2})$ is \qquad (correct upto two decimal places)
60. If the volume of the solid in \mathbb{R}^{3} bounded by the surfaces $x=-1, x=1, y=-1, y=1, z=2, y^{2}+z^{2}=2$ is $\alpha-\pi$, then $\alpha=$ \qquad

