PAPER : IIT-JAM

MATHEMATICS MA-2018

SECTION-A

[Multiple Choice Questions (MCQ)]

Q.1 - Q.10 carry ONE mark each.

- 1. The tangent plane to the surface $z = \sqrt{x^2 + 3y^2}$ at (1, 1, 2) is given by (a) x - 3y + z = 0 (b) x + 3y - 2z = 0
 - (c) 2x + 4y 3z = 0 (d) 3x 7y + 2z = 0
- 2. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a scalar field, $\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3$ and let $\vec{a} \in \mathbb{R}^3$ be a constant vector. If \vec{r} represents the position vector $x\hat{i} + y\hat{j} + z\hat{k}$, then which one of the following is FALSE?

(a)
$$curl(f \vec{v}) = grad(f) \times \vec{v} + f curl(\vec{v})$$
 (b) $div(grad(f)) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) f$
(c) $curl(\vec{a} \times \vec{r}) = 2 |\vec{a}| \vec{r}$ (d) $div\left(\frac{\vec{r}}{|\vec{r}|^3}\right) = 0$, for $\vec{r} \neq \vec{0}$

- 3. In \mathbb{R}^3 , the cosine of the acute angle between the surfaces $x^2 + y^2 + z^2 9 = 0$ and $z x^2 y^2 + 3 = 0$ at the point (2, 1, 2) is
 - (a) $\frac{8}{5\sqrt{21}}$ (b) $\frac{10}{5\sqrt{21}}$ (c) $\frac{8}{3\sqrt{21}}$ (d) $\frac{10}{3\sqrt{21}}$
- 4. Let $s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ for $n \in \mathbb{N}$. Then which one of the following is TRUE for the sequence $\{s_n\}_{n=1}^{\infty}$
 - (a) $\{s_n\}_{n=1}^{\infty}$ converges in \mathbb{Q}
 - (b) $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence but does not converge in \mathbb{Q}
 - (c) The sub-sequence $\{s_{k^n}\}_{n=1}^{\infty}$ is convergent in \mathbb{R} only when k is even natural number
 - (d) $\{s_n\}_{n=1}^{\infty}$ is not a Cauchy sequence
- 5. Consider the vector space V over R of polynomial functions of degree less than or equal to 3 defined on R. Let T: V → V be defined by (Tf)(x) = f(x) xf'(x). Then the rank of T is
 (a) 1 (b) 2 (c) 3 (d) 4
- 6. Let *a* be a positive real number. If *f* is a continuous and even function defined on the interval [-a, a], then $\int_{-a}^{a} \frac{f(x)}{1 + e^{x}} dx$ is equal to

(a)
$$\int_{0}^{a} f(x)dx$$
 (b) $2\int_{0}^{a} \frac{f(x)}{1+e^{x}}dx$ (c) $2\int_{0}^{a} f(x)dx$ (d) $2a\int_{0}^{a} \frac{f(x)}{1+e^{x}}dx$

14. Let $a, b, c \in \mathbb{R}$. Which of the following values of a, b, c do NOT result in the convergence of the series

 $\sum_{n=3}^{\infty} \frac{a^n}{n^b (\log_e n)^c}?$ (a) $|a| < 1, b \in \mathbb{R}, c \in \mathbb{R}$ (b) $a = 1, b > 1, c \in \mathbb{R}$ (c) $a = 1, b \ge 0, c < 1$ (d) $a = -1, b \ge 0, c > 0$

15. Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let *J* be a bounded open interval in \mathbb{R} .

Define $W(f, J) = \sup \{f(x) | x \in J\} - \inf \{f(x) | x \in J\}$. Which one of the following is FALSE?

(a) $W(f,J_1) \le W(f,J_2)$ if $J_1 \subset J_2$

(b) If f is a bounded function in J and $J \supset J_1 \supset J_2 ... \supset J_n \supset ...$ such that the length of the interval J_n tends to 0 as $n \to \infty$, then $\lim W(f, J_n) = 0$

- (c) If f is discontinuous at a point $a \in J$, then $W(f, J) \neq 0$
- (d) If *f* is continuous at a point $a \in J$, then for any given $\in > 0$ there exists an interval $I \subset J$ such that $W(f, I) < \in$
- 16. Let U, V and W be finite dimensional real vector spaces, $T: U \rightarrow V$, $S: V \rightarrow W$ and $P: W \rightarrow U$ be linear transformations. If range (ST) = nullspace (P), nullspace (ST) = range (P) and rank (T) = rank (S), then which one of the following is TRUE?
 - (a) nullity of T = nullity of S
 - (b) dimension of $U \neq$ dimension of W
 - (c) If dimension of V = 3, dimension of U = 4, then P is not identically zero
 - (d) If dimension of V = 4, dimension of U = 3, and T is one-one, then P is identically zero
- 17. Let $a_n = \frac{(-1)^n}{\sqrt{1+n}}$ and let $c_n = \sum_{k=0}^n a_{n-k} a_k$, where $n \in \mathbb{N} \cup \{0\}$. Then which one of the following is TRUE?
 - (a) Both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=1}^{\infty} c_n$ are convergent
 - (b) $\sum_{n=0}^{\infty} a_n$ is convergent but $\sum_{n=1}^{\infty} c_n$ is not convergent
 - (c) $\sum_{n=1}^{\infty} c_n$ is convergent but $\sum_{n=0}^{\infty} a_n$ is not convergent
 - (d) Neither $\sum_{n=0}^{\infty} a_n$ nor $\sum_{n=1}^{\infty} c_n$ is convergent
- **18.** Let G be a group satisfying the property that $f: G \to \mathbb{Z}_{221}$ is a homomorphism implies $f(g) = 0, \forall g \in G$. Then a possible group G is
 - (a) \mathbb{Z}_{21} (b) \mathbb{Z}_{51} (c) \mathbb{Z}_{91} (d) \mathbb{Z}_{119}

19. An integrating factor of the differential equation $\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right)dx + \frac{1}{4}(x + xy^2)dy = 0$ is

(a) x^2 (b) $3\log_e x$ (c) x^3 (d) $2\log_e x$

4 PAPER : IIT-JAM 2018 20. Let *H* be the quotient group \mathbb{Q}/\mathbb{Z} . Consider the following statements. I. Every cyclic subgroup of H is finite II. Every finite cyclic group is isomorphic to a subgroup of HWhich one of the following holds? (a) I is TRUE but II is FALSE (b) II is TRUE but I is FALSE (c) both I and II are TRUE (d) neither I nor II is TRUE Let $a_n = \begin{cases} 2 + \frac{(-1)^{\frac{n-1}{2}}}{n}, & \text{if } n \text{ is odd} \\ 1 + \frac{1}{2^n}, & \text{if } n \text{ is even} \end{cases}$, $n \in \mathbb{N}$. Then which one of the following is TRUE? 21. (a) $\sup\{a_n \mid n \in \mathbb{N}\}=3$ and $\inf\{a_n \mid n \in \mathbb{N}\}=1$ (b) $\liminf(a_n)=\limsup(a_n)=\frac{3}{2}$ (c) $\sup\{a_n \mid n \in \mathbb{N}\} = 2$ and $\inf\{a_n \mid n \in \mathbb{N}\} = 1$ (d) $\liminf(a_n) = 1$ and $\limsup(a_n) = 3$ Let $a_n = n + \frac{1}{n}, n \in \mathbb{N}$. Then the sum of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{a_{n+1}}{n!}$ is 22. (a) $e^{-1} - 1$ (b) e^{-1} (c) $1 - e^{-1}$ (d) $1 + e^{-1}$ For $x > \frac{-1}{2}$, let $f_1(x) = \frac{2x}{1+2x}$, $f_2(x) = \log_e(1+2x)$ and $f_3(x) = 2x$. Then which one of the follow-23. ing is TRUE? (a) $f_3(x) < f_2(x) < f_1(x)$ for $0 < x < \frac{\sqrt{3}}{2}$ (b) $f_1(x) < f_3(x) < f_2(x)$ for x > 0(c) $f_1(x) + f_2(x) < \frac{f_3(x)}{2}$ for $x > \frac{\sqrt{3}}{2}$ (d) $f_2(x) < f_1(x) < f_3(x)$ for x > 0Consider the group $\mathbb{Z}^2 = \{(a,b) \mid a, b \in \mathbb{Z}\}$ under component wise addition. Then which of the following 24. is a subgroup of \mathbb{Z}^2 ? (a) {(a,b) ∈ Z² | ab = 0}
(b) {(a,b) ∈ Z² | 3a + 2b = 15}
(c) {(a,b) ∈ Z² | 7 divides ab}
(d) {(a,b) ∈ Z² | 2 divides a and 3 divides b} A particular integral of the differential equation $y'' + 3y' + 2y = e^{e^x}$ is 25. (a) $e^{e^x}e^{-x}$ (b) $e^{e^x}e^{-2x}$ (c) $e^{e^x}e^{2x}$ (d) $e^{e^x}e^x$ $a, b \in \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be a thrice differential function. If $z = e^u f(v)$, where u = ax + by and 26. v = ax - by, then which one of the following is TRUE? (a) $b^2 z_{xx} - a^2 z_{yy} = 4a^2 b^2 e^u f'(v)$ (b) $b^2 z_{yy} - a^2 z_{yy} = -4e^u f'(v)$ (c) $bz_{r} + az_{u} = abz$ (d) $bz_{y} + az_{y} = -abz$

5

Let y(x) be the solution of the differential equation $\frac{dy}{dx} + y = f(x)$, for $x \ge 0$, y(0) = 0, where 27. $f(x) = \begin{cases} 2, & 0 \le x < 1 \\ 0, & x \ge 1 \end{cases}$. Then y(x) =(a) $2(1-e^{-x})$ when $0 \le x < 1$ and $2(e-1)e^{-x}$ when $x \ge 1$ (b) $2(1-e^{-x})$ when $0 \le x < 1$ and 0 when $x \ge 1$ (c) $2(1-e^{-x})$ when $0 \le x < 1$ and $2(1-e^{-1})e^{-x}$ when $x \ge 1$ (d) $2(1-e^{-x})$ when $0 \le x < 1$ and $2e^{1-x}$ when $x \ge 1$ Consider the region D in the yz plane bounded by the line $y = \frac{1}{2}$ and the curve $y^2 + z^2 = 1$, where 28. $y \ge 0$. If the region D is revolved about the z-axis in \mathbb{R}^3 , then the volume of the resulting solid is (a) $\frac{\pi}{\sqrt{2}}$ (b) $\frac{2\pi}{\sqrt{3}}$ (c) $\frac{\pi\sqrt{3}}{2}$ (d) $\pi\sqrt{3}$ Suppose that $f, g: \mathbb{R} \to \mathbb{R}$ are differentiable functions such that f is strictly increasing and g is strictly 29. decreasing. Define p(x) = f(g(x)) and $q(x) = g(f(x)), \forall x \in \mathbb{R}$. Then for t > 0 the sign of $\int_{0}^{1} p'(x)(q'(x)-3)dx$ is (c) dependent on t(d) dependent on f and g(a) positive (b) negative Let I denote the 4×4 identity matrix. If the roots of the characteristic polynomial of a 4×4 matrix 30. M are $\pm \sqrt{\frac{1 \pm \sqrt{5}}{2}}$, then M⁸ = (b) $2I + M^2$ (c) $2I + 3M^2$ (d) $3I + 2M^2$ (a) $I + M^2$ **SECTION-B** [Multiple Select Questions (MSQ)] Q.31 - Q.40 carry TWO marks each. The solution(s) of the differential equation $\frac{dy}{dx} = (\sin 2x)y^{1/3}$ satisfying y(0) = 0 is(are) 31. (b) $y(x) = -\sqrt{\frac{8}{27}} \sin^3 x$ (a) y(x) = 0

(c)
$$y(x) = \sqrt{\frac{8}{27}} \sin^3 x$$
 (d) $y(x) = \sqrt{\frac{8}{27}} \cos^3 x$

- **32.** Let P and Q be two non-empty disjoint subsets of \mathbb{R} . Which of the following is (are) FALSE?
 - (a) If P and Q are compact, then $P \cup Q$ is also compact
 - (b) If P and Q are not connected, then $P \cup Q$ is also not connected
 - (c) If $P \cup Q$ and P are closed, then Q is closed
 - (d) If $P \cup Q$ and P are open, then Q is open

6

33.	Let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ denote the group of non-zero complex numbers under multiplication. Suppose				
	$Y_n = \{z \in \mathbb{C} \mid z^n = 1\}, n \in \mathbb{N}$. Which of the following is (are) subgroup(s) of \mathbb{C}^* ?				
	(a) $\bigcup_{n=1}^{100} Y_n$	(b) $\bigcup_{n=1}^{\infty} Y_{2^n}$	(c) $\bigcup_{n=100}^{\infty} Y_n$	(d) $\bigcup_{n=1}^{\infty} Y_n$	
34.	Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be defined by $f(x) = x + \frac{1}{x^3}$. On which of the following interval (s) is <i>f</i> one-one?				
	(a) $(-\infty, -1)$	(b) (0, 1)	(c) (0, 2)	(d) $(0,\infty)$	
35.	 Let S be a subset of R such that 2018 is an interior point of S. Which of the following is (are) TRUE? (a) S contains an interval (b) There is a sequence in S which does not converge to 2018 (c) There is an element y ∈ S, y ≠ 2018 such that y is also an interior point of S 				
	(d) There is a point $z \in S$, such that $ z - 2018 = 0.002018$				
36.	$\vec{F}(x, y, z) = (2x+3yz)\hat{i} + (3xz+2y)\hat{j} + (3xy+2z)\hat{k}$ for $(x, y, z) \in \mathbb{R}^3$, then which among the following is (are) TRUE?				
	(a) $\nabla \times \vec{F} = \vec{0}$				
	(b) $\oint_C \vec{F} \cdot d\vec{r} = 0$ along any simple closed curve <i>C</i>				
	(c) There exists a scalar function $\phi : \mathbb{R}^3 \to \mathbb{R}$ such that $\nabla \cdot \vec{F} = \phi_{xx} + \phi_{yy} + \phi_{zz}$				
	(d) $\nabla \cdot \vec{F} = 0$				
37.	Let $m, n \in \mathbb{N}, m < n, H$	$P \in M_{n \times m}(\mathbb{R}), \ Q \in M_{m \times m}(\mathbb{R})$	$_n(\mathbb{R})$. Then which of t	he following is (are) NOT possible?	
	(a) $rank(PQ) = n$ (b) $rank(QP) = m$ (c) $rank(PQ) = m$				
38	(d) $rank(QP) = \left\lceil \frac{m+n}{2} \right\rceil$, the smallest integer larger than or equal to $\frac{m+n}{2}$. Suppose $q, P, u \in \mathbb{R}$. Consider the following system of linear equations				
20.	suppose $\alpha, \beta, \gamma \in \mathbb{R}$. Consider the following system of linear equations. $r + v + z = \alpha$, $r + \beta v + z = \gamma$, $r + v + \alpha z = \beta$. If this system has at least one solution, then which of the				
	following statements is (are) TRUE?				
	(a) If $\alpha = 1$ then $\gamma = 1$	(b)	If $\beta = 1$ then $\gamma = \alpha$		
	(c) If $\beta \neq 1$ then $\alpha = 1$	1	(d) If $\gamma = 1$ then $\alpha =$	= 1	
39.	Suppose f, g, h are p	ermutations of the set	$\{\alpha,\beta,\gamma,\delta\}$, where		
	f interchanges α and	β but fixes γ and δ			
	g interchanges β and	γ but fixes α and δ			
	<i>h</i> interchanges γ and	δ but fixes $α$ and $β$			
	Which of the following permutations interchange (s) α and δ but fix(es) β and γ ?				
40.	(a) $f \circ g \circ h \circ g \circ f$ Which of the following	(b) $g \circ h \circ f \circ h \circ g$ g subsets of \mathbb{R} is (are	(c) $g \circ f \circ h \circ f \circ g$) connected?	(d) $h \circ g \circ f \circ g \circ h$	
	(a) $\{x \in \mathbb{R} \mid x^2 + x > 4\}$	}	(b) $\{x \in \mathbb{R} \mid x^2 + x < x^2 \}$	4}	
	(c) $\{x \in \mathbb{R} \mid x < x-4 $	}	(d) $\{x \in \mathbb{R} \mid x > x $	-4 }	

SECTION-C

[Numerical Answer Type (NAT)]

Q.41 – Q.50 carry ONE mark each.

41. Let $f(x) = \sum_{n=0}^{\infty} (-1)^n x(x-1)^n$ for 0 < x < 2. Then the value of $f\left(\frac{\pi}{4}\right)$ is ______

42. Let
$$f(x, y) = \sqrt{x^3 y} \sin\left(\frac{\pi}{2}e^{\left(\frac{y}{x-1}\right)}\right) + xy \cos\left(\frac{\pi}{3}e^{\left(\frac{x}{y-1}\right)}\right)$$
 for $(x, y) \in \mathbb{R}^2$, $x > 0, y > 0$.

Then $f_x(1,1) + f_y(1,1) =$ _____

- **43.** Let $\phi(x, y, z) = 3y^2 + 3yz$ for $(x, y, z) \in \mathbb{R}^3$. Then the absolute value of the directional derivative of ϕ in the direction of the line $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z}{-2}$, at the point (1, -2, 1) is _____
- 44. Let $f:[0,\infty) \to [0,\infty)$ be continuous on $[0,\infty)$ and differentiable on $(0,\infty)$. If $f(x) = \int_{0}^{x} \sqrt{f(t)} dt$, then f(6) =_____
- 45. Let $a_n = \frac{(1+(-1)^n)}{2^n} + \frac{(1+(-1)^{n-1})}{3^n}$. Then the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n x^n$ about x = 0 is ______

46. Let
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 be given by $f(x, y) = \begin{cases} \frac{x^2 y(x-y)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$.
Then $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ at the point $(0, 0)$ is ______

- 47. Let W_1 be the real vector space of all 5×2 matrices such that the sum of the entries in each row is zero. Let W_2 be the real vector space of all 5×2 matrices such that the sum of the entries in each column is zero. Then the dimension of the space $W_1 \cap W_2$ is _____
- **48.** The coefficient of x^4 in the power series expansion of $e^{\sin x}$ about x = 0 is ______ (correct upto three decimal places).
- **49.** Let A_6 be the group of even permutations of 6 distinct symbols. Then the number of elements of order 6 in A_6 is _____
- 50. The order of the element (123)(246)(456) in the group S₆ is _____
- Q.51 Q.60 carry TWO marks each.

51. If
$$y(x) = v(x) \sec x$$
 is the solution of $y'' - (2\tan x)y' + 5y = 0$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, satisfying $y(0) = 0$ and

 $y'(0) = \sqrt{6}$, then $v\left(\frac{\pi}{6\sqrt{6}}\right)$ is _____ (correct upto two decimal places).

7

8

52.	Suppose x, y, z are positive real numbers such that $x + 2y + 3z = 1$. If M is the maximum value of xyz^2 ,				
	then the value of $\frac{1}{M}$ is				
53.	If $\alpha = \int_{\pi/6}^{\pi/3} \frac{\sin t + \cos t}{\sqrt{\sin 2t}} dt$, then the value of $\left(2\sin\frac{\alpha}{2} + 1\right)^2$ is				
54.	Suppose $Q \in M_{3\times 3}(\mathbb{R})$ is a matrix of rank 2. Let $T: M_{3\times 3}(\mathbb{R}) \to M_{3\times 3}(\mathbb{R})$ be the linear transformation				
	defined by $T(P) = QP$. Then the rank of T is				
55.	Let $a_k = (-1)^{k-1}$, $s_n = a_1 + a_2 + \dots + a_n$ and $\sigma_n = (s_1 + s_2 + \dots + s_n) / n$, where $k, n \in \mathbb{N}$.				
	Then $\lim_{n\to\infty} \sigma_n$ is (correct upto one decimal place)				
56.	The value of the integral $\int_{0}^{1} \int_{x}^{1} y^4 e^{xy^2} dy dx$ is (correct upto three decimal places)				
57.	The area of the parametrized surface				
	$S = \{((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u) \in \mathbb{R}^3 \mid 0 \le u \le \frac{\pi}{2}, 0 \le v \le \frac{\pi}{2}\} \text{ is } _____}$				
5 0	(correct up to two decimal places) $I = I = I = I = I = I = I = I = I = I $				
58.	Let $f: \mathbb{R} \to \mathbb{R}$ be such that f is continuous of \mathbb{R} and $f(0) = 1$, $f'(0) = 0$ and $f'(0) = -1$.				
	Then $\lim_{x \to \infty} \left(f\left(\sqrt{\frac{2}{x}}\right) \right)^x$ is (correct upto three decimal places)				
59.	If $x(t)$ is the solution to the differential equation $\frac{dx}{dt} = x^2 t^3 + xt$, for $t > 0$, satisfying $x(0) = 1$, then the				
	value of $x(\sqrt{2})$ is (correct up to two decimal places)				
60.	If the volume of the solid in \mathbb{R}^3 bounded by the surfaces $x = -1$, $x = 1$, $y = -1$, $y = 1$, $z = 2$, $y^2 + z^2 = 2$				
	is $\alpha - \pi$, then $\alpha =$				

***** END *****