PAPER: IIT-JAM

MATHEMATICS MA-2019

SECTION-A

[Multiple Choice Questions (MCQ)]

Q. 1 - Q. 10 carry ONE mark each.

1. The equation of the tangent plane to the surface $x^{2} z+\sqrt{8-x^{2}-y^{4}}=6$ at the point $(2,0,1)$ is
(a) $2 x+z=5$
(b) $3 x+4 z=10$
(c) $3 x-z=10$
(d) $7 x-4 z=10$
2. Let $a_{1}=b_{1}=0$, and for each $n \geq 2$, let a_{n} and b_{n} be real numbers given by
$a_{n}=\sum_{m=2}^{n} \frac{(-1)^{m} m}{(\log (m))^{m}}$ and $b_{n}=\sum_{m=2}^{n} \frac{1}{(\log (m))^{m}}$.
Then which one of the following is TRUE about the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$?
(a) Both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent
(b) $\left\{a_{n}\right\}$ is convergent and $\left\{b_{n}\right\}$ is divergent
(c) $\left\{a_{n}\right\}$ is divergent and $\left\{b_{n}\right\}$ is convergent
(d) Both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent
3. If $y(x)=\lambda e^{2 x}+e^{\beta x}, \beta \neq 2$, is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$, satisfying $\frac{d y}{d x}(0)=5$, then $y(0)$ is equal to
(a) 1
(b) 4
(c) 5
(d) 9
4. Let $T \in M_{m \times n}(\mathbb{R})$. Let V be the subspace of $M_{n \times p}(\mathbb{R})$ defined by $V \equiv\left\{X \in M_{n \times p}(\mathbb{R}): T X=0\right\}$. Then the dimension of V is
(a) $p n-\operatorname{rank}(T)$
(b) $m n-p \operatorname{rank}(T)$
(c) $p(m-\operatorname{rank}(T))$
(d) $p(n-\operatorname{rank}(T))$
5. If $x^{h} y^{k}$ is an integrating factor of the differential equation $y(1+x y) d x+x(1-x y) d y=0$. Then the ordered pair (h, k) is equal to
(a) $(-2,-2)$
(b) $(-2,-1)$
(c) $(-1,-2)$
(d) $(-1,-1)$
6. Let S be the set of all limit points of the set $\left\{\frac{n}{\sqrt{2}}+\frac{\sqrt{2}}{n}: n \in \mathbb{N}\right\}$. Let \mathbb{Q}_{+}be the set of all positive rational numbers. Then
(a) $\mathbb{Q}_{+} \subseteq S$
(b) $S \subseteq \mathbb{Q}_{+}$
(c) $S \cap\left(\mathbb{R} \backslash \mathbb{Q}_{+}\right) \neq 0$
(d) $S \cap \mathbb{Q}_{+} \neq 0$
7. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be sequences of positive real number such that $n a_{n}<b_{n}<n^{2} a_{n}$ for all $n \geq 2$. If the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is 4 , then the power series $\sum_{n=0}^{\infty} b_{n} x^{n}$.
(a) converges for all x with $|x|<2$
(b) converges for all x with $|x|>2$
(c) does not converge for any x with $|x|>2$
(d) does not converge for any x with $|x|<2$
8. The area of the surface generated by rotating the curve $x=y^{3}, 0 \leq y \leq 1$, about the y-axis, is
(a) $\frac{\pi}{27} 10^{3 / 2}$
(b) $\frac{4 \pi}{3}\left(10^{3 / 2}-1\right)$
(c) $\frac{\pi}{27}\left(10^{3 / 2}-1\right)$
(d) $\frac{4 \pi}{3} 10^{3 / 2}$
9. The value of the integral $\int_{y=0}^{1} \int_{x=0}^{1-y^{2}} y \sin \left(\pi(1-x)^{2}\right) d x d y$ is
(a) $\frac{1}{2 \pi}$
(b) 2π
(c) $\frac{\pi}{2}$
(d) $\frac{2}{\pi}$
10. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f(x, y, z)=g\left(x^{2}+y^{2}-2 z^{2}\right)$. Then $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$ is equal to
(a) $4\left(x^{2}+y^{2}-4 z^{2}\right) g^{\prime \prime}\left(x^{2}+y^{2}-2 z^{2}\right)$
(b) $4\left(x^{2}+y^{2}+4 z^{2}\right) g^{\prime \prime}\left(x^{2}+y^{2}-2 z^{2}\right)$
(c) $4\left(x^{2}+y^{2}-2 z^{2}\right) g^{\prime \prime}\left(x^{2}+y^{2}-2 z^{2}\right)$
(d) $4\left(x^{2}+y^{2}+4 z^{2}\right) g^{\prime \prime}\left(x^{2}+y^{2}-2 z^{2}\right)+8 g^{\prime}\left(x^{2}+y^{2}-2 z^{2}\right)$
Q. 11 - Q. 30 carry TWO marks each.
11. For $\beta \in \mathbb{R}$, define $f(x, y)=\left\{\begin{array}{cc}\frac{x^{2}|x|^{\beta} y}{x^{4}+y^{2}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$. Then at $(0,0)$ the function f is
(a) continuous for $\beta=0$
(b) continuous for $\beta>0$
(c) not differentiable for any β
(d) continuous for $\beta<0$
12. The set $\left\{\frac{x}{1+x}:-1<x<1\right\}$, as a subset of \mathbb{R}, is
(a) connected and compact
(b) connected but not compact
(c) not connected butcompact
(d) neither connected nor compact
13. The set $\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\} \cup\{0\}$, as a subset of \mathbb{R} is
(a) compact and open
(b) compact but not open
(c) not compact but open
(d) neither compact nor open
14. Let $f(x)=(\ln x)^{2}, x>0$. Then
(a) $\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ does not exist
(b) $\lim _{x \rightarrow \infty} f^{\prime}(x)=2$
(c) $\lim _{x \rightarrow \infty}(f(x+1)-f(x))=0$
(d) $\lim _{x \rightarrow \infty}(f(x+1)-f(x))$ does not exist
15. Which one of the following series is divergent?
(a) $\sum_{n=1}^{\infty} \frac{1}{n} \sin ^{2} \frac{1}{n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n} \log n$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \frac{1}{n}$
(d) $\sum_{n=1}^{\infty} \frac{1}{n} \tan \frac{1}{n}$
16. The function $f(x, y)=x^{3}+2 x y+y^{3}$ has a saddle point at
(a) $(0,0)$
(b) $\left(-\frac{2}{3},-\frac{2}{3}\right)$
(c) $\left(-\frac{3}{2},-\frac{3}{2}\right)$
(d) $(-1,-1)$
17. For which one of the following values of k, the equation $2 x^{3}+3 x^{2}-12 x-k=0$ has three distinct real roots?
(a) 16
(b) 20
(c) 26
(d) 31
18. For $-1<x<1$, the sum of the power series $1+\sum_{n=2}^{\infty}(-1)^{n-1} n^{2} x^{n-1}$ is
(a) $\frac{1-x}{(1+x)^{3}}$
(b) $\frac{1+x^{2}}{(1+x)^{4}}$
(c) $\frac{1-x}{(1+x)^{2}}$
(d) $\frac{1+x^{2}}{(1+x)^{3}}$
19. Let C be the circle $(x-1)^{2}+y^{2}=1$, oriented counter clockwise. Then the value of the line integral $\oint_{C}-\frac{4}{3} x y^{3} d x+x^{4} d y$ is
(a) 6π
(b) 8π
(c) 12π
(d) 14π
20. Let P be a 4×4 matrix with entries from the set of rational numbers. If $\sqrt{2}+i$, with $i=\sqrt{-1}$ is a root of the characteristic polynomial of P and I is the 4×4 identity matrix, then
(a) $P^{4}=4 P^{2}+9 I$
(b) $P^{4}=4 P^{2}-9 I$
(c) $P^{4}=2 P^{2}-9 I$
(d) $P^{4}=2 P^{2}+9 I$
21. The set of eigenvalues of which one of the following matrices is NOT equal to the set of eigenvalues of $\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$?
(a) $\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$
(b) $\left(\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right)$
(c) $\left(\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right)$
(d) $\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$
22. Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers. The series $\sum_{n=1}^{\infty} a_{n}$ converges if the series
(a) $\sum_{n=1}^{\infty} a_{n}^{2}$ converges
(b) $\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}$ converges
(c) $\sum_{n=1}^{\infty} \frac{a_{n+1}}{a_{n}}$ converges
(d) $\sum_{n=1}^{\infty} \frac{a_{n}}{a_{n+1}}$ converges
23. Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers such that $a_{1}=1, a_{n+1}^{2}-2 a_{n} a_{n+1}-a_{n}=0$ for all $n \geq 1$. Then the sum of the series $\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}$ lies in the interval
(a) $(1,2]$
(b) $(2,3]$
(c) $(3,4]$
(d) $(4,5]$
24. The tangent line to the curve of intersection of the surface $x^{2}+y^{2}-z=0$ and the plane $x+z=3$ at the point $(1,1,2)$ passes through
(a) $(-1,-2,4)$
(b) $(-1,4,4)$
(c) $(3,4,4)$
(d) $(-1,4,0)$
25. The area of the part of the surface of the paraboloid $x^{2}+y^{2}+z=8$ lying inside the cylinder $x^{2}+y^{2}=4$ is
(a) $\frac{\pi}{2}\left(17^{3 / 2}-1\right)$
(b) $\pi\left(17^{3 / 2}-1\right)$
(c) $\frac{\pi}{6}\left(17^{3 / 2}-1\right)$
(d) $\frac{\pi}{3}\left(17^{3 / 2}-1\right)$
26. Let $\vec{F}(x, y, z)=2 y \hat{i}+x^{2} \hat{j}+x y \hat{k}$ and C be the curve of intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=1$. Then the value of $\left|\oint_{C} \vec{F} \cdot d \vec{r}\right|$ is
(a) π
(b) $\frac{3 \pi}{2}$
(c) 2π
(d) 3π
27. Let S be the family of orthogonal trajectories of the family of curves $2 x^{2}+y^{2}=k$, for $k \in \mathbb{R}$ and $k>0$. If $C \in S$ and C passes through the point $(1,2)$, then C also passes through
(a) $(4,-\sqrt{2})$
(b) $(2,-4)$
(c) $(2,2 \sqrt{2})$
(d) $(4,2 \sqrt{2})$
28. Let H and K be subgroups of \mathbb{Z}_{144}. If the order of H is 24 and the order of K is 36 , then the order of the subgroup $H \cap K$ is
(a) 3
(b) 4
(c) 6
(d) 12
29. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)>f(x)$ for all $x \in \mathbb{R}$ and $f(0)=1$. Then $f(1)$ lies in the interval
(a) $\left(0, e^{-1}\right)$
(b) $\left(e^{-1}, \sqrt{e}\right)$
(c) (\sqrt{e}, e)
(d) (e, ∞)
30. Let $x, x+e^{x}$ and $1+x+e^{x}$ be solutions of a linear second order ordinary differential equation with constant coefficients. If $y(x)$ is the solution of the same equation satisfying $y(0)=3$ and $y^{\prime}(0)=4$, then $y(1)$ is equal to
(a) $e+1$
(b) $2 e+3$
(c) $3 e+2$
(d) $3 e+1$

SECTION-B

[Multiple Select Questions (MSQ)]

Q. 31 - Q. 40 carry TWO marks each.

31. Let \vec{F} and \vec{G} be differentiable vector fields and let g be a differentiable scalar function. Then
(a) $\nabla \cdot(\vec{F} \times \vec{G})=\vec{G} \cdot \nabla \times \vec{F}-\vec{F} \cdot \nabla \times \vec{G}$
(b) $\nabla \cdot(\vec{F} \times \vec{G})=\vec{G} \cdot \nabla \times \vec{F}+\vec{F} \cdot \nabla \times \vec{G}$
(c) $\nabla \cdot(g \vec{F})=g \nabla \cdot \vec{F}-\nabla g \cdot \vec{F}$
(d) $\nabla \cdot(g \vec{F})=g \nabla \cdot \vec{F}+\nabla g \cdot \vec{F}$
32. Let S and T be linear transformations from a finite dimensional vector space V to itself such that $S(T(v))=$ 0 for all $v \in V$. Then
(a) $\operatorname{rank}(T) \geq \operatorname{nullity}(S)$
(b) $\operatorname{rank}(S) \geq \operatorname{nullity}(S)$
(c) $\operatorname{rank}(T) \leq \operatorname{nullity}(S)$
(d) $\operatorname{rank}(S) \leq \operatorname{nullity}(T)$
33. Let $f(x, y)=\left\{\begin{array}{cl}\frac{|x|}{|x|+|y|} \sqrt{x^{4}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$. Then at $(0,0)$.
(a) f is continuous
(b) $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}$ does not exist
(c) $\frac{\partial f}{\partial x}$ does not exist and $\frac{\partial f}{\partial y}=0$
(d) $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$
34. Let $\left\{a_{n}\right\}$ be the sequence of real numbers such that $a_{1}=1$ and $a_{n+1}=a_{n}+a_{n}^{2}$ for all $n \geq 1$. Then
(a) $a_{4}=a_{1}\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right)$
(b) $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$
(c) $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=1$
(d) $\lim _{n \rightarrow \infty} a_{n}=0$
35. Let $f:\left(0, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ be given by $f(x)=(\sin x)^{\pi}-\pi \sin x+\pi$. Then which of the following statements is/ are TRUE?
(a) f is an increasing function
(b) f is a decreasing function
(c) $f(x)>0$ for all $x \in\left(0, \frac{\pi}{2}\right)$
(d) $f(x)<0$ for some $x \in\left(0, \frac{\pi}{2}\right)$
36. Consider the intervals $S=(0,2]$ and $T=[1,3)$. Let S° and T° be the sets of interior points of S and T, respectively. Then the set of interior points of $S \backslash T$ is equal to
(a) $S \backslash T^{\circ}$
(b) $S \backslash T$
(c) $S^{\circ} \backslash T^{\circ}$
(d) $S^{\circ} \backslash T$
37. Let $\left\{a_{n}\right\}$ be the sequence given by $a_{n}=\max \left\{\sin \left(\frac{n \pi}{3}\right), \cos \left(\frac{n \pi}{3}\right)\right\}, n \geq 1$. Then which of the following statements is/are TRUE about the subsequences $\left\{a_{6 n-1}\right\}$ and $\left\{a_{6 n+4}\right\}$?
(a) Both the subsequences are convergent
(b) Only one of the subsequences is convergent
(c) $\left\{a_{6 n-1}\right\}$ converges to $-\frac{1}{2}$
(d) $\left\{a_{6 n+4}\right\}$ converges to $\frac{1}{2}$
38. Let $f(x)=\cos (|\pi-x|)+(x-\pi) \sin |x|$ and $g(x)=x^{2}$ for $x \in \mathbb{R}$. If $h(x)=f(g(x))$, then
(a) h is not differentiable at $x=0$
(b) $h^{\prime}(\sqrt{\pi})=0$
(c) $h^{\prime \prime}(x)=0$ has a solution in $(-\pi, \pi)$
(d) there exists $x_{0} \in(-\pi, \pi)$ such that $h\left(x_{0}\right)=x_{0}$
39. Let G be a non cyclic group of order 4. Consider the statements I and II.
I. There is NO injective (one-one) homomorphism from G to \mathbb{Z}_{8}.
II. There is NO surjective (onto) homomorphism from \mathbb{Z}_{8} to G

Then
(a) I is true
(b) I is false
(c) II is true
(d) II is false
40. Let G be non abelian group, $y \in G$ and let the maps f, g, h from G to itself be defined by $f(x)=y x y^{-1}, g(x)=x^{-1}$ and $h=g \circ g$. Then
(a) g and h are homomorphisms and f is not a homomorphism
(b) h is a homomorphism and g is not a homomorphism
(c) f is a homomorphism and g is not a homomorphism
(d) f, g and h are homomorphism

SECTION-C

[Numerical Answer Type (NAT)]

Q. 1 - Q. 10 carry ONE mark each.

41. If $g(x)=\int_{x(x-2)}^{4 x-5} f(t) d t$, where $f(x)=\sqrt{1+3 x^{4}}$ for , $x \in \mathbb{R}$ then $g^{\prime}(1)=$ \qquad .
42. Let x be the 100 -cycle $(1,2,3 \ldots 100)$ and let y be the transposition $(49,50)$ in the permutation group S_{100}. Then the order of $x y$ is \qquad .
43. The volume of the solid bounded by the surfaces $x=1-y^{2}$ and $x=y^{2}-1$, and the planes $z=0$ and $z=2$ (round off to 2 decimal places) is \qquad .
44. The coefficient of $\left(x-\frac{\pi}{2}\right)$ in the Taylor series expansion of the function $f(x)=\left\{\begin{array}{cc}\frac{4(1-\sin x)}{2 x-x}, & x \neq \frac{\pi}{2} \\ 0, & x=\frac{\pi}{2}\end{array}\right.$, about $x=\frac{\pi}{2}$ is \qquad .
45. Let $f(x, y)=\left\{\begin{array}{cll}\frac{x^{3}+y^{3}}{x^{2}-y^{2}}, & x^{2}-y^{2} \neq 0 \\ 0, & x^{2}-y^{2}=0\end{array}\right.$. Then the directional derivative of f at $(0,0)$ in the direction of $\frac{4}{5} \hat{i}+\frac{3}{5} \hat{j}$ is \qquad .
46. Consider the following system of three linear equations in four unknowns x_{1}, x_{2}, x_{3} and x_{4}

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=4 \\
& x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=5 \\
& x_{1}+3 x_{2}+5 x_{3}+k x_{4}=5
\end{aligned} \text {. Ifthe system has no solutions, then } k=
$$

47. The value of the integral $\int_{-1}^{1} \int_{-1}^{1}|x+y| d x d y$ (round off to 2 decimal places) is \qquad .
48. Let W_{1} and W_{2} be subspaces of the real vector space \mathbb{R}^{100} defined by
$W_{1}=\left\{\left(x_{1}, x_{2}, \ldots . ., x_{100}\right): x_{i}=0\right.$ if i is divisible by 4$\}$
$W_{2}=\left\{\left(x_{1}, x_{2}, \ldots \ldots, x_{100}\right): x_{i}=0\right.$ if i is divisible by 5$\}$.
Then the dimension of $W_{1} \cap W_{2}$ is \qquad .
49. Let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(x)=\frac{\left(1+x^{\frac{1}{3}}\right)^{3}+\left(1-x^{\frac{1}{3}}\right)^{3}}{8(1+x)}$.

Then $\max \{f(x): x \in[0,1]\}-\min \{f(x): x \in[0,1]\}$ is \qquad .
50. Let $\vec{F}(x, y)=-y \hat{i}+x \hat{j}$ and let C be the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ oriented counter clockwise. Then the values of $\oint_{C} \vec{F} \cdot d \vec{r}$ (round off to 2 decimal places) is \qquad .

Q. 51 - Q. 60 carry TWO marks each.

51. The number of critical points of the function $f(x, y)=\left(x^{2}+3 y^{2}\right) e^{-\left(x^{2}+y^{2}\right)}$ is \qquad .
52. The volume of the solid of revolution of the loop of the curve $y^{2}=x^{4}(x+2)$ about the x -axis (round off to 2 decimal places) is \qquad .
53. If $y(x)$ is the solution of the initial value problem $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=0, y(0)=2, \frac{d y}{d x}(0)=0$. Then $y(\ln 2)$ is (round off to 2 decimal places) equal to \qquad .
54. Let $G=\{n \in \mathbb{N}: n \leq 55, \operatorname{gcd}(n, 55)=1\}$ be the group under multiplication modulo 55 . Let $x \in G$ be such that $x^{2}=26$ and $x>30$. Then x is equal to \qquad .
55. Let M and N be any two 4×4 matrices with integer entries satisfying $M N=2\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Then the maximum value of $\operatorname{det}(M)+\operatorname{det}(N)$ is \qquad .
56. Let M be a 3×3 matrix with real entries such that $M^{2}=M+2 I$, where I denotes the 3×3 identity matrix. If α, β and γ are eigenvalues of M such that $\alpha \beta \gamma=-4$, then $\alpha+\beta+\gamma$ is equal to \qquad .
57. If $\left(\begin{array}{l}2 \\ y \\ z\end{array}\right) ; y, z \in \mathbb{R}$ is an eigenvector corresponding to real eigenvalue of the matrix $\left(\begin{array}{ccc}0 & 0 & 2 \\ 1 & 0 & -4 \\ 0 & 1 & 3\end{array}\right)$ then $z-y$ is equal to \qquad .
58. The greatest lower bound to the set $\left\{\left(e^{n}+2^{n}\right)^{\frac{1}{n}}: n \in \mathbb{N}\right\}$, (round off to 2 decimal places) is \qquad .
59. The number of elements in the set $\left\{x \in S_{3}: x^{4}=e\right\}$, where e is the identity element of the permutation group S_{3}, is \qquad -
60. Let $y(x)=x v(x)$ be a solution of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=0$. If $v(0)=0$ and $v(1)=1$, then $v(-2)$ is equal to \qquad .

