PAPER : IIT-JAM

MATHEMATICS MA-2019

SECTION-A

[Multiple Choice Questions (MCQ)]

Q.1 – Q.10 carry ONE mark each.

The equation of the tangent plane to the surface $x^2 z + \sqrt{8 - x^2 - y^4} = 6$ at the point (2, 0, 1) is 1. (a) 2x + z = 5(b) 3x + 4z = 10(c) 3x - z = 10(d) 7x - 4z = 10Let $a_1 = b_1 = 0$, and for each $n \ge 2$, let a_n and b_n be real numbers given by 2. $a_n = \sum_{m=2}^n \frac{(-1)^m m}{(\log(m))^m}$ and $b_n = \sum_{m=2}^n \frac{1}{(\log(m))^m}$. Then which one of the following is TRUE about the sequences $\{a_n\}$ and $\{b_n\}$? (a) Both $\{a_n\}$ and $\{b_n\}$ are divergent (b) $\{a_n\}$ is convergent and $\{b_n\}$ is divergent (c) $\{a_n\}$ is divergent and $\{b_n\}$ is convergent (d) Both $\{a_n\}$ and $\{b_n\}$ are convergent If $y(x) = \lambda e^{2x} + e^{\beta x}, \beta \neq 2$, is a solution of the differential equation $\frac{d^2 y}{dx^2} + \frac{dy}{dx} - 6y = 0$, satisfying 3. $\frac{dy}{dx}(0) = 5$, then y(0) is equal to (b) 4 (c) 5 (a) 1 (d) 9 Let $T \in M_{m \times n}(\mathbb{R})$. Let V be the subspace of $M_{n \times p}(\mathbb{R})$ defined by $V = \{X \in M_{n \times p}(\mathbb{R}) : TX = 0\}$. Then the dimension of V is 4. Then the dimension of V is (b) $mn - p \operatorname{rank}(T)$ (a) $pn - \operatorname{rank}(T)$ (c) $p(m - \operatorname{rank}(T))$ (d) $p(n - \operatorname{rank}(T))$ If $x^{h}y^{k}$ is an integrating factor of the differential equation y(1+xy)dx + x(1-xy)dy = 0. Then the ordered 5. pair (h, k) is equal to (b) (-2, -1) (c)(-1, -2)(d) (-1, -1) (a) (-2, -2) Let *S* be the set of all limit points of the set $\left\{\frac{n}{\sqrt{2}} + \frac{\sqrt{2}}{n} : n \in \mathbb{N}\right\}$. Let \mathbb{Q}_+ be the set of all positive rational 6. numbers. Then (b) $S \subseteq \mathbb{Q}_{\perp}$ (c) $S \cap (\mathbb{R} \setminus \mathbb{Q}_+) \neq 0$ (d) $S \cap \mathbb{Q}_+ \neq 0$ (a) $\mathbb{Q}_{+} \subseteq S$ Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences of positive real number such that $na_n < b_n < n^2a_n$ for all $n \ge 2$. If 7. the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ is 4, then the power series $\sum_{n=0}^{\infty} b_n x^n$. (a) converges for all x with |x| < 2(b) converges for all x with |x| > 2(c) does not converge for any x with |x| > 2(d) does not converge for any x with |x| < 2

2

8.	The area of the surface generated by rotating the curve $x = y^3, 0 \le y \le 1$, about the y-axis, is				
	(a) $\frac{\pi}{27} 10^{3/2}$	(b) $\frac{4\pi}{3}(10^{3/2}-1)$	(c) $\frac{\pi}{27}(10^{3/2}-1)$	(d) $\frac{4\pi}{3}10^{3/2}$	
9.	The value of the integral $\int_{y=0}^{1} \int_{x=0}^{1-y^2} y \sin(\pi(1-x)^2) dx dy$ is				
	(a) $\frac{1}{2\pi}$	(b) 2π	(c) $\frac{\pi}{2}$	(d) $\frac{2}{\pi}$	
10.	Let $g : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. Define $f : \mathbb{R}^3 \to \mathbb{R}$ by $f(x, y, z) = g(x^2 + y^2 - 2z^2)$				
	Then $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$ is equal to				
	(a) $4(x^2 + y^2 - 4z^2)g''(x^2 + y^2 - 2z^2)$				
	(b) $4(x^2 + y^2 + 4z^2)g''(x^2 + y^2 - 2z^2)$				
	(c) $4(x^2 + y^2 - 2z^2)g''(x^2 + y^2 - 2z^2)$				
0.11	(d) $4(x^2 + y^2 + 4z^2)g''(x^2 + y^2 - 2z^2) + 8g'(x^2 + y^2 - 2z^2)$				
Q.11	– Q.30 carry TWO marks				
11.	For $\beta \in \mathbb{R}$, define $f(x, y)$	$= \begin{cases} \frac{x + x + y}{x^4 + y^2}, & x \neq 0\\ 0, & x = 0 \end{cases}$. T	Then at $(0, 0)$ the function	on <i>f</i> is	
	(a) continuous for $\beta = 0$		(b) continuous for	$\beta > 0$	
	(c) not differentiable for an		(d) continuous for	β < 0	
12.	The set $\left\{ \frac{x}{1+x} : -1 < x < 1 \right\}$	$>$, as a subset of $\mathbb R$, is			
	(a) connected and compact		(b) connected but r	not compact	
	(c) not connected but com	•	(d) neither connect	ed nor compact	
13.	The set $\left\{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\right\}$	$\{\cup \{0\}, \text{ as a subset of } \mathbb{R}\}$	is		
	(a) compact and open		(b) compact but no	1	
14.	(c) not compact but open Let $f(x) = (\ln x)^2, x > 0$.	Then	(d) neither compac	t nor open	
1.0			1 $f'(x) = 2$		
	(a) $\lim_{x \to \infty} \frac{f(x)}{x}$ does not ex	ist	(b) $\lim_{x \to \infty} f'(x) = 2$		
	(c) $\lim_{x \to \infty} (f(x+1) - f(x)) =$	= 0	(d) $\lim_{x \to \infty} (f(x+1) -$	f(x)) does not exist	
15.	Which one of the following	e			
	(a) $\sum_{n=1}^{\infty} \frac{1}{n} \sin^2 \frac{1}{n}$	(b) $\sum_{n=1}^{\infty} \frac{1}{n} \log n$	(c) $\sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{1}{n}$	(d) $\sum_{n=1}^{\infty} \frac{1}{n} \tan \frac{1}{n}$	

E

16.	The function $f(x, y) = x^3 + 2xy + y^3$ has a saddle point at			
	(a) (0,0)	(b) $\left(-\frac{2}{3},-\frac{2}{3}\right)$	$(c)\left(-\frac{3}{2},-\frac{3}{2}\right)$	(d) (-1, -1)
17.	For which one of the following values of k, the equation $2x^3 + 3x^2 - 12x - k = 0$ has three distinct real			
	(a) 16	(b) 20	(c) 26	(d) 31
18.	For $-1 < x < 1$, the sum of	The power series $1 + \sum_{n=2}^{\infty}$	$(-1)^{n-1}n^2x^{n-1}$ is	
	(a) $\frac{1-x}{(1+x)^3}$	(b) $\frac{1+x^2}{(1+x)^4}$	(c) $\frac{1-x}{(1+x)^2}$	(d) $\frac{1+x^2}{(1+x)^3}$
19.	Let C be the circle $(x-1)^2$	$+y^2 = 1$, oriented counter	clockwise. Then the v	value of the line integral
	$\oint_C -\frac{4}{3}xy^3dx + x^4dy \text{ is}$			
	(a) 6 π	(b) 8 π	(c) 12 π	(d) 14 π
20.		ial of P and I is the 4×4 ide	ntity matrix, then	$+i$, with $i = \sqrt{-1}$ is a root of
21.	(a) $P^4 = 4P^2 + 9I$ The set of eigenvalues of y	(b) $P^4 = 4P^2 - 9I$		(d) $P^4 = 2P^2 + 9I$ al to the set of eigenvalues of
21.	$\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}?$	vinen one of the following		and the set of eigenvalues of
	(a) $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$	(b) $\begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$	(c) $\begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$	(d) $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$
22.	Let $\{a_n\}$ be a sequence of	positive real numbers. The	series $\sum_{n=1}^{\infty} a_n$ conv	erges if the series
	(a) $\sum_{n=1}^{\infty} a_n^2$ converges	CAREER END	(b) $\sum_{n=1}^{\infty} \frac{a_n}{2^n}$ conv	erges
	(c) $\sum_{n=1}^{\infty} \frac{a_{n+1}}{a_n}$ converges		(d) $\sum_{n=1}^{\infty} \frac{a_n}{a_{n+1}}$ cor	iverges
23.	Let $\{a_n\}$ be a sequence of	positive real numbers suc	h that $a_1 = 1, a_{n+1}^2 - 2$	$a_n a_{n+1} - a_n = 0 \text{ for all } n \ge 1.$
	Then the sum of the series	$\sum_{n=1}^{\infty} \frac{a_n}{2^n}$ lies in the interval		
	(a) (1,2]	(b) (2, 3]	(c)(3,4]	(d) (4,5]
24.			face $x^2 + y^2 - z = 0$	and the plane $x + z = 3$ at the
	point (1, 1, 2) passes throu (a) (-1, -2, 4)	gh (b) (-1, 4, 4)	(c)(3,4,4)	(d) (-1, 4, 0)
25.				de the cylinder $x^2 + y^2 = 4$ is
	(a) $\frac{\pi}{2}(17^{3/2}-1)$	(b) $\pi(17^{3/2}-1)$	_	_

4	PAPER : IIT-JAM 2019				
26.	Let $\vec{F}(x, y, z) = 2y\hat{i} + x^2\hat{j} + xy\hat{k}$ and C be the curve of intersection of the plane $x + y + z = 1$ and the				
	cylinder $x^2 + y^2 = 1$. Then the value of $\left \oint_C \vec{F} \cdot d\vec{r} \right $ is				
	(a) π	(b) $\frac{3\pi}{2}$	(c) 2π	(d) 3π	
27.	Let S be the family of orthogonal trajectories of the family of curves $2x^2 + y^2 = k$, for $k \in \mathbb{R}$ and $k > 0$. If $C \in S$ and C passes through the point (1, 2), then C also passes through				
	(a) $(4, -\sqrt{2})$	(b) (2, -4)	(c) $(2, 2\sqrt{2})$	(d) $(4, 2\sqrt{2})$	
28.	Let <i>H</i> and <i>K</i> be subgroups subgroup $H \cap K$ is	s of \mathbb{Z}_{144} . If the order	of H is 24 and the orde	r of K is 36, then the order of the	
	(a) 3	(b) 4	(c) 6	(d) 12	
29.	f(1) lies in the interval			or all $x \in \mathbb{R}$ and $f(0) = 1$. Then	
	(a) $(0, e^{-1})$	(b) (e^{-1}, \sqrt{e})	(c) (\sqrt{e}, e)	(d) (e,∞)	
30.		lution of the same equation $(b) 2e + 3$	ation satisfying $y(0) = 3$ ation (c) $3e + 2$	differential equation with constant nd $y'(0) = 4$, then $y(1)$ is equal to (d) $3e + 1$	
		SECT	ION-B		
		[Multiple Select	Questions (MSQ)]		
	- Q.40 carry TWO mark				
31.	Let \vec{F} and \vec{G} be different				
	(a) $\nabla \cdot (\vec{F} \times \vec{G}) = \vec{G} \cdot \nabla \times \vec{F}$ (c) $\nabla \cdot (g\vec{F}) = g\nabla \cdot \vec{F} - \nabla$	$\vec{F} - \vec{F} \cdot \nabla \times \vec{G}$	(b) $\nabla \cdot (\vec{F} \times \vec{G})$ (d) $\nabla \cdot (g\vec{F}) =$	$= \vec{G} \cdot \nabla \times \vec{F} + \vec{F} \cdot \nabla \times \vec{G}$ $g \nabla \cdot \vec{F} + \nabla g \cdot \vec{F}$	
32.		formations from a fini	te dimensional vector sp	bace V to itself such that $S(T(v)) =$	
	0 for all $v \in V$. Then (a) rank $(T) \ge$ nullity (S) (c) rank $(T) \le$ nullity (S)		(b) $\operatorname{rank}(S) \ge n$ (d) $\operatorname{rank}(S) \le n$	• ()	
33.	Let $f(x,y) = \begin{cases} \frac{ x }{ x + y } \\ 0 \end{cases}$	$\sqrt{x^4 + y^2}$, $(x, y) \neq (0, x, y) = (0, x, y) = (0, x, y) = (0, x, y)$), 0) . Then at (0, 0).), 0)		
	(a) f is continuous		(b) $\frac{\partial f}{\partial x} = 0$ and	$\frac{\partial f}{\partial y} \text{ does not exist}$	
	(c) $\frac{\partial f}{\partial x}$ does not exist and	$d \frac{\partial f}{\partial y} = 0$	(d) $\frac{\partial f}{\partial x} = 0$ and	$\frac{\partial f}{\partial y} = 0$	

34.	Let $\{a_n\}$ be the sequence of real numbers such that $a_1 = 1$ and $a_{n+1} = a_n + a_n^2$ for all $n \ge 1$. Then			
	(a) $a_4 = a_1(1+a_1)(1+a_2)(1+a_3)$ (b) $\lim_{n \to \infty} \frac{1}{a_n} = 0$			
	(c) $\lim_{n \to \infty} \frac{1}{a_n} = 1$ (d) $\lim_{n \to \infty} a_n = 0$			
35.	Let $f:\left(0,\frac{\pi}{2}\right) \to \mathbb{R}$ be given by $f(x) = (\sin x)^{\pi} - \pi \sin x + \pi$. Then which of the following statements is/			
	are TRUE?(a) f is an increasing function(b) f is a decreasing function			
	(c) $f(x) > 0$ for all $x \in \left(0, \frac{\pi}{2}\right)$ (d) $f(x) < 0$ for some $x \in \left(0, \frac{\pi}{2}\right)$			
36.	Consider the intervals $S = (0, 2]$ and $T = [1, 3)$. Let S° and T° be the sets of interior points of S and T , respectively. Then the set of interior points of $S \setminus T$ is equal to (a) $S \setminus T^{\circ}$ (b) $S \setminus T$ (c) $S^{\circ} \setminus T^{\circ}$ (d) $S^{\circ} \setminus T$			
37.	Let $\{a_n\}$ be the sequence given by $a_n = \max\left\{\sin\left(\frac{n\pi}{3}\right), \cos\left(\frac{n\pi}{3}\right)\right\}, n \ge 1$. Then which of the following			
	statements is/are TRUE about the subsequences $\{a_{6n-1}\}\$ and $\{a_{6n+4}\}$? (a) Both the subsequences are convergent (b) Only one of the subsequences is convergent (c) $\{a_{6n-1}\}\$ converges to $-\frac{1}{2}$ (d) $\{a_{6n+4}\}\$ converges to $\frac{1}{2}$			
38.	(c) $\{u_{6n-1}\}$ converges to 2 Let $f(x) = \cos(\pi - x) + (x - \pi)\sin x $ and $g(x) = x^2$ for $x \in \mathbb{R}$. If $h(x) = f(g(x))$, then			
20.	(a) <i>h</i> is not differentiable at $x = 0$			
	(b) $h'(\sqrt{\pi}) = 0$ (c) $h''(x) = 0$ has a solution in $(-\pi, \pi)$			
	(d) there exists $x_0 \in (-\pi, \pi)$ such that $h(x_0) = x_0$			
39.	Let G be a non cyclic group of order 4. Consider the statements I and II.			
	I. There is NO injective (one-one) homomorphism from G to \mathbb{Z}_8 .			
	II. There is NO surjective (onto) homomorphism from \mathbb{Z}_8 to G			
	Then (a) Listrus (b) Listalse (c) Histrus (d) Histalse (d			
40.	(a) I is true(b) I is false(c) II is true(d) II is falseLet G be non abelian group, $y \in G$ and let the maps f, g, h from G to itself be defined by			
101	$f(x) = yxy^{-1}, g(x) = x^{-1}$ and $h = g \circ g$. Then			
	(a) g and h are homomorphisms and f is not a homomorphism			
	(b) h is a homomorphism and g is not a homomorphism			
	(c) f is a homomorphism and g is not a homomorphism (d) f a and h are been supervised.			
	(d) f, g and h are homomorphism			

[Numerical Answer Type (NAT)]

Q.1 – Q.10 carry ONE mark each.

6

41. If
$$g(x) = \int_{x(x-2)}^{4x-5} f(t) dt$$
, where $f(x) = \sqrt{1+3x^4}$ for $x \in \mathbb{R}$ then $g'(1) =$ ______

- 42. Let x be the 100-cycle $(1, 2, 3 \dots 100)$ and let y be the transposition (49, 50) in the permutation group S_{100} . Then the order of xy is _____.
- The volume of the solid bounded by the surfaces $x = 1 y^2$ and $x = y^2 1$, and the planes z = 0 and z = 243. (round off to 2 decimal places) is_____
- The coefficient of $\left(x \frac{\pi}{2}\right)$ in the Taylor series expansion of the function $f(x) = \begin{cases} \frac{4(1 \sin x)}{2x x}, & x \neq \frac{\pi}{2} \\ 0, & x = \frac{\pi}{2} \end{cases}$ 44.

about
$$x = \frac{\pi}{2}$$
 i

- Let $f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 y^2}, & x^2 y^2 \neq 0\\ 0, & x^2 y^2 = 0 \end{cases}$. Then the directional derivative of f at (0, 0) in the direction of $x^2 y^2 = 0$. 45. $\frac{4}{5}\hat{i} + \frac{3}{5}\hat{j}$ is_____
- Consider the following system of three linear equations in four unknowns x_1, x_2, x_3 and x_4 **46**.

 $x_1 + x_2 + x_3 + x_4 = 4$ $x_1 + 2x_2 + 3x_3 + 4x_4 = 5$. If the system has no solutions, then k =

- The value of the integral $\int_{-1}^{1} \int_{-1}^{1} |x + y| dx dy$ (round off to 2 decimal places) is _____. 47.
- Let W_1 and W_2 be subspaces of the real vector space \mathbb{R}^{100} defined by **48.**

$$W_1 = \{(x_1, x_2, \dots, x_{100}) : x_i = 0 \text{ if } i \text{ is divisible by } 4\}$$
$$W_2 = \{(x_1, x_2, \dots, x_{100}) : x_i = 0 \text{ if } i \text{ is divisible by } 5\}.$$
Then the dimension of $W_1 \cap W_2$ is _____.

49. Let
$$f:[0,1] \to \mathbb{R}$$
 be given by $f(x) = \frac{\left(1 + x^{\frac{1}{3}}\right)^3 + \left(1 - x^{\frac{1}{3}}\right)^3}{8(1+x)}$

Then $\max\{f(x): x \in [0,1]\} - \min\{f(x): x \in [0,1]\}$ is _____.

- 50. Let $\vec{F}(x, y) = -y\hat{i} + x\hat{j}$ and let C be the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ oriented counter clockwise. Then the values of $\oint_C \vec{F} \cdot d\vec{r}$ (round off to 2 decimal places) is ______. Q.51 - Q.60 carry TWO marks each.
- 51. The number of critical points of the function $f(x, y) = (x^2 + 3y^2)e^{-(x^2 + y^2)}$ is ______.
- 52. The volume of the solid of revolution of the loop of the curve $y^2 = x^4(x+2)$ about the x-axis (round off to 2 decimal places) is ______.
- 53. If y(x) is the solution of the initial value problem $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$, y(0) = 2, $\frac{dy}{dx}(0) = 0$. Then $y(\ln 2)$ is (round off to 2 decimal places) equal to ______.
- 54. Let $G = \{n \in \mathbb{N} : n \le 55, \gcd(n, 55) = 1\}$ be the group under multiplication modulo 55. Let $x \in G$ be such that $x^2 = 26$ and x > 30. Then x is equal to ______.
- 55. Let M and N be any two 4×4 matrices with integer entries satisfying

 $MN = 2 \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Then the maximum value of det(M) + det(N) is _

56. Let M be a 3 × 3 matrix with real entries such that $M^2 = M + 2I$, where I denotes the 3 × 3 identity matrix. If α,β and γ are eigenvalues of M such that $\alpha\beta\gamma = -4$, then $\alpha + \beta + \gamma$ is equal to _____.

57. If
$$\begin{pmatrix} 2 \\ y \\ z \end{pmatrix}$$
; $y, z \in \mathbb{R}$ is an eigenvector corresponding to real eigenvalue of the matrix $\begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -4 \\ 0 & 1 & 3 \end{pmatrix}$ then $z - y$ is equal to ______.

- **58.** The greatest lower bound to the set $\{(e^n + 2^n)^{\frac{1}{n}} : n \in \mathbb{N}\}$, (round off to 2 decimal places) is _____.
- 59. The number of elements in the set $\{x \in S_3 : x^4 = e\}$, where *e* is the identity element of the permutation group S_3 , is ______.
- 60. Let y(x) = xv(x) be a solution of the differential equation $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 3y = 0$. If v(0) = 0 and v(1) = 1, then v(-2) is equal to ______.

**** END****